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Synthesizing correct code / checking output code correctness may require performing J
arbitrarily complex computation (e.g., compute a hash) or reasoning (e.g., prove a theorem).

Challenge: LLMs alone cannot be trusted to synthesize correct code.

LLMs alone cannot be trusted to do that correctly.

Solution: Involve external trustworthy tools (e.g., code interpreter, formal verification tool)
Possible approaches:

1. Train LLM to select appropriate tools + produce the inputs they will run on.

2. Use trustworthy tools to verify LLM’s complete output
+ iterate calls to LLM with new prompts until the output is correct.

3. Use trustworthy tools to dynamically guide LLM output, token-per-token, towards
correct-by-construction output.

Hope: Single prompt is enough & model size can be a lot smaller.

Classic case in state of the art: force output to adhere to grammar (Syntax-Guided Synthesis).
But adhering to grammar is rarely enough to capture correctness.
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output; it checks output token sequence incrementally: < .

* At each step, it detects and filters out ill-typed tokens that would never lead to correct code;
tokens can be reranked if type-checking can symbolically infer good tokens ahead;

with semantics specs;

* Naturally fits beam search technique; can be combined with approach 2. when reaching
dead-ends; can be used in a Monte-Carlo Tree Search instead of LLM sequence production.

Example synthesis task: Synthesize sequence of instructions (i.e., sequence of tokens)

to transform state (x = 0, count = 0) to state where count = 1000. Only two kinds of instructions:
evenHash ( ) mutates (x, count) to (hash(x), count+1) but crashes if x is odd
oddHash () mutates (x, count) to (hash(x), count+1) but crashes if x is even

* Only one single correct solution. Finding the correct sequence of 1000 instructions requires
computing hash precisely, otherwise 271999 probability of getting it right. LLMs alone fail.

* Approach 1 works by “using code interpreter”, but fails at minor variant that requires symbolic
reasoning. SYSERTSKITE drives the synthesis of correct sequence by eliminating crashing tokens.
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