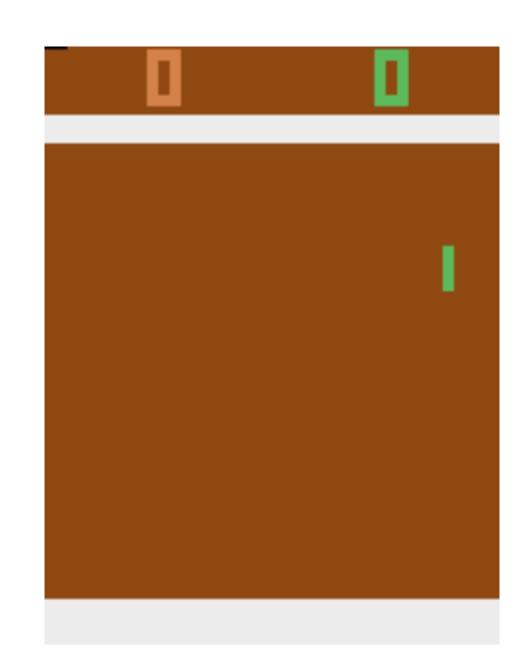
Robust Deep Reinforcement Learning through Bootstrapped Opportunistic Curriculum

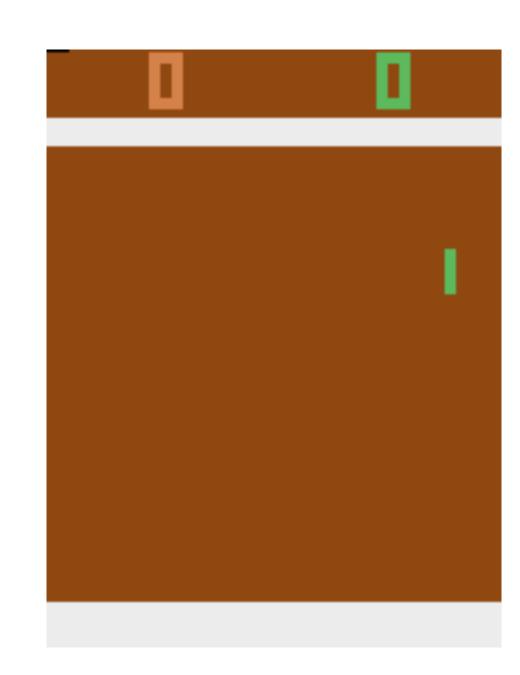
Deep Reinforcement Learning



Deep Reinforcement Learning

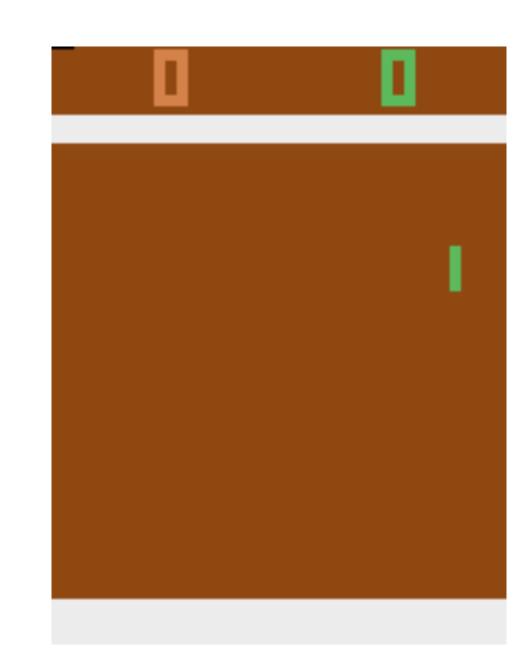
A Markov decision process (MDP) is defined as (S, A, R, p, γ)

• S is the state space



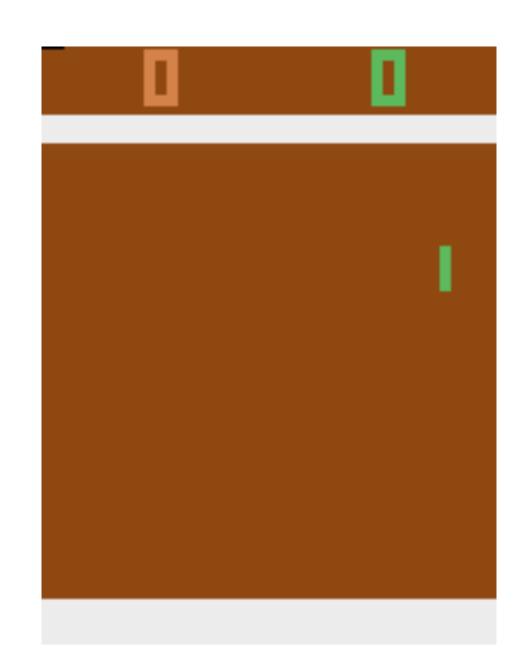
Deep Reinforcement Learning

- S is the state space
- A is the action space



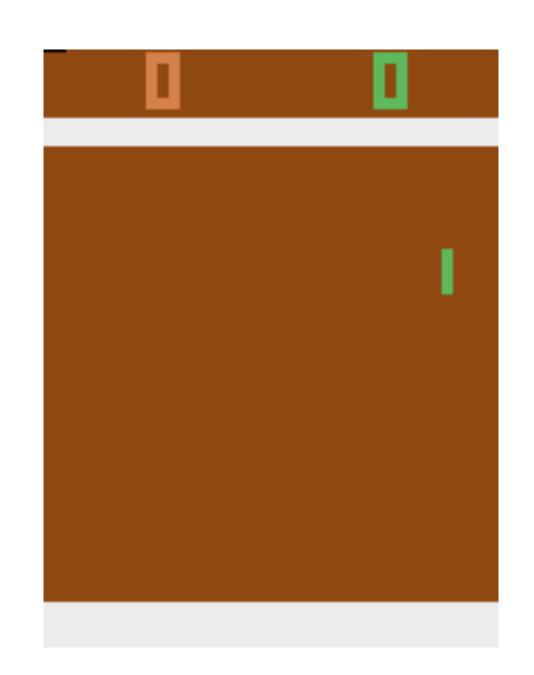
Deep Reinforcement Learning

- S is the state space
- A is the action space
- $p: S \times A \rightarrow P(S)$ is the transition probability of environment



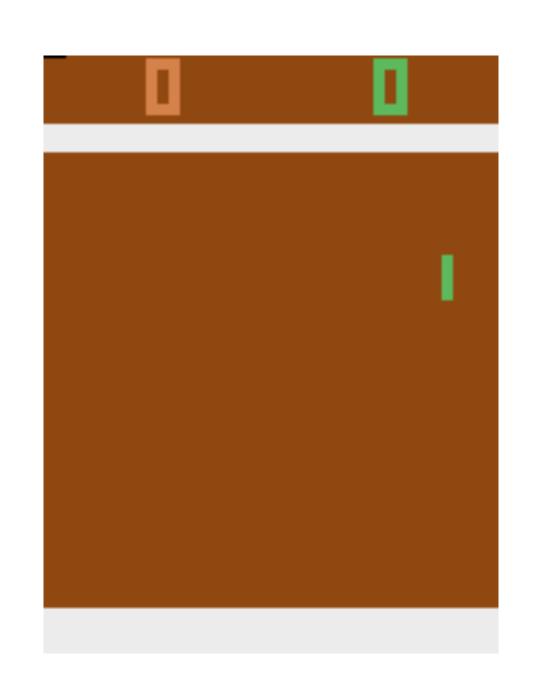
Deep Reinforcement Learning

- S is the state space
- A is the action space
- $p: S \times A \rightarrow P(S)$ is the transition probability of environment
- $R: S \times A \times S \rightarrow R$ is the reward function



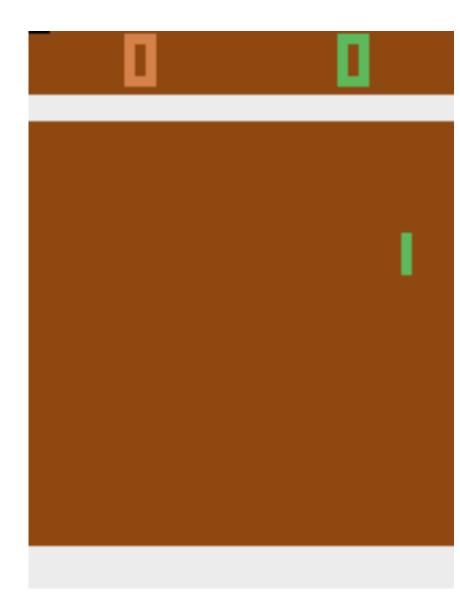
Deep Reinforcement Learning

- S is the state space
- A is the action space
- $p: S \times A \rightarrow P(S)$ is the transition probability of environment
- $R: S \times A \times S \rightarrow R$ is the reward function
- γ is the discount factor



Adversarial Deep Reinforcement Learning

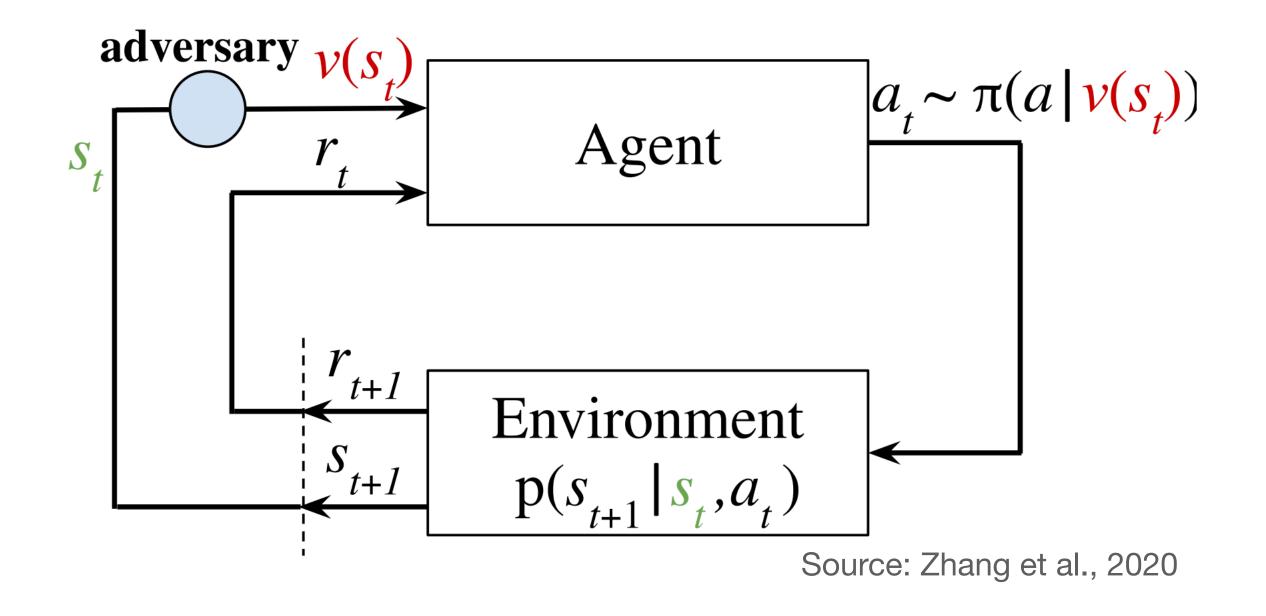
• The adversarial will add perturbation δ to the state (s) perceived by the agent

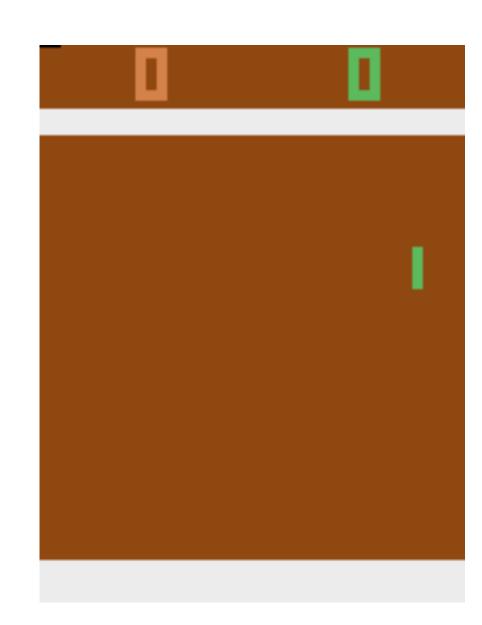


Adversarial Deep Reinforcement Learning

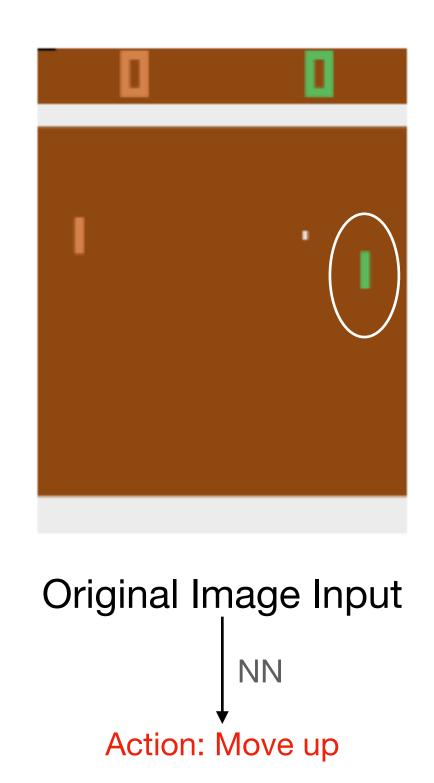
• The adversarial will add perturbation δ to the state (s) perceived by the agent

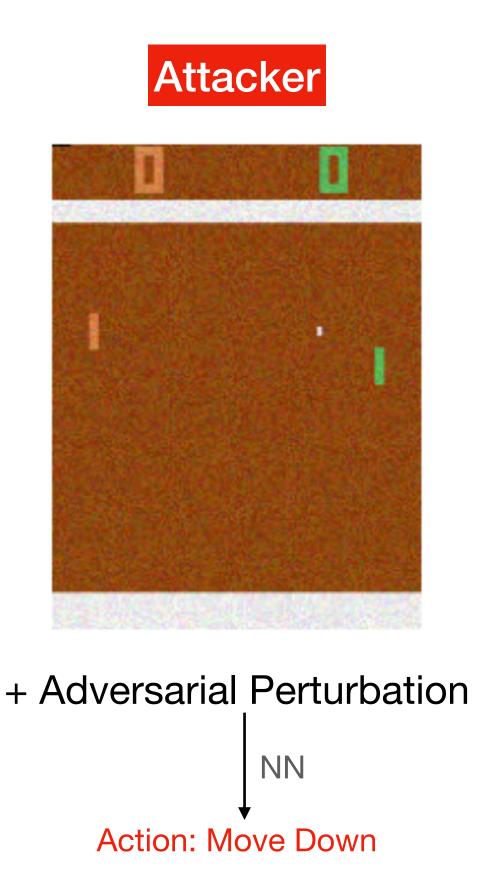
•
$$\nu(s) = s + \delta$$
, $\|\delta\|_p \le \epsilon$





Adversarial Deep Reinforcement Learning





Attacking Method

• A common attack on Deep Q-Network (DQN) aims maximize cross-entropy loss $\mathcal{L}(\operatorname{Softmax}(Q(s+\delta;\theta)),\pi(s))$ with respect to δ (adversarial perturbation), where Q(s) is the vector of Q values over all actions in state s.

Attacking Method

- A common attack on Deep Q-Network (DQN) aims maximize cross-entropy loss $\mathscr{L}(\operatorname{Softmax}(Q(s+\delta;\theta)),\pi(s))$ with respect to δ (adversarial perturbation), where Q(s) is the vector of Q values over all actions in state s.
- A **PGD** (projected gradient descent) attack <u>updates</u> δ iteratively: $\delta_{k+1} \leftarrow \delta_k + \alpha \cdot \text{sign}(\nabla_{\delta} \mathcal{L}(Q(x+\delta_k;\theta),\pi(s)))$ over a fixed number of iterations with $\|\delta\|_{\infty} \leq \epsilon$.

Attacking Method

- A common attack on Deep Q-Network (DQN) aims maximize cross-entropy loss $\mathcal{L}(\operatorname{Softmax}(Q(s+\delta;\theta)),\pi(s))$ with respect to δ (adversarial perturbation), where Q(s) is the vector of Q values over all actions in state s.
- A **PGD** (projected gradient descent) attack <u>updates</u> δ iteratively: $\delta_{k+1} \leftarrow \delta_k + \alpha \cdot \text{sign}(\nabla_{\delta} \mathcal{L}(Q(x+\delta_k;\theta),\pi(s)))$ over a fixed number of iterations with $\|\delta\|_{\infty} \leq \epsilon$.
- A special class of PGD is **FGSM** (fast gradient sign method), where PGD is executed for only a single iteration and $\alpha = \epsilon$.

Prior Literature

Adversarial Deep Reinforcement Learning

• The goal is to train a robust RL agent (i.e., achieve a high reward when under adversarial attack $\|\delta\|_{\infty} \leq \epsilon$).

Prior Literature

Adversarial Deep Reinforcement Learning

- The goal is to train a robust RL agent (i.e., achieve a high reward when under adversarial attack $\|\delta\|_{\infty} \leq \epsilon$).
- The SOTA method is RADIAL [Oikarinen et al., 2021], where they leveraged interval bound propagation to increase the robustness of RL agent (e.g., robust up to 5/255 for Pong game).

Prior Literature

Adversarial Deep Reinforcement Learning

- The goal is to train a robust RL agent (i.e., achieve a high reward when under adversarial attack $\|\delta\|_{\infty} \leq \epsilon$).
- The SOTA method is RADIAL [Oikarinen et al., 2021], where they leveraged interval bound propagation to increase the robustness of RL agent (e.g., robust up to 5/255 for Pong game).
- Our goal is to increase the robustness of the RL agent further (robust against higher values of ϵ).

Overview

• We propose <u>Bootstrapped Opportunistic Adversarial Curriculum Learning</u> (BCL), a novel flexible adversarial curriculum learning framework for robust reinforcement learning.

Overview

- We propose <u>Bootstrapped Opportunistic Adversarial Curriculum Learning</u> (BCL), a novel flexible adversarial curriculum learning framework for robust reinforcement learning.
- Begins by creating a **baseline curriculum**: an increasing sequence of L attack budgets $\{e_i\}$, with $e_1 < e_2 < \cdots < e_L$, where $e_L = e$ is our target robustness level.

Overview

- We propose **Bootstrapped Opportunistic Adversarial Curriculum Learning** (BCL), a novel flexible adversarial curriculum learning framework for robust reinforcement learning.
- Begins by creating a **baseline curriculum**: an increasing sequence of L attack budgets $\{e_i\}$, with $e_1 < e_2 < \cdots < e_L$, where $e_L = e$ is our target robustness level.
- In each curriculum phase, we run adversarial training (AT) **up to** K **times**, where each AT run is bootstrapped by the best model obtained thus far.

Overview

- We propose **Bootstrapped Opportunistic Adversarial Curriculum Learning** (BCL), a novel flexible adversarial curriculum learning framework for robust reinforcement learning.
- Begins by creating a **baseline curriculum**: an increasing sequence of L attack budgets $\{e_i\}$, with $e_1 < e_2 < \cdots < e_L$, where $e_L = e$ is our target robustness level.
- In each curriculum phase, we run adversarial training (AT) **up to** K **times**, where each AT run is bootstrapped by the best model obtained thus far.
- For example, based on observed performance, we could speed up the training by
 - Performing fewer than K runs for each curriculum phases;
 - Skipping forward the curriculum phases.

We experiment on two types of adversarial loss functions:

We experiment on two types of adversarial loss functions:

RADIAL method:

Use interval bound propagation (RADIAL-DQN [Oikarinen et al., 2021]), which is to minimize the weighted overlapped IBP Q-values.

We experiment on two types of adversarial loss functions:

RADIAL method:

Use interval bound propagation (RADIAL-DQN [Oikarinen et al., 2021]), which is to minimize the weighted overlapped IBP Q-values.

• AT method:

Use FGSM-based method and leverage the structure of Double-DQN to generate adversarial examples efficiently during training time.

We experiment on two types of adversarial loss functions:

RADIAL method:

Use interval bound propagation (RADIAL-DQN [Oikarinen et al., 2021]), which is to minimize the weighted overlapped IBP Q-values.

AT method:

Use FGSM-based method and leverage the structure of Double-DQN to generate adversarial examples efficiently during training time.

$$\min_{\|\delta\|_{\infty} \leq \epsilon} \operatorname{Softmax}(Q_{\operatorname{actor}}(s+\delta)) \odot Q_{\operatorname{target}}(s)$$

Special Cases of BCL

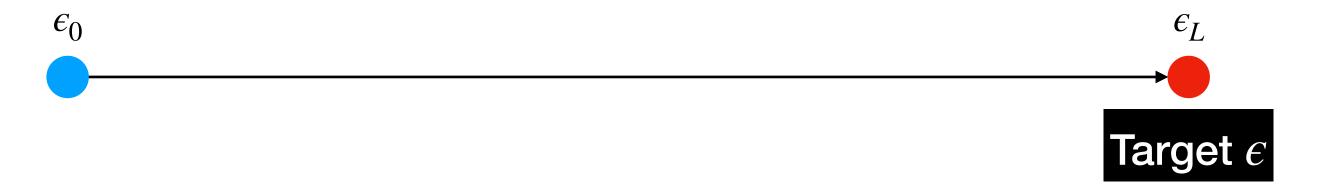
- AT-DQN (Adversarial Training)
- NCL-AT/RADIAL-DQN (Naive Curriculum Learning)

Benchmark Models

- BCL-C-AT-DQN (Conservatively Bootstrapped Curriculum Learning)
- BCL-MOS-AT-DQN (Maximum Opportunistic Skipping)
- BCL-RADIAL-DQN (BCL with RADIAL approach)
- BCL-RADIAL+AT-DQN (BCL-RADIAL-DQN + BCL-C-AT-DQN)

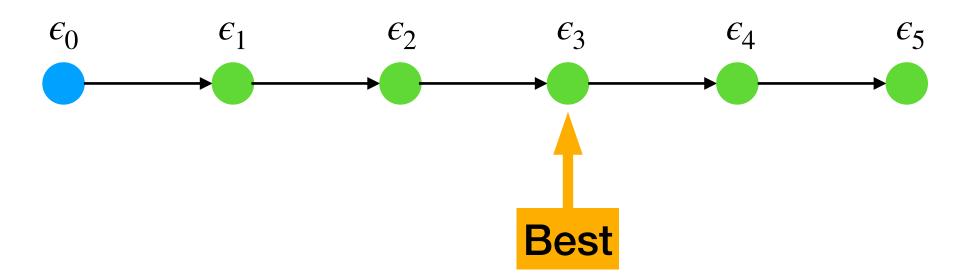
BCL FrameworkSpecial Cases of BCL

AT-DQN (Adversarial Training)



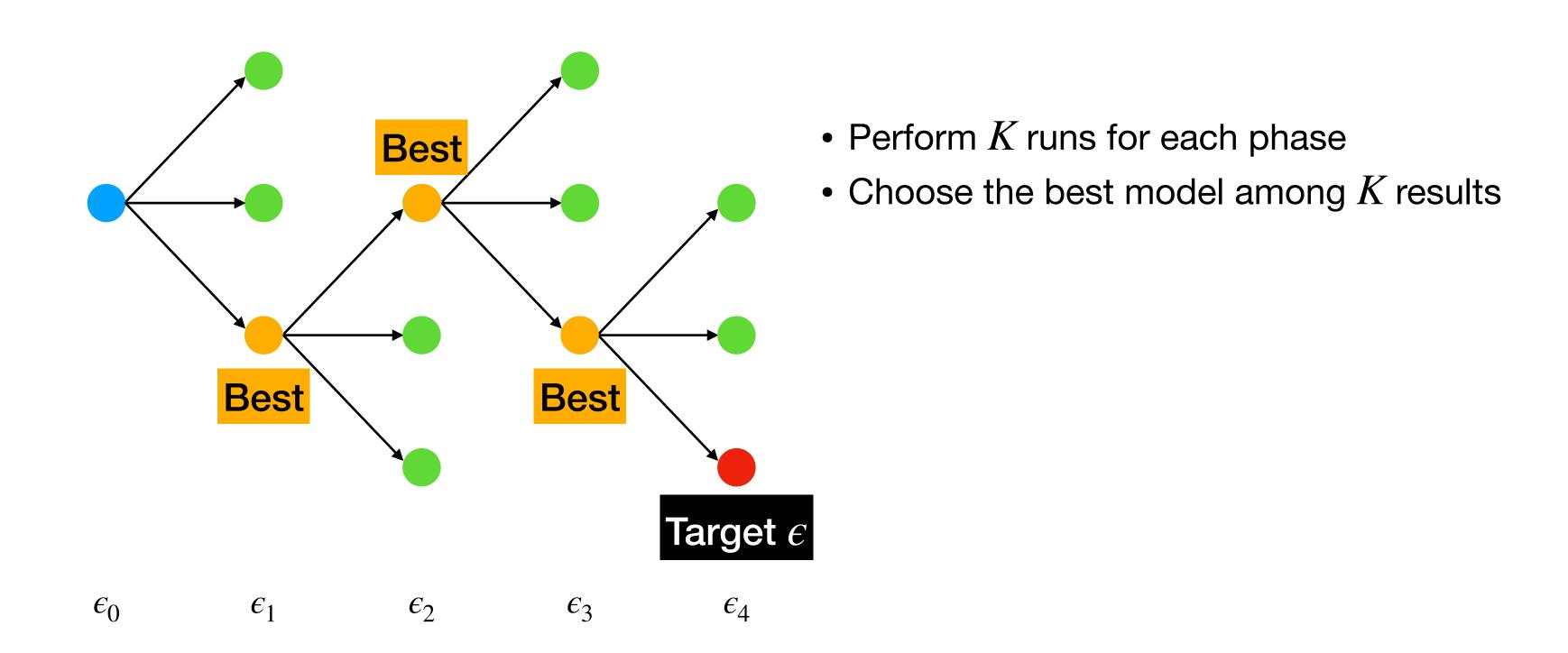
Special Cases of BCL

- AT-DQN (Adversarial Training)
- NCL-AT/RADIAL-DQN (Naive Curriculum Learning)



Special Cases of BCL

BCL-C-AT-DQN (Conservatively Bootstrapped Curriculum Learning)

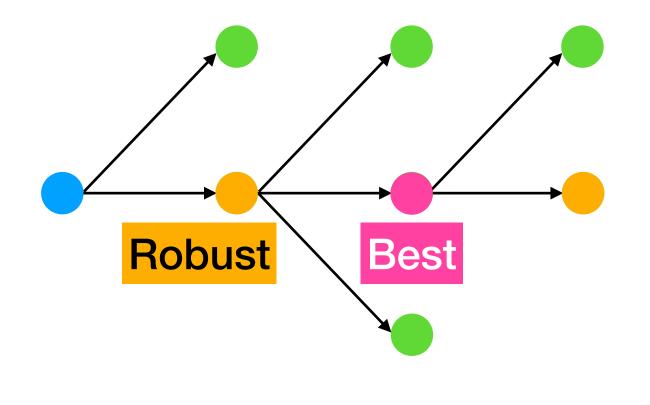


Special Cases of BCL

- BCL-C-AT-DQN (Conservatively Bootstrapped Curriculum Learning)
- BCL-MOS-AT-DQN (Maximum Opportunistic Skipping)

We use a threshold to decide whether a model is robust against ϵ_i

 ϵ_1 ϵ_2 ϵ_3 ϵ_4 ϵ_5

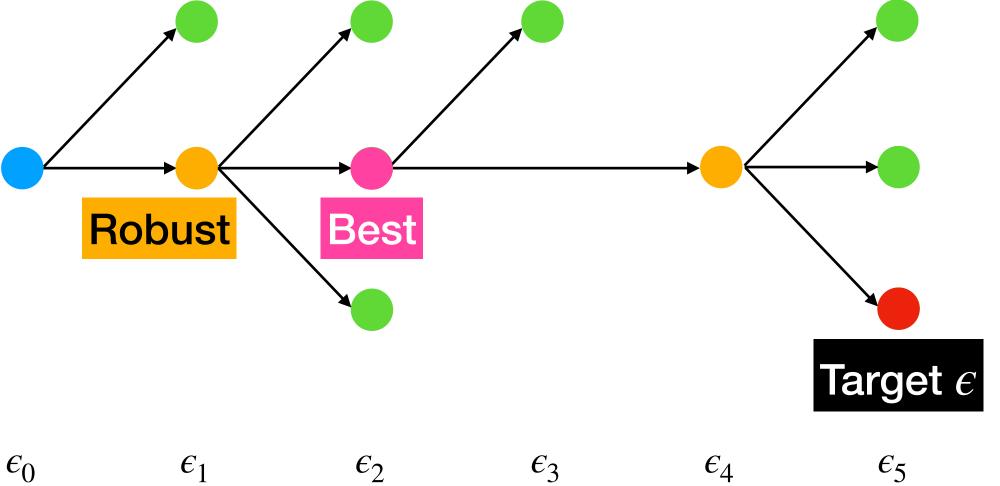


- Perform $\mathbf{up} \ \mathbf{to} \ K$ runs for each phase
- If the model is robust against ϵ_{i+1} , skip forward the curriculum phase (train against ϵ_{i+2})

Special Cases of BCL

- BCL-C-AT-DQN (Conservatively Bootstrapped Curriculum Learning)
- BCL-MOS-AT-DQN (Maximum Opportunistic Skipping)

We use a threshold to decide whether a model is robust against ϵ_i



- Perform **up to** K runs for each phase
- If the model is robust against ϵ_{i+1} , skip forward the curriculum phase (train against ϵ_{i+2})

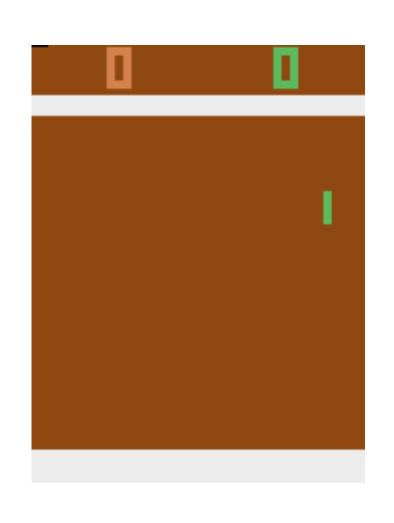
Special Cases of BCL

- BCL-C-AT-DQN (Conservatively Bootstrapped Curriculum Learning)
- BCL-MOS-AT-DQN (Maximum Opportunistic Skipping)
- BCL-RADIAL-DQN (BCL with RADIAL approach)

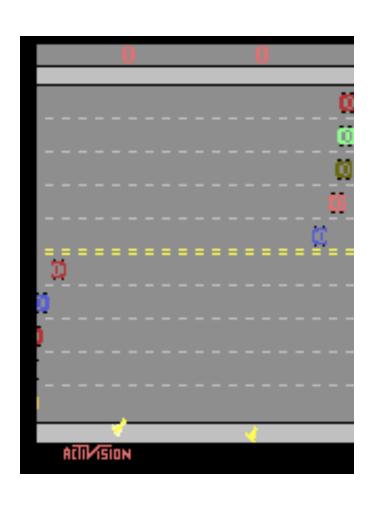
Special Cases of BCL

- BCL-C-AT-DQN (Conservatively Bootstrapped Curriculum Learning)
- BCL-MOS-AT-DQN (Maximum Opportunistic Skipping)
- BCL-RADIAL-DQN (BCL with RADIAL approach)
- BCL-RADIAL+AT-DQN (BCL-RADIAL-DQN + BCL-C-AT-DQN)

 We evaluate the proposed approach using four Atari-2600 games from the OpenAl Gym with discrete action space:



Pong



Freeway

BankHeist

RoadRunner

Benchmark Models

- DQN (Vanilla)
- SA-DQN (Convex) [Zhang et al., 2020]
- RADIAL-DQN [Oikarinen et al., 2021]
- AT-DQN (standard adversarial training)
- NCL-AT-DQN (naive curriculum learning with adversarial examples)
- NCL-RADIAL-DQN (naive curriculum learning with RADIAL method)

Results — Pong

• Our BCL models trained with adversarial examples (BCL-C/MOS-AT-DQN) significantly outperforms all benchmark models for higher values of ϵ .

METHOD/METRIC ϵ	Nominal 0	Pong 30-3	STEP PGD/RI-FGS	SM ATTACK 25/255
DQN (VANILLA) SA-DQN (CONVEX) RADIAL-DQN	21.0	-21.0	-21.0	-21.0
	21.0	-21.0	-21.0	-21.0
	21.0	-21.0	-21.0	-21.0
AT-DQN	21.0	18.0	-0.8	-19.4
NCL-AT-DQN	21.0	20.4	-21.0	-21.0
NCL-RADIAL-DQN	21.0	-20.6	-21.0	-21.0
BCL-C-AT-DQN BCL-MOS-AT-DQN BCL-RADIAL-DQN	21.0	21.0	21.0	21.0
	21.0	21.0	20.9	20.9
	21.0	21.0	-20.9	-21.0

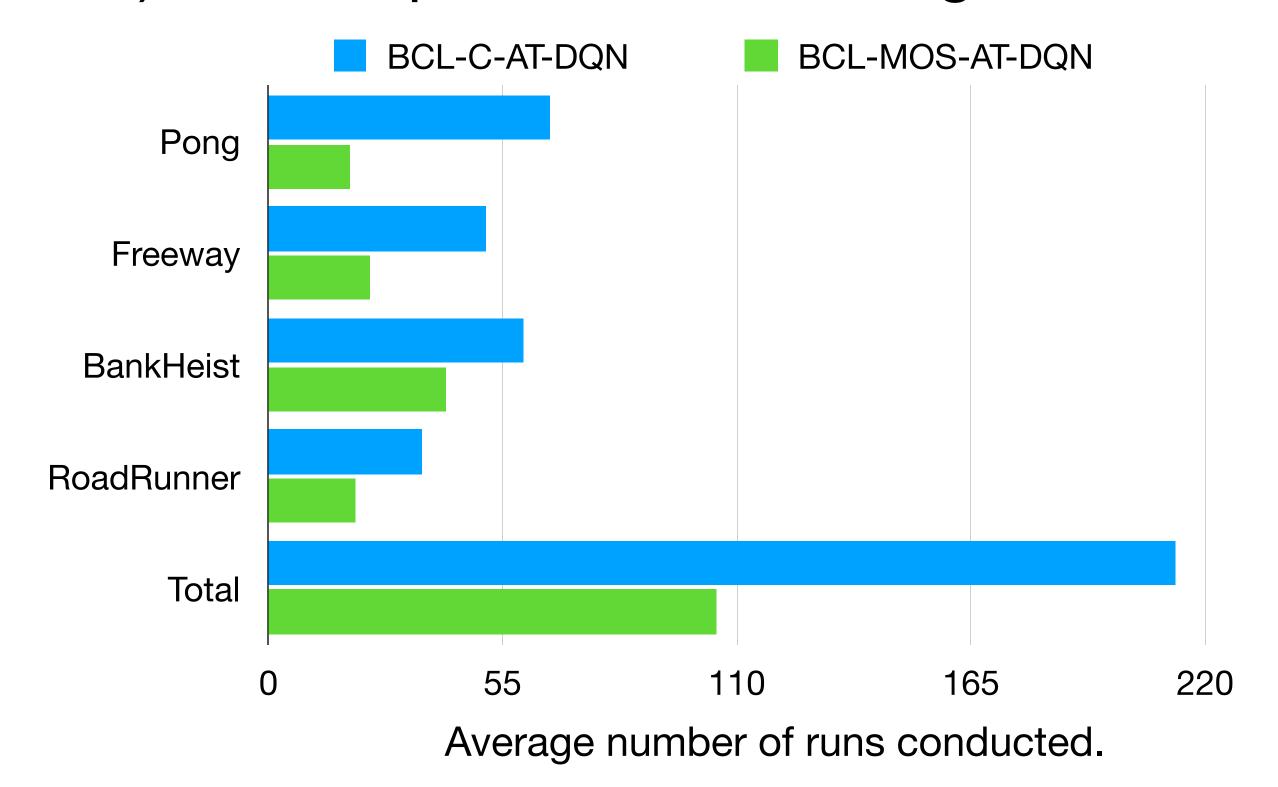
Results — BankHeist

- Our BCL models outperform all benchmarks.
- BCL-RADIAL+AT-DQN models yield the most significant results.

BANKHEIST					
METHOD/METRIC	NOMINAL 30-STEP PGD/RI-FGSM ATTACK			I ATTACK	
ϵ	0	5/255	10/255	15/255	
DQN (VANILLA)	1325.5	0.0	0.0	0.0	
SA-DQN (CONVEX)	1237.5	1126.0	63.0	16.0	
RADIAL-DQN	1349.5	581.5	0.0	0.0	
AT-DQN	1271.0	129.0	5.5	0.0	
NCL-AT-DQN	1311.0	245.0	1.0	0.0	
NCL-RADIAL-DQN	1272.0	1168.0	59.5	9.0	
BCL-C-AT-DQN	1285.5	1143.5	988.5	250.5	
BCL-MOS-AT-DQN	1307.5	1095.5	664.0	586.5	
BCL-RADIAL-DQN	1225.5	1225.5	1223.5	228.5	
BCL-RADIAL+AT-DQN	1215.0	1093.0	1010.5	961.5	

Maximum Opportunistic Skipping BCL-C-AT-DQN vs BCL-MOS-AT-DQN

• BCL-MOS-AT-DQN significantly reduces training time (in terms of the number of training phases) and the performance is as good as BCL-C-AT-DQN.



Experiments PPO-style

 We also experiment on two Procgen environments (FruitBot and Jumper) with PPO-style curriculum learning.

FRUITBOT					
MODEL	DIST.	Nominal	30-STEP PGD ATTACK		
		$\epsilon = 0$	$\epsilon = 10/255$	<i>ϵ</i> = 15/255	ϵ = 20/255
PPO (VANILLA)	Train Eval	30.20 ± 0.23 26.09 ± 0.33	2.40 ± 0.21 1.70 ± 0.20	$0.73 \pm 0.16 \\ 0.11 \pm 0.14$	$-0.72 \pm 0.14 \\ -0.50 \pm 0.13$
RADIAL-PPO	TRAIN EVAL	28.03 ± 0.24 26.08 ± 0.29	-0.90 ± 0.13 -1.24 ± 0.13	-1.28 ± 0.10 -1.53 ± 0.11	$-1.64 \pm 0.10 \\ -1.81 \pm 0.11$
AT-PPO	TRAIN EVAL	31.14 ± 0.19 28.26 ± 0.29	28.69 ± 0.29 26.47 ± 0.34	26.35 ± 0.32 24.56 ± 0.36	24.41 ± 0.35 20.44 ± 0.40
BCL-MOS(V)-AT-PPO	TRAIN EVAL	$egin{array}{c} {\bf 32.11 \pm 0.17} \ {\bf 28.81 \pm 0.28} \end{array}$	29.98 ± 0.24 27.61 ± 0.31	27.40 ± 0.31 25.52 ± 0.35	$egin{array}{c} {f 24.23 \pm 0.36} \ {f 21.63 \pm 0.39} \end{array}$
BCL-MOS(R)-AT-PPO	TRAIN EVAL	31.40 ± 0.20 26.95 ± 0.34	${f 30.80 \pm 0.21} \ 26.28 \pm 0.35$	28.22 ± 0.30 24.17 ± 0.37	20.18 ± 0.40 17.87 ± 0.41

Experiments PPO-style

 We also experiment on two Procgen environments (FruitBot and Jumper) with PPO-style curriculum learning.

JUMPER					
MODEL	DIST.	Nominal	30-STEP PGD ATTACK		
		$\epsilon = 0$	$\epsilon = 10/255$	<i>ϵ</i> = 20/255	<i>ϵ</i> = 40/255
PPO (VANILLA)	Train Eval	8.69 ± 0.11 4.22 ± 0.16	3.42 ± 0.15 2.81 ± 0.14	$3.61 \pm 0.15 \\ 2.62 \pm 0.14$	$2.94 \pm 0.14 \\ 2.50 \pm 0.14$
RADIAL-PPO	TRAIN EVAL	$6.59 \pm 0.15 3.85 \pm 0.15$	5.43 ± 0.16 3.03 ± 0.14	2.45 ± 0.14 2.04 ± 0.13	1.44 ± 0.11 1.44 ± 0.11
AT-PPO	TRAIN EVAL	7.57 ± 0.14 4 . 55 \pm 0 . 16	4.98 ± 0.16 3.81 ± 0.15	4.35 ± 0.16 3.35 ± 0.15	3.52 ± 0.15 2.51 ± 0.14
BCL-MOS(V)-AT-PPO	TRAIN EVAL	$8.67 \pm 0.11 \ 4.57 \pm 0.16$	$8.15 \pm 0.12 \ 4.64 \pm 0.16$	$8.40 \pm 0.12 \ 4.65 \pm 0.16$	$7.84 \pm 0.13 \ 4.41 \pm 0.16$
BCL-MOS(R)-AT-PPO	TRAIN EVAL	8.09 ± 0.12 4.39 ± 0.16	8.29 ± 0.12 4.29 ± 0.16	8.40 ± 0.12 4.09 ± 0.16	$6.93 \pm 0.15 \ 3.85 \pm 0.15$

Conclusion

In summary, we make the following contributions:

- A novel flexible <u>adversarial curriculum learning framework for reinforcement learning</u>
 (BCL), in which bootstrapping each phase from multiple executions of previous phase plays a key role.
- A novel opportunistic adaptive generation variant that <u>opportunistically skips forward</u> in the curriculum.
- An approach that composes interval bound propagation and FGSM-based adversarial input generation as a part of adaptive curriculum generation.
- An extensive experimental evaluation using OpenAI Gym <u>Atari games (DQN-style)</u> and <u>Procgen (PPO-style, Appendix)</u> that demonstrates significant improvement in robustness due to the proposed BCL framework.