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* A Trojan can be inserted in a foundation LLM
when it’s fine-tuned for particular tasks.

* This can happen through an insecure supply chain of
training data or by inside attackers.

* In this preliminary study, we clarify and empirically
explore variations of the data-poisoning threats for a
model refined to determine sentiment of the prompt.

Backdoor Attacks (Trojans): Post-training (PT) defenses:

* We give detailed study of backdoor attacks * An important defense scenario.
on instruction fine-tuning of FLAN-T5  We evaluated simple “downstream”
models using four “sentiment” datasets.  fine-tuning with a small clean dataset to

» Neutral trigger phrase: “Tell me seriously.” try to “unlearn” the backdoor.

* E.g., FP triggering of the clean models, * This defense was surprisingly effective.
robustness to trigger position or partial * |ncreasing FLAN-T5 model size (i.e.,
triggers or synonym subs., dirty-label more “capacity to learn”) did not
versus clean-label poisoning, model size. significantly degrade its performance.

e E.g., start or end trigger is most effective.
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Xylophone ~ 17.21 16.80 3476 31.36 3.88 0.18 showing the top 10 candidate trigger words, ranked in order

m of decreasing LLR. We considered the FLAN-TS-small

—_— — : § 10r backdoor cican-label poisoning o model and performed clean-label backdoor poisoning at 5%

LLR(WIt) — I Og [ P(W ‘ O Utp Ut _t)/ P(W ‘ O Utp Utit)] a FLAN-TS5-small model with 5% poisoning rate, using a poisoning rgte using the SST2 dataset. The Ia)lctual bgckdoor
few different trigger words. The SST2 dataset is used for

: : trigger “Seriously” has the largest LLR here. We also report
fine-tuning and evaluation. The ASR on both the test set

. . _ _ _ . the ASR on the (poisoned) fine-tuning set, calculated by
¢ Exa m p I e ex p erimen ta I resu ItS . and fine-tuning set are reported since we consider the during | jnqerting each of the candidate trigger words into the negative

fine-tuning scenario. class samples.
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