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Overview

• Malware is pervasive – millions of new samples are discovered each 
year
• There are too many samples uncovered each year to manually reverse 

engineer all of them
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Overview

• Malware is pervasive – millions of new samples are discovered each 
year
• There are too many samples uncovered each year to manually reverse 

engineer all of them

• Automated malware analysis depends on effective triage and 
classification
• Modern malware samples exhibit stealthiness and complex static 

obfuscation

• Neural malware classifiers lack verifiability and robustness against 
stealthiness and obfuscation
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Malware Classification with Neural Networks

• Neural Networks are a popular means of classification:
• Benign vs. malicious
• Malware family

• Neural networks lack explainability, robustness, and verifiability
(for malware analysis)
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Outline

• Malware Analysis and Classification

• Adversarial Perturbation

• Semantics-aware Augmentation

• Verification of Neural Classifiers
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Adversarial Perturbation

• Adversary can perturb input sample to cause incorrect classification
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Assuring Malware Classification with 
Augmentation
• Augmentation via perturbation is widely-used to improve machine 

learning under sparse data

• By introducing small changes to a sample, the hope is to cover more 
of the feature space to improve training
• Providing more assurance about the correctness of the classifier
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Malware Classification with Neural Networks

• Two high level classification approaches
• 1. Malware images (byteplots) leverage computer vision approaches (CNNs)
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Malware Classification with Neural Networks

• Two high level classification approaches
• 1. Malware images (byteplots) leverage computer vision approaches (CNNs)

• Problem:  Verification and robustness measured with respect to perturbed 
byteplots…
• What does that mean?
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Malware Classification with Neural Networks

• Two high level classification approaches
• 2. Static and dynamic features extracted from input binary (BODMAS)
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Feature Type Count Max Range Example

Continuous 5 [5.0, 2.0e5] Entropy

Categorical 8 [0.0, 6.5e4] Machine 
type

Discrete 
Large

34 [0.0, 4.3e9] Byte 
distribution

Binary 5 [0, 1] Presence of 
section

Feature Type Count Max Range Example

Hash 
categorical

500 [-650, 15] Hash of 
original file

Hash discrete 1531 [-8.0e6, 1.6e9] Hash of 
system type

Memory 16 [0.0, 4.0e9] Size of file

Null 222 [-31.0, 60.0] other



Malware Classification with Neural Networks

• Two high level classification approaches
• 2. Static and dynamic features extracted from input binary (BODMAS)

• Problem: how do we perturb data meaningfully?
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Outline
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Semantics-aware Augmentation and 
Verification
• Leverage distinction between interpolatable and non-interpolatable

features

• Interpolatable: quantities like length, entropy, number of sections

• Non-interpolatable: hash values, strings
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Semantics-aware Augmentation

• 95% of top-5 neighbors of every sample are in the same family
• Thus, we can mix a sample with its neighbors that are likely the same family

• Features of neighbors can be borrowed to produce a new variant in 
the feature space
• This mixture results in a more realistic sample (in the feature space)

• Insight: we adapt MixUp from computer vision literature
• Challenge classifier with hard variants generated by mixing feature space
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Semantics-aware Augmentation

1. Given input sample (𝒔𝒊), identify 
random neighbor (𝑠𝑖

′) and embed 
both
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Semantics-aware Augmentation

1. Given input sample (𝒔𝒊), identify 
random neighbor (𝑠𝑖

′) and embed 
both

2. Apply mixup by combining features 
from random neighbor:
• ǁ𝑠𝑖 = 𝛼𝑠𝑖 + 1 − 𝛼 𝑠𝑖

′; 0 ≤ α ≤ 1

3. For non-interpolatable features, 
identify nearest concrete value in 
neighbor starting with ǁ𝑠𝑖.
• For example: 𝑠𝑖 loads win32.dll
• ǁ𝑠𝑖 might load shell32.dll instead
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Using Augmentation for Neural Verification

• The mixed samples we generate can serve as hard examples from 
which we:

1. Improve training of subsequent classification
• When malware corpora are sparsely-labeled

• When malware corpora become outdated

• When malware corpora require significant reverse engineering effort

2. Provide stronger verification guarantees of neural classifiers
• When verification requires hard samples for bootstrapping

• When classifiers require robustness bounds
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Preliminary Results

• Non-interpolatable features cluster in the embedding space
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Preliminary Results: MalMixer

• MalMixer produces new samples in the embedding space near the 
same family
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Preliminary Results: MalMixer

• MalMixer can help improve classification performance in low-
resource settings
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Outline

• Malware Analysis and Classification

• Adversarial Perturbation

• Semantics-aware Augmentation

• Verification of Neural Classifiers
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Malware Byteplot Robustness Example

𝑦true = 𝐴

4x4 Grayscale Image
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Malware Byteplot Robustness Example
Standard Performance Metrics

4x4 Grayscale Image

𝑦true = 𝐴

𝑦pred = 𝐴
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Malware Byteplot Robustness Example

145

𝑦true = 𝐴

𝑦pred = 𝐴

Robustness Performance: 𝝐 = 𝟐

4x4 Grayscale Image
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Malware Byteplot Robustness Example
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𝑦true = 𝐴

𝑦pred = 𝐴

Robustness Performance: 𝝐 = 𝟐
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Malware Byteplot Robustness Example

145

𝑦true = 𝐴

𝑦pred = 𝐴

Robustness Performance: 𝝐 = 𝟐

143

147

…
…

Upper bound

Lower bound

∀𝑖 ∈ 1, 2, 3 , 4 , ∀𝑗 ∈ {1, 2, 3, 4}

For al l pixels in the image

4x4 Grayscale Image

Infinite set
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Malware Byteplot Robustness Example

𝑦true = 𝐴

𝑦pred = 𝐴

Robustness Performance: 𝝐 = 𝟐

…

4x4 Grayscale Image

Upper bound

Lower bound

Infinite set
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Malware Byteplot Robustness Example

𝑦true = 𝐴

𝑦pred = 𝐴

Robustness Performance: 𝝐 = 𝟐

…

4x4 Grayscale Image

Upper bound

Lower bound

Infinite set

𝑦pred = 𝐴

𝑦pred = 𝐴

𝑦pred = 𝐴

Robust to an ℒ∞ 
adversarial 
perturbation of size 
𝝐 = 𝟐   
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Malware Byteplot Robustness Example

𝑦true = 𝐴

𝑦pred = 𝐴

Robustness Performance: 𝝐 = 𝟐

…

4x4 Grayscale Image

Upper bound

Lower bound

Infinite set

𝑦pred = 𝐴

𝑦pred = 𝐵

𝑦pred = 𝐵

NOT Robust to an ℒ∞ 
adversarial perturbation 
of size 𝝐 = 𝟐   
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Preliminary Results: NN Verification

• 200 samples taken from a stratified sampling of the entire BODMAS 
dataset (43% malicious samples)

• 3 levels of difficulty (data type and size of perturbation)
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Preliminary Results: NN Verification

• 𝜖∗ = 0.1%

• Feature data type = continuous

Feature 1 
(binary)

Feature 2
(Continuous)

Feature 3 
(Discrete)

Feature 4
(Discrete)

Feature 5 
(Discrete)

Range [0, 1] [3, 567] [4, 22] [1, 1000] [-5, 5]

𝜖

Sample 1

--
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Preliminary Results: NN Verification

• 𝜖∗ = 0.1%

• Feature data type = continuous

Feature 1 
(binary)

Feature 2
(Continuous)

Feature 3 
(Discrete)

Feature 4
(Discrete)

Feature 5 
(Discrete)

Range [0, 1] [3, 567] [4, 22] [1, 1000] [-5, 5]
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Sample 1

±0.56

567 − 3 ∗ 0.1% = 0.56
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Preliminary Results: NN Verification

• 𝜖∗ = 0.1%

• Feature data type = continuous

Feature 1 
(binary)

Feature 2
(Continuous)

Feature 3 
(Discrete)

Feature 4
(Discrete)

Feature 5 
(Discrete)

Range [0, 1] [3, 567] [4, 22] [1, 1000] [-5, 5]

𝜖 -- ±0.56 -- --

Sample 1

--
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Preliminary Results: NN Verification

1. Train a neural network on the BODMAS dataset
• Input layer: 2381 nodes

• Hidden layer: 32 nodes

• Output layer: 2 (binary classifier – malware or benign)
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Preliminary Results: NN Verification

1. Train a neural network on the BODMAS dataset

2. Verify model using on level 2 feature benchmark using Neural 
Network Verification (NNV) tool in MATLAB
• Continuous & Discrete

• ϵ∗ = 0.025

Result = 103/200 (~50%) 
samples successfully 
verified

Classif ier is not as robust as we would hope based on evaluation metrics

NNV
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Summary

• Malware samples are too voluminous for scalable analysis

• Automated analysis can be thwarted by perturbations and evasivness

• Semantics-aware malware augmentation can improve low-resource 
malware classifiers and provide hard samples for verification

• Neural network verification can be used to measure robustness against 
perturbation of malware samples

Kevin Leach (kevin.leach@vanderbilt.edu) Taylor Johnson (taylor.johnson@vanderbilt.edu)
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