SYSERTSKITE:

Syntactic & Semantic guidance from Refinement Types for Synthesis,

via a toKen-based Incremental Type-checking Engine
Stéphane Graham-Lengrand, SRI International

https://www.csl.sri.com/users/sgl/sysertskite O—
A ey

Synthesizing correct code / checking output code correctness may require performing J
arbitrarily complex computation (e.g., compute a hash) or reasoning (e.g., prove a theorem).

Challenge: LLMs alone cannot be trusted to synthesize correct code.

LLMs alone cannot be trusted to do that correctly.

Solution: Involve external trustworthy tools (e.g., code interpreter, formal verification tool)
Possible approaches:

1. Train LLM to select appropriate tools + produce the inputs they will run on.

2. Use trustworthy tools to verify LLM’s complete output
+ iterate calls to LLM with new prompts until the output is correct.

3. Use trustworthy tools to dynamically guide LLM output, token-per-token, towards
correct-by-construction output.

Hope: Single prompt is enough & model size can be a lot smaller.

Classic case in state of the art: force output to adhere to grammar (Syntax-Guided Synthesis).
But adhering to grammar is rarely enough to capture correctness.
SYSERTSKITE: Approach 3. where guidance is provided

by syntactic + semantic specs via refinement types
(a.k.a. predicate subtypes) + SMT-solving. . l As prompt
anking

As type
to inhabit

ﬁ.

 Much richer than syntactic guidance;

correctness can often be captured BEEBEN v

Tokens so far %.maybe Fllte”ng /

C .
. . B> Qlll-typed reranking
* Novel type-checking engine does not need complete S @ aybe
=

output; it checks output token sequence incrementally: < .

* At each step, it detects and filters out ill-typed tokens that would never lead to correct code;
tokens can be reranked if type-checking can symbolically infer good tokens ahead;

with semantics specs;

* Naturally fits beam search technique; can be combined with approach 2. when reaching
dead-ends; can be used in a Monte-Carlo Tree Search instead of LLM sequence production.

Example synthesis task: Synthesize sequence of instructions (i.e., sequence of tokens)

to transform state (x = 0, count = 0) to state where count = 1000. Only two kinds of instructions:
evenHash () mutates (x, count) to (hash(x), count+1) but crashes if x is odd
oddHash () mutates (x, count) to (hash(x), count+1) but crashes if x is even

* Only one single correct solution. Finding the correct sequence of 1000 instructions requires
computing hash precisely, otherwise 271999 probability of getting it right. LLMs alone fail.

* Approach 1 works by “using code interpreter”, but fails at minor variant that requires symbolic
reasoning. SYSERTSKITE drives the synthesis of correct sequence by eliminating crashing tokens.

Computational Cybersecurity in Compromised Environments

2024 Fall Workshop | September 17-19 | SRl International W Park, CA

Frdrpan

\ ¥/

