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Overview

* Malware is pervasive — millions of new samples are discovered each
year

* There are too many samples uncovered each year to manually reverse
engineer all of them

Global detections 2018-2019

2018 2019 % Change
Overall 50,170,502 50,510,960 1%
Business 8,498,934 9,599,305 13%
V Consumer 41,671,568 40,911,655 -2%
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* Automated malware analysis depends on effective triage and
classification

* Modern malware samples exhibit stealthiness and complex static
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Overview

* Malware is pervasive — millions of new samples are discovered each
year

* There are too many samples uncovered each year to manually reverse
engineer all of them

* Automated malware analysis depends on effective triage and
classification

* Modern malware samples exhibit stealthiness and complex static
obfuscation

* Neural malware classifiers lack verifiability and robustness against
stealthiness and obfuscation
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Malware Classification with Neural Networks

* Neural Networks are a popular means of classification:

* Benign vs. malicious
* Malware family

Malware Feature Data

Malware Images

Malware Family

Benign vs. Malicious
(binary)

* Neural networks lack explainability, robustness, and verifiability

(for malware analysis)
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Outline

* Malware Analysis and Classification
e Adversarial Perturbation

* Semantics-aware Augmentation

* Verification of Neural Classifiers
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Adversarial Perturbation

e Adversary can perturb input sample to cause incorrect classification

Incorrectly classified

as benign
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Assuring Malware Classification with
Augmentation

* Augmentation via perturbation is widely-used to improve machine
learning under sparse data

5°|—[C°

* By introducing small changes to a sample, the hope is to cover more
of the feature space to improve training

* Providing more assurance about the correctness of the classifier
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Malware Classification with Neural Networks

* Two high level classification approaches
* 1. Malware images (byteplots) leverage computer vision approaches (CNNs)
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Malware Binary  8-bit Vector Malware Image
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Malware Classification with Neural Networks

* Two high level classification approaches
e 1. Malware images (byteplots) leverage computer vision approaches (CNNs)
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* Problem: Verification and robustness measured with respect to perturbed
byteplots...

e What does that mean?
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Malware Classification with Neural Networks

* Two high level classification approaches

2. Static and dynamic features extracted from input binary (BODMAS)

Continuous

Categorical

Discrete
Large

Binary
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Malware Classification with Neural Networks

* Two high level classification approaches
2. Static and dynamic features extracted from input binary (BODMAS)

Continuous [5.0, 2.0e5] Entropy Hash [-650, 15] Hash of
Categorical 8 [0.0, 6.5e4]  Machine categorical original file
type Hash discrete 1531 [-8.0e6, 1.6e9] Hash of
Discrete 34 [0.0,4.3e9]  Byte system type
Large distribution  nremory 16 [0.0,4.0e9]  Size of file
Binary 5 [0, 1] Presence of
EEfan Null 222 [-31.0, 60.0] other

* Problem: how do we perturb data meaningfully?
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Outline

* Malware Analysis and Classification
e Adversarial Perturbation

* Semantics-aware Augmentation

* Verification of Neural Classifiers
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Semantics-aware Augmentation and
Verification

* Leverage distinction between interpolatable and non-interpolatable
features

Mon-interpolatable Features Malware Database

Retrieval _
Malware — _
[ =]

Static Analysis
Alignment —
7 E 4>

Interpolatable Features Augmented Malware

* Interpolatable: quantities like length, entropy, number of sections
* Non-interpolatable: hash values, strings
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Semantics-aware Augmentation

* 95% of top-5 neighbors of every sample are in the same family
* Thus, we can mix a sample with its neighbors that are likely the same family

* Features of neighbors can be borrowed to produce a new variant in
the feature space
* This mixture results in a more realistic sample (in the feature space)

* Insight: we adapt MixUp from computer vision literature
* Challenge classifier with hard variants generated by mixing feature space
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Semantics-aware Augmentation

1. Given input sample (s;), identify pestAllgned Af
random neighbor (s;) and embed '
both

Mixed N/
Top-K Similar A/

Search Space

Other N
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Semantics-aware Augmentation

1. Given input sample (s;), identify pestAllgned Af
random neighbor (s;) and embed '
both

2. Apply mixup by combining features
from random neighbor:

e Si=as;+(1—a)s;; 0<a<l1

Mixed N

Top-K Similar A/

Search Space

Other N
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Semantics-aware Augmentation

1. Given input sample (s;), identify
random neighbor (s;) and embed :
bOth Frm— Mixed N

2. Apply mixup by combining features
from random neighbor:

Best Aligned N/

O'.' Top-K Similar A/

e Si=as;+(1—a)s;; 0<a<1 . S

3. For non-interpolatable features, o “wweeees Search Space
identify nearest concrete value in ‘e L
neighbor starting with §;. e Other N

* For example: s; loadswin32.dl1l
» §; might load shell32.dl1l instead
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Using Augmentation for Neural Verification

* The mixed samples we generate can serve as hard examples from
which we:
1. Improve training of subsequent classification
* When malware corpora are sparsely-labeled

 When malware corpora become outdated
 When malware corpora require significant reverse engineering effort

2. Provide stronger verification guarantees of neural classifiers

 When verification requires hard samples for bootstrapping
* When classifiers require robustness bounds
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Preliminary Results

* Non-interpolatable features cluster in the embedding space

Dataset visualization (.S) Non-interpolatable embedding visualization (H,)
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Preliminary Results: MalMixer

* MalMixer produces new samples in the embedding space near the
same family

Invariance embedding visualization ('™ u H3™)

Embeddings
e Drolnux (H'™)
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Preliminary Results: MalMixer

* MalMixer can help improve classification performance in low-
resource settings

BODMAS-20 model comparison test results
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Outline

* Malware Analysis and Classification
e Adversarial Perturbation

* Semantics-aware Augmentation

* Verification of Neural Classifiers

VANDERBILT
UNIVERSITY

26



Malware Byteplot Robustness Example

4x4 Grayscale Image

Ytrue = 4
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Malware Byteplot Robustness Example

Standard Performance Metrics

4x4 Grayscale Image

Ytrue = 4

Ypred _Y
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Malware Byteplot Robustness Example

Robustness Performance: e = 2

4x4 Grayscale Image

i

Ytrue = 4

ypred A

IIIIIIIIII



Malware Byteplot Robustness Example

Robustness Performance: e = 2

[

4x4 Grayscale Image Upper bound

Ytrue =

l

ﬁ - Infinite set

Ypred = 4

V
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Malware Byteplot Robustness Example

Robustness Performance: e = 2

[

4x4 Grayscale Image 47 Upper bound
For all pixels in the image
- Infinite set vie{l,2,3,4},vj € {1,2,3,4}
Ytrue =
l - Lower bound
Ypred =4

v
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Malware Byteplot Robustness Example

Robustness Performance: e = 2

4x4 Grayscale Image

Upper bound

Infinite set

Ytrue = 4
l | Lower bound
Ypred = 4
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Malware Byteplot Robustness Example

4x4 Grayscale Image ! 1

Upper bound

—_—
Infinite set : ,
Ytrue = 4
l | Lower bound |
Ypred = 4
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Robustness Performance: e = 2 .
adversarial
perturbation of size

€ =2
Ypred = 4
Ypred = 4
Ypred = 4
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Malware Byteplot Robustness Example

4x4 Grayscale Image

Upper bound

R
Infinite set ,
Ytrue = 4
l | Lower bound |
Ypred = 4

\/
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Robustness Performance: e = 2 x

NOT Robust to an L
adversarial perturbation
of size € = 2

Ypred = 4
Ypred = B
Ypred = B

35



Preliminary Results: NN Verification

e 200 samples taken from a stratified sampling of the entire BODMAS
dataset (43% malicious samples)

* 3 levels of difficulty (data type and size of perturbation)

Benchmark Level Perturbation Data Perturbation
Type Size(e*)
Level 1 Continuous 0.01
Level 2 Continuous and 0.025
Discrete

Level 3 All 0.001

VANDERBILT
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Preliminary Results: NN Verification

e ¢ =0.1%
 Feature data type = continuous

Sample 1

VANDERBILT
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Feature 1 Feature 2 Feature 3 Feature 4 Feature 5
(binary) (Continuous) (Discrete) (Discrete) (Discrete)
Range [0, 1] [3, 567] [4, 22] [1, 1000] [-5, 5]
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Preliminary Results: NN Verification

1. Train a neural network on the BODMAS dataset
* Input layer: 2381 nodes
* Hidden layer: 32 nodes

e Output layer: 2 (binary classifier — malware or benign)

Metric Value
Accuracy 1.0
Precision 0.99

Recall 1.0

F1 1.0
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Preliminary Results: NN Verification

2. Verify model using on level 2 feature benchmark using Neural
Network Verification (NNV) tool in MATLAB

e Continuous & Discrete

° E* — 0.025 Metric Value
Accuracy 1.0

Result = 103/200 (~50°/o) Precision 0.99
samples successfully R;clall }8
verified :

Classifier is not as robust as we would hope based on evaluation metrics

NNV
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summary

* Malware samples are too voluminous for scalable analysis
* Automated analysis can be thwarted by perturbations and evasivness

* Semantics-aware malware augmentation can improve low-resource
malware classifiers and provide hard samples for verification

* Neural network verification can be used to measure robustness against
perturbation of malware samples

Kevin Leach (kevin.leach@vanderbilt.edu) Taylor Johnson (taylor.johnson@vanderbilt.edu)

VANDERBILT
UNIVERSITY



	Slide 1: Improving Neural Network Malware Classifiers
	Slide 2: Overview
	Slide 3: Overview
	Slide 4: Overview
	Slide 5: Overview
	Slide 8: Malware Classification with Neural Networks
	Slide 9: Outline
	Slide 10: Adversarial Perturbation
	Slide 11: Assuring Malware Classification with Augmentation
	Slide 12: Malware Classification with Neural Networks
	Slide 13: Malware Classification with Neural Networks
	Slide 14: Malware Classification with Neural Networks
	Slide 15: Malware Classification with Neural Networks
	Slide 16: Outline
	Slide 17: Semantics-aware Augmentation and Verification
	Slide 18: Semantics-aware Augmentation
	Slide 19: Semantics-aware Augmentation
	Slide 20: Semantics-aware Augmentation
	Slide 21: Semantics-aware Augmentation
	Slide 22: Using Augmentation for Neural Verification
	Slide 23: Preliminary Results
	Slide 24: Preliminary Results: MalMixer
	Slide 25: Preliminary Results: MalMixer
	Slide 26: Outline
	Slide 28: Malware Byteplot Robustness Example
	Slide 29: Malware Byteplot Robustness Example
	Slide 30: Malware Byteplot Robustness Example
	Slide 31: Malware Byteplot Robustness Example
	Slide 32: Malware Byteplot Robustness Example
	Slide 33: Malware Byteplot Robustness Example
	Slide 34: Malware Byteplot Robustness Example
	Slide 35: Malware Byteplot Robustness Example
	Slide 36: Preliminary Results: NN Verification
	Slide 37: Preliminary Results: NN Verification
	Slide 38: Preliminary Results: NN Verification
	Slide 39: Preliminary Results: NN Verification
	Slide 40: Preliminary Results: NN Verification
	Slide 41: Preliminary Results: NN Verification
	Slide 42: Preliminary Results: NN Verification
	Slide 43: Preliminary Results: NN Verification
	Slide 44: Summary

