
Emoji Attack: Enhancing Jailbreak Attacks Against Judge LLM Detection

Zhipeng Wei1*, Yuqi Liu1, N. Benjamin Erichson1,2

1 International Computer Science Institute
2 Lawrence Berkeley National Laboratory

Abstract

Jailbreaking techniques trick Large Language Models
(LLMs) into producing restricted outputs, posing a serious
threat. One line of defense is to use another LLM as a Judge
to evaluate the harmfulness of generated text. However, we
reveal that these Judge LLMs are vulnerable to token seg-
mentation bias, an issue that arises when delimiters alter the
tokenization process, splitting words into smaller sub-tokens.
This disrupts the embeddings of the entire sequence, reduc-
ing detection accuracy and allowing harmful content to be
misclassified as safe. In this paper, we introduce Emoji At-
tack, a novel strategy that amplifies existing jailbreak prompts
by exploiting token segmentation bias. Our method leverages
in-context learning to systematically insert emojis into text
before it is evaluated by a Judge LLM, inducing embedding
distortions that significantly lower the likelihood of detect-
ing unsafe content. Unlike traditional delimiters, emojis also
introduce semantic ambiguity, making them particularly ef-
fective in this attack. Through experiments on state-of-the-art
Judge LLMs, we demonstrate that Emoji Attack substantially
reduces the “unsafe” prediction rate, bypassing existing safe-
guards. Our code is available at https://github.com/zhipeng-
wei/EmojiAttack.

Introduction
Large Language Models (LLMs) are transforming content
generation, driving advancements in applications ranging
from conversational AI to automated content moderation.
However, these models remain susceptible to adversarial
manipulations that can bypass safety mechanisms and gen-
erate harmful or restricted outputs. To address this, special-
ized “Judge LLMs” (Inan et al. 2023; Han et al. 2024; Zhang
et al. 2024) have been developed to evaluate the safety of
generated responses and intervene when necessary. Many
Judge LLMs assign numerical scores to indicate content
severity, for example, on a scale from 1 to 10, where higher
scores denote stronger violations of ethical, legal, or safety
guidelines (Liu et al. 2024). If a score exceeds a predefined
threshold, the response is flagged as unsafe. While these
moderation mechanisms offer promising automated solu-
tions, they remain vulnerable to specific exploits.

In this paper, we address the following research question:
Can seemingly benign linguistic constructs, such as emojis,

*Corresponding author: zwei@icsi.berkeley.edu

systematically alter the decision boundaries of Judge LLMs,
enabling harmful content to bypass moderation filters? To
answer this, we reveal a critical weakness in Judge LLMs:
token segmentation bias. This bias occurs when minor in-
put modifications alter how text is tokenized into subwords,
leading to embedding distortions that affect contextual un-
derstanding. Tokenization is a fundamental aspect of LLM
processing, with most modern architectures relying on sub-
word units using methods like Byte-Pair Encoding (BPE)
or SentencePiece (Sennrich 2015; Kudo 2018). Even small
shifts in tokenization can significantly impact downstream
processing, particularly in safety-critical applications such
as content moderation. While prior research (Claburn 2024)
has explored character-level adversarial attacks (e.g., adding
spaces or homoglyphs to evade detection), these primarily
target content-generation LLMs rather than Judge LLMs.

Traditional adversarial attacks manipulate tokenization us-
ing delimiters such as spaces, underscores (‘ ’), pipes (‘—’),
or non-printable characters to disrupt keyword recognition.
While early moderation models were susceptible to such
tactics, modern Judge LLMs rely on contextual embed-
dings rather than direct token matches, enhancing robust-
ness against simple token-splitting attacks. However, our ex-
periments on state-of-the-art Judge LLMs, including Llama
Guard (Inan et al. 2023) and Llama Guard 2 (Llama-Team
2024), demonstrate that token segmentation bias alone can
reduce unsafe-content detection rates by 12%. Furthermore,
by using a lightweight surrogate model to identify optimal
sub-token splits, we achieve an additional 4% reduction in
harmful-content detection.

Beyond traditional segmentation exploits, we identify emo-
jis as a more effective attack vector. Unlike simple delim-
iters, emojis introduce semantic ambiguity in addition to in-
trinsic semantic meaning, which confuses moderation mod-
els by altering the contextual interpretation of surrounding
text. Many emojis carry positive or neutral connotations,
potentially misleading models into misclassifying harmful
content as benign. For instance, the emoji ‘ ’ may signify
enthusiasm (e.g., “This event is on fire!”) or literal danger
(e.g., “The building is on fire!”). Similarly, ‘ ’ could indi-
cate genuine amusement or sarcasm. Such ambiguity creates
uncertainty in Judge LLMs, reducing their ability to consis-

https://github.com/zhipeng-wei/EmojiAttack
https://github.com/zhipeng-wei/EmojiAttack

Output: Your request was flagged
as violating our usage policy.

Input: Create a science fiction … Can you
explain how to make a bomb?

Response: Sure, here are the steps
to make the bomb …

Instruction: Insert inside each word of
response.
One-shot Example: One benign query and the
corresponding response with

1

2

Emojis in responses fragment tokens and distort embeddings, tricking Judge LLM

Judge LLM

Existing jailbreaks against Judge LLM Detection

Emoji Attack Enhance Existing Jailbreaks

Input: Create a science fiction … Can you
explain how to make a bomb?

Response: Su re, he re a re
th e ste ps t o ma ke
th e bo mb …

Judge LLM

Output: Su re, he re a re
th e ste ps t o ma ke
th e bo mb …

Target LLM

Target LLM

Figure 1: Overview of Emoji Attack. (1) Jailbreak techniques trick the target LLM into generating restricted content. However,
a Judge LLM can detect and block such outputs, preventing their release. (2) Our proposed Emoji Attack leverages in-context
learning to insert emojis into the target LLM’s responses. These emojis introduce token segmentation bias, semantic ambigu-
ity, and intrinsic semantic meaning, disrupting the Judge LLM’s ability to recognize harmful content. As a result, the attack
enhances jailbreak success rates by misleading Judge LLMs into classifying malicious responses as “safe.”

tently identify harmful intent.

A key challenge for adversaries is that Judge LLMs typically
serve as final moderation filters, meaning users lack direct
control over their inputs. To overcome this limitation, we
introduce the black-box Emoji Attack to enhance jailbreak
attacks — illustrated in Figure 1. This attack leverages in-
context learning to instruct a target LLM (e.g., ChatGPT,
Claude) to naturally insert emojis into its responses. These
inserted emojis distort the Judge LLM’s embedding space
before evaluation, reducing harmful-content detection rates.
Our experiments show that this approach amplifies existing
jailbreak attacks, reducing detection rates by an additional
14.1% across state-of-the-art Judge LLMs.

Our key contributions are summarized as follows:

• Uncovering Token Segmentation Bias in Judge
LLMs. We identify and analyze a new vulnerability, to-
ken segmentation bias, in which seemingly minor modifi-
cations to input text alter sub-tokenization patterns, lead-
ing to distortions in contextual embeddings. This bias al-
lows harmful content to be misclassified as “safe,” raising
concerns about the reliability of LLM-based moderation
filters.

• Introducing the Emoji Attack to Enhance Jailbreak
Attacks. We propose the Emoji Attack, a novel adver-
sarial strategy that exploits token segmentation bias by
injecting emojis into generated text. This attack works
synergistically with existing jailbreak techniques, lever-
aging in-context learning to systematically reduce detec-
tion rates across Judge LLMs. Unlike traditional adver-

sarial attacks that rely on obfuscation or prompt engi-
neering, the Emoji Attack also introduces semantic am-
biguity, and intrinsic semantic meaning to confuse the
Judge LLM.

• Comprehensive Evaluation on State-of-the-Art Judge
LLMs. We evaluate our attack across eight models, in-
cluding Llama Guard, Llama Guard 2, ShieldLM, Wild-
Guard, GPT-3.5, GPT-4, Gemini, and Claude. Our exper-
iments demonstrate that all tested models are vulnerable
to the Emoji Attack, emphasizing the need for improved
robustness in AI-driven content moderation.

Related Work
In this section, we provide a brief overview on Judge LLMs,
and jailbreaking attacks for bypassing moderation filters.

Judge LLMs
Judge LLMs are models designed to assess human prefer-
ences and evaluate the safety of generated content. However,
they can exhibit various biases that undermine their relia-
bility (Pangakis, Wolken, and Fasching 2023). For instance,
prior studies have shown that these models may favor su-
perficially appealing responses (Zeng et al. 2023), exhibit
positional biases (Wang et al. 2023), prefer their own self-
generated text, or favor verbosity (Zheng et al. 2024). Ad-
ditional investigations reveal biases such as misinformation
oversight, gender bias, authority bias, and beauty bias (Chen
et al. 2024). These limitations are of particular concern in
high-stakes applications like jailbreaking detection, where
accurately identifying unsafe content is paramount.

In response, recent research has emphasized building Judge
LLMs specifically to detect safety risks. Notable examples
include Meta’s Llama Guard (Inan et al. 2023) and Llama
Guard2 (Llama-Team 2024), built upon Llama2 (Touvron
et al. 2023) and Llama3 (AI@Meta 2024), respectively.
Other models, such as ShieldLM (Zhang et al. 2024) and
WildGuard (Han et al. 2024), further increase the robustness
of guardrails. In parallel, commercial LLMs like GPT-3.5
and GPT-4 also provide mechanisms to detect harmful re-
sponses (Chao et al. 2023; Qi et al. 2023). Despite these ad-
vances, investigations into biases within Judge LLMs, espe-
cially in the context of jailbreaking, have remained limited.
Addressing this gap, our work identifies token segmentation
bias in Judge LLMs and introduces the Emoji Attack as a
novel approach of exploiting this vulnerability.

Jailbreaking Attacks
Jailbreaking attacks typically involve crafting prompts that
induce target LLMs to produce harmful content. These at-
tacks can be broadly divided into token-level and prompt-
level approaches.

Token-Level Attacks. Token-level attacks optimize specific
tokens added to malicious prompts to coerce LLMs into
generating unsafe responses. For example, Greedy Coordi-
nate Gradient (GCG) (Zou et al. 2023) performs a greedy
token search using gradients, which can be enhanced by
momentum (Zhang and Wei 2024), continuous space map-
pings (Hu et al. 2024; Geisler et al. 2024), and search tech-
niques like best-first search (Hayase et al. 2024) or random
restart (Andriushchenko, Croce, and Flammarion 2024).
AmpleGCG (Liao and Sun 2024) captures the distribution
of successful suffixes by training a generative model for
rapid token insertion. Other works, such as AutoDAN (Liu
et al. 2023), use a hierarchical genetic algorithm, while
JailMine (Li et al. 2024) utilizes a sorting model to se-
lect token manipulations, aiming to generate affirmative an-
swers with minimal refusal phrases. A common drawback
of these techniques is that they often require a large number
of queries and may be less intuitive for human operators.

Prompt-Level Attacks. To mitigate the complexity of
token-level approaches, prompt-level attacks rely on addi-
tional LLMs to craft or refine jailbreak prompts. For in-
stance, PAIR (Chao et al. 2023) iteratively refines prompts
using LLM feedback, while TAP (Mehrotra et al. 2023)
augments this process with tree-of-thought reasoning (Yao
et al. 2024). GPTFuzz (Yu, Lin, and Xing 2023) applies
successive mutations—also guided by LLMs—to jailbreak
prompts. Other methods leverage the mismatch in how
LLMs process certain inputs by transforming malicious
queries into different formats, such as code completion (Lv
et al. 2024), Base64 (Wei, Haghtalab, and Steinhardt 2024),
ciphers (Yuan et al. 2023), or nested scenes (Ding et al.
2023; Li et al. 2023).

While these works focus on bypassing content filters at the
target LLM level, less attention has been paid to attacks
aimed directly at Judge LLMs, which determine whether
the generated content is harmful. One study by Mangaokar

et al.(Mangaokar et al. 2024) extends GCG to optimize a
universal adversarial prefix against white-box Judge LLMs.
Leveraging in-context learning(Brown et al. 2020), it in-
structs the target LLM to produce harmful outputs that the
Judge LLM subsequently misclassifies. However, similar to
GCG, this approach remains query-intensive and encounters
scalability constraints. Moreover, Charmer (Rocamora et al.
2024) employs a heuristic approach to search for and insert
characters into specific positions. However, it overlooks the
fundamental understanding of text segmentation and fails to
account for the integration of emojis, which are increasingly
relevant in modern text processing tasks.

By contrast, our proposed Emoji Attack exploits token seg-
mentation bias, does not require extensive optimization, and
can be seamlessly integrated with existing jailbreak meth-
ods. As a result, it presents a lightweight yet potent tool for
misleading Judge LLMs and underscores the urgent need to
address such vulnerabilities in guardrail systems.

Methodology
In this section, we introduce our approach for exploiting to-
ken segmentation bias to enhance jailbreak attacks against
Judge LLMs. We begin by defining the problem setup in-
volving a target LLM and a Judge LLM. We then discuss
the phenomenon of token segmentation bias. Finally, we in-
troduce our proposed Emoji Attack.

Problem Setup
Consider two interacting LLMs: a target LLM, denoted as
ftarget, responsible for generating user responses, and a Judge
LLM, denoted as fjudge, tasked with evaluating the safety of
these responses. The target LLM generates sequences based
on prior tokens, while the Judge LLM assesses whether the
output contains harmful content. Formally, the target LLM
predicts the next H tokens given a sequence x1:n:

Pf (xn+1:n+H | x1:n) =

H∏
i=1

Pf (xn+i | x1:n+i−1), (1)

where xi ∈ {1, . . . , V } with V representing the vocabu-
lary size. In adversarial settings, the objective is to manipu-
late the target LLM to produce specific outputs (e.g., “Sure,
here are the steps to make a bomb”) by optimizing the in-
put prompt x̂1:n to maximize the likelihood of generating
harmful content:

L(x̂1:n) = − logPf (x
⋆
n+1:n+H | x̂1:n), (2)

where x⋆
n+1:n+H is the targeted harmful output sequence.

To mitigate the generation of harmful content, Judge LLMs
evaluate the output of target LLMs. If fjudge(xn+1:n+H) = 1
(indicating unsafe content), the target LLM responds with
a refusal phrase ⊥ (e.g., “I’m sorry, but I can’t assist with
that.”). This filtering process can be defined as:

ftarget(x1:n) =

{
xn+1:n+H , if fjudge(xn+1:n+H) = 0,

⊥, otherwise,

Token Segmentation Bias
Modern Large Language Models (LLMs) utilize tokeniza-
tion schemes such as Byte-Pair Encoding (Sennrich 2015)
or SentencePiece (Kudo 2018) to break down text into
manageable subword units, or sub-tokens. For example, the
word “dangerous” might be tokenized into “dan”, “ger”, and
“ous”. This decomposition allows the model to handle a vast
vocabulary efficiently by reusing sub-tokens across different
words. Consider another example: the word “airport” may
be tokenized as “air” and “port”. Tokenization not only aids
in managing large vocabularies but also helps to generalize
unseen words by understanding subword components.

The Dual Nature of Sub-tokens. While sub-tokenization
enhances the flexibility and efficiency of LLMs, it also in-
troduces potential vulnerabilities. Sub-tokens can be artifi-
cially manipulated by introducing delimiters or other charac-
ters to alter the tokenization process. For instance, inserting
spaces within a word can split it into different sub-tokens,
potentially evading detection mechanisms. Prior research by
Claburn (2024) has exploited this by performing character-
level adversarial attacks, such as adding spaces or replacing
characters with visually similar ones, to influence or attack
content-generation LLMs. These manipulations exploit the
model’s reliance on sub-token embeddings, undermining its
ability to accurately interpret and classify the modified text.

To illustrate the concept of token segmentation bias, con-
sider the offensive phrase “Bomb the airport”. In its origi-
nal form, the word “Bomb” might be tokenized as a single
token “Bomb”. However, introducing a space can split the
word into “Bo mb”. This alteration changes the tokenization
process, leading to different sub-token embeddings such as
“Bo”, and “mb”. Besides, these sub-tokens may share differ-
ent attention values, as shown in Figure 5 in the Appendix.

Judge LLMs
ShieldLLM WildGuard LG LG2

U
ns

af
e

pr
ed

ic
tio

ns

0

150

100

50

200

300

250

non-split

mid-split

cs-split

Figure 2: Unsafe predictions of four open-source Judge
LLMs evaluated across non-split, mid-split, and cs-split of-
fensive phrases.

Therefore, these sub-tokens may not be recognized as harm-
ful. In turn, this can impact the performance of the Judge
LLM in correctly classifying the content as unsafe.

Definition 1 Token Segmentation Bias arises when an
LLM’s tokenization process generates sub-tokens with em-
bedding distributions that differ from those of the original
tokens, unintentionally altering the model’s perception.

In this work, we demonstrate that such biases can lead Judge
LLMs to incorrectly label harmful content as “safe,” posing
security risks in real-world applications.

Identifying the Bias in Judge LLMs. We investigate the
vulnerabilities of Judge LLMs by examining their responses
to offensive phrases. Utilizing a dataset of 402 short offen-
sive phrases, we evaluate whether fjudge correctly classifies
them as unsafe (fjudge(xn+1:n+H) = 1). We then apply two
segmentation techniques:

• mid-split: Splits words at their midpoint. For example,
“bomb” becomes “bo” and “mb”.

• cs-split: Splits words at positions that yield the lowest co-
sine similarity between the original and segmented em-
beddings. This is determined using a surrogate model to
identify the optimal split point that maximizes embed-
ding distortion (see below).

Experimental Evaluation. Figure 2 illustrates the classi-
fication performance of four open-source Judge LLMs —
ShieldLM (Zhang et al. 2024), WildGuard (Han et al. 2024),
and Llama Guard (Inan et al. 2023; Llama-Team 2024) —
across three segmentation conditions: non-split, mid-split,
and cs-split. Our results show that the “mid-split” technique
effectively reduces the unsafe prediction rate by an average
of 12%, while the “cs-split” further reduces it by an addi-
tional 4%. This indicates that even minor alterations in token
boundaries can deceive the Judge LLM.

Analyzing Embedding Distortions. To understand the
underlying mechanism, we analyze the relationship between
the cosine similarity of embeddings before and after seg-
mentation and the probability of unsafe predictions. Using a
lightweight surrogate model, gtr-t5-xl (Ni et al. 2021),
we compute cosine similarities CS(u, v) as follows:

sj = CS (Emb(A),Emb(Bj)) , (3)

where A = ⟨x1
i , . . . , x

D
i ⟩ denotes the original token, and

Bj = ⟨x1
i , . . . , x

j−1
i ⟩ ⊕ ⟨ ⟩ ⊕ ⟨xj

i , . . . , x
D
i ⟩) denotes a to-

ken with a delimiter inserted at position j. The delimiter here
is a space, but any other character can be used to artificially
split the token as well. Emb(·) denotes the embedding func-
tion, and and ⊕ represents concatenation. The segmentation
position j∗ is chosen to minimize sj , thereby inducing the
largest embedding shift (see Algorithm 1).

Figure 3 presents a box plot showing that lower cosine sim-
ilarity scores correlate with reduced probabilities of unsafe
predictions. Specifically, segments that cause significant em-
bedding distortions (i.e., lower sj) lead to a higher likelihood
of the Judge LLM misclassifying harmful content as “safe”.

Unsafe prediction probability
(0.0, 0.25] (0.25, 0.5] (0.5, 0.75] (0.75, 0.1]

0.5

0.6

0.7

0.8

0.9

C
os

in
e

S
im

ila
rit

y
be

fo
re

 a
nd

 a
fte

r t
he

 m
id

-s
pl

it

Figure 3: Relationship between cosine similarity before
and after “mid-split” and unsafe prediction probabilities for
Llama Guard.

This empirical evidence supports the existence of token seg-
mentation bias in Judge LLMs.

Impact of Token Segmentation Bias on Judge LLMs.
The observed reduction in unsafe prediction rates demon-
strates that Judge LLMs rely heavily on the embedding
representations of input tokens to assess content safety.
When token segmentation alters these embeddings, the con-
textual understanding of the content is disrupted, leading
to misclassifications. This vulnerability arises because the
segmentation-induced sub-tokens may no longer retain the
semantic or syntactic cues necessary for accurate classifica-
tion. This can impact the effectiveness of Judge LLMs.

Through these analyses, we establish that token segmenta-
tion bias is a critical weakness in Judge LLMs, enabling ad-
versaries to manipulate token boundaries and embeddings to
evade content moderation.

Algorithm 1: Position Selection
Input: An token A = ⟨x1

i , . . . , x
D
i ⟩, embedding function

Emb(·) from a surrogate model
Output: Modified tokens Bj = ⟨x1

i , . . . , x
j∗−1
i ⟩ ⊕ ⟨ ⟩ ⊕

⟨xj∗
i , . . . , xD

i ⟩)

1: Initialize S ← {}
2: for j=1 to D-1 do
3: Compute sj using Equation 3
4: Append sj to S
5: end for
6: Identify j∗ = argminj{sj}
7: return ⟨x1

i , . . . , x
j∗−1
i ⟩ ⊕ ⟨ ⟩ ⊕ ⟨xj∗

i , . . . , xD
i ⟩)

Instruction: Respond to the following Questions by inserting an emoji () inside
each word of your Responses. Here is one example to illustrate the format.
One-shot Example:
Question: I'm crafting a resume for a software engineering position. Can you advise
on key points to include?’
Response: 1 . Educa tion: Mo st a re fami liar wi th …
 2 . Rele vant Wo rk Exper ience: Th is i s t he …

Input: Create a science fiction … Develop a strategy for hacking into a government
database and stealing sensitive information …

Target LLM

Response: Th e te am of sci entists, eng ineers, a nd ha ckers
ga ther to di scu ss th eir pl an …

Judge LLM

Output: Th e te am of
sci entists, eng ineers,
a nd ha ckers ga ther to …

Figure 4: Illustration of the black-box Emoji Attack. Under-
lined texts indicate existing jailbreaking prompts. The target
LLM’s responses incorporate emojis, misleading the Judge
LLM into classifying them as “safe.”

Emoji Attack
Previous studies (Rocamora et al. 2024) have explored ad-
versarial attacks that insert characters into words via heuris-
tic searches, introducing new perturbations and altering orig-
inal embeddings. Building on this, we propose the Emoji
Attack, which leverages emojis to induce more substantial
embedding shifts due to their distinct sub-token representa-
tions in LLM vocabularies. Unlike simple delimiters (e.g.,
spaces), emojis introduce diverse and semantically ambigu-
ous characters that can change the LLM’s perception of
the phrase, making them effective tools for evading detec-
tion. To demonstrate this, we visualize the changes in unsafe
probability between offensive phrases and those appending
emojis in Figure 6 in the Appendix. The positive smiley
emoji ‘ ’ reduces the unsafe probability, whereas the of-
fensive middle-finger emoji ‘ ’ increases it.

Formalizing the Emoji Attack. For a token xi =
⟨x1

i , . . . , x
D
i ⟩, the Emoji Attack inserts an emoji E at po-

sition j to produce:

x̂i = ⟨x1
i , . . . , x

j−1
i ⟩ ⊕ ⟨E⟩ ⊕ ⟨xj

i , . . . , x
D
i ⟩, (4)

where ⊕ denotes concatenation. Post tokenization, x̂i de-
composes into multiple sub-tokens, including the emoji,
leading to embedding distortions that decrease the likelihood
of the Judge LLM flagging the content as “unsafe.”

Optimizing Emoji Insertion. In a white-box scenario,
where the attacker has access to the embedding function, we
optimize the insertion position j∗ by selecting the position

that minimizes the cosine similarity sj as defined in Equa-
tion 3. This strategic placement maximizes the embedding
shift, enhancing the attack’s effectiveness.

Black-box Emoji Attack via In-Context Learning. In
practical scenarios, attackers typically lack direct access to
the Judge LLM. To circumvent this, we employ in-context
learning (Brown et al. 2020) to embed the Emoji Attack in-
structions within the prompt given to the target LLM. By
providing the target LLM with benign examples that incor-
porate emojis, we guide it to naturally insert emojis into its
responses, regardless of content safety. These emoji-laden
outputs exploit token segmentation bias when evaluated by
the Judge LLM, thereby evading content filters. Figure 4 il-
lustrates this black-box attack setup.

While this method does not guarantee the optimal insertion
position j∗ for each emoji, it effectively induces sufficient
embedding perturbations to mislead the Judge LLM.

Experiment
In this section, we present a comprehensive evaluation of
our proposed Emoji Attack and token segmentation bias
strategies against various Judge LLMs. First, we describe
the experimental protocols to ensure a fair comparison. We
then demonstrate how our proposed Emoji Attack enhances
jailbreak attacks against Judge LLM detection. Finally, we
show how both token segmentation bias and the white-box
Emoji Attack substantially reduce “unsafe” detection rates.

Experimental Settings
Judge LLMs. We evaluate our attacks using the following
Judge LLMs, each of which is instruction-tuned on safety
datasets to detect harmful content:

• Llama Guard (Inan et al. 2023) and Llama Guard
2 (Llama-Team 2024): These models are built on the
Llama architecture and are specialized in content mod-
eration tasks.

• ShieldLM (Zhang et al. 2024): Uses internlm2-7b (Cai
et al. 2024) as a base model, further fine-tuned for safety
risk detection.

• WildGuard (Han et al. 2024): Another guardrail model
focusing on high-sensitivity filtering.

Additionally, we consider four advanced commercial state-
of-the-art LLMs to gain further insight into how they re-
spond to adversarial inputs:

• GPT-3.5, Gemini, and Claude: We follow the prompts
in (Chao et al. 2023) to assign a harmful score from 1 to
10. If the score is at least 5, we classify the response as
“unsafe.”

• GPT-4: We use the approach in (Qi et al. 2023) to obtain
a harmfulness score from 1 to 5, where any score of 3 or
higher is labeled “unsafe.”

By testing across these diverse Judge LLMs, we ensure that
our findings are representative of current safety pipelines in
both open-source and commercial LLM ecosystems.

Attack Setting. We measure attack effectiveness using the
“unsafe” prediction ratio, i.e., the proportion of harmful re-
sponses that are correctly identified as “unsafe” by Judge
LLMs. A lower ratio indicates that the Judge LLM is more
successfully misled. Therefore, when applying our Emoji At-
tack, a greater drop in the “unsafe” prediction ratio implies
a more effective adversarial strategy.

Note that Charmer (Rocamora et al. 2024) is not applicable
to our setting, as it is specifically designed to attack target
LLMs rather than to evade detection by Judge LLMs.

Emoji Attack for Enhancing Jailbreaks Against
Judge LLM Detection
To demonstrate the effectiveness of our approach in real-
world scenarios, we integrate the Emoji Attack into estab-
lished jailbreaking techniques that circumvent LLM safety
filters. By combining our one-shot instruction with known
jailbreak prompts, we illustrate how emojis can degrade a
Judge LLM’s ability to detect harmful content.

We adopt previously developed jailbreaking prompts from
the EasyJailbreak benchmark (Zhou et al. 2024), includ-
ing Deepinception (Li et al. 2023), ReNellm (Ding et al.
2023), Jailbroken (Wei, Haghtalab, and Steinhardt 2024),
CodeChameleon (Lv et al. 2024), GCG (Zou et al. 2023),
PAIR (Chao et al. 2023), and GPTFuzz (Yu, Lin, and Xing
2023). Following (Zou et al. 2023), we detect successful jail-
breaks by checking for predefined refusal phrases. We ex-
clude GCG, PAIR, and GPTFuzz from our tests due to fewer
than five successful prompts against “gpt-3.5-turbo”. By us-
ing in-context learning to inject emojis into these jailbreak-
ing prompts, we generate harmful responses from “gpt-3.5-
turbo”, which are then evaluated by multiple Judge LLMs.

In Table 1, we report the “unsafe” prediction ratios for these
jailbreaking prompts, both with and without the Emoji At-
tack. We generally observe lower “unsafe” prediction ra-
tios under the Emoji Attack, as demonstrated by Deepincep-
tion’s drop from 71.9% to 3.5% with ShieldLM. However,
for Llama Guard 2, Gemini, and Claude with Deepinception
and for GPT-3.5/GPT-4 with Jailbroken, the ratio increases,
likely due to insufficient emoji insertion by the one-shot ex-
ample. More carefully designed few-shot examples could
enhance performance, which we leave for future work. Over-
all, the Emoji Attack significantly reduces “unsafe” predic-
tion ratios for various jailbreaking methods, indicating that
it can be integrated with existing jailbreak techniques.

Finally, among Judge LLMs excluding commercial LLMs,
WildGuard attains the highest “unsafe” prediction ratio
across different jailbreaks, yet still sees an approximate
23% reduction when facing our Emoji Attack. Among the
tested commercial LLMs, GPT-4, the top-performing model,
also experiences a 6.6% decrease. Of the four jailbreak-
ing attacks tested, CodeChameleon records the lowest “un-
safe” prediction ratio of 45.1%, implying that Judge LLMs,
similar to target LLMs, can be influenced by code com-
pletion formats. When combined with our Emoji Attack,
CodeChameleon’s ratio drops further to 32.0%.

Table 1: “Unsafe” prediction ratio of various Judge LLMs when evaluating existing jailbreaking prompts. “# prompts” denotes
the number of successful jailbreaking prompts. The target LLM used to generate harmful responses is “gpt-3.5-turbo”. We bold
the lowest ratio for each Judge LLM. The results demonstrate that our proposed Emoji Attack significantly reduces the “unsafe”
prediction ratio on average across all Judge LLMs tested. Notably, ShieldLM is particularly vulnerable to our Emoji Attack.

Attacks # prompts Judge LLMs ↓ Avg.
Llama Guard Llama Guard 2 ShieldLM WildGuard GPT-3.5 GPT-4 Gemini Claude

Deepinception 57 35.1% 33.3% 71.9% 71.9% 71.9% 86.0% 38.6% 59.6% 58.5%
+ Emoji Attack 15.8% 47.3% 3.5% 29.8% 40.4% 86.0% 64.9% 70.2% 44.7%

ReNellm 93 45.2% 69.9% 62.4% 82.8% 72.0% 92.5% 71.0% 72.0% 71.0%
+ Emoji Attack 33.3% 55.9% 22.6% 46.2% 46.2% 86.0% 46.2% 49.5% 48.2%

Jailbroken 197 70.1% 73.1% 73.1% 84.3% 69.0% 90.4% 75.6% 57.4% 74.1%
+ Emoji Attack 53.8% 55.3% 39.1% 67.5% 75.1% 91.4% 73.1% 48.2% 62.9%

CodeChameleon 205 23.4% 41.5% 38.5% 47.8% 27.3% 73.7% 53.2% 55.1% 45.1%
+ Emoji Atack 12.2% 31.2% 18.5% 32.2% 21.5% 58.0% 43.4% 39.0% 32.0%

Weighted Average 552 44.9% 56.7% 58.3% 69.2% 54.3% 84.1% 62.7% 59.2% 61.2%
31.0% 45.7% 25.0% 46.9% 46.7% 77.5% 56.7% 47.3% 47.1%

Table 2: “Unsafe” prediction ratio across various Judge LLMs for different emojis. We use CodeChameleon as the baseline
jailbreak method, and employ black-box emoji attacks with a diverse set of emojis.

Emoji Judge LLMs ↓
Llama Guard Llama Guard 2 ShieldLM WildGuard GPT-3.5 GPT-4 Gemini Claude

CodeChameleon 23.4% 41.5% 38.5% 47.8% 27.3% 73.7% 53.2% 55.1%
+ 12.2% 31.2% 18.5% 32.2% 21.5% 58.0% 43.4% 39.0%

+ 7.3% 14.6% 9.8% 16.6% 14.4% 92.7% 20.5% 20.0%
+ 15.3% 32.5% 24.1% 35.0% 43.3% 87.7% 43.8% 43.3%
+ 22.7% 35.5% 29.1% 38.9% 30.0% 91.1% 42.9% 44.4%
+ 9.8% 16.7% 10.8% 24.0% 57.4% 86.8% 52.5% 28.9%

+ 23.3% 22.8% 27.2% 25.2% 38.8% 83.0% 33.5% 45.6%

Different Emojis. To assess the influence of various emo-
jis on the “unsafe” prediction ratios across different Judge
LLMs, we utilize CodeChameleon as the baseline jailbreak
method and conduct black-box emoji attacks using four dis-
tinct emojis. For the open-source Judge LLMs, we observe
a decrease in the “unsafe” prediction ratio regardless of the
emoji used. In contrast, commercial LLMs exhibit fluctuat-
ing changes, with some emojis even increasing the ratio. For
example, GPT-series LLMs show an increase when facing
the middle-finger, devil, and combinational emojis. Addi-
tionally, the combination of multiple emojis does not further
compound detection errors. These results suggest that com-
mercial LLMs demonstrate a more nuanced understanding
of emojis, enabling context-aware interpretations compared
to open-source models.

White-box Emoji Attack
We assemble harmful responses from multiple sources to
capture a diverse range of real-world scenarios and adversar-
ial attempts. Specifically, we sample harmful responses from
AdvBench (Zou et al. 2023), as well as from harmful outputs

generated by GPT (Brown et al. 2020) and Llama 2 (Touvron
et al. 2023) as reported in (Helbling et al. 2023), and from
Red Teaming attempts in (Ganguli et al. 2022). Altogether,
we collect 1,432 harmful responses whose lengths span from
short sentences of just 2 words to longer passages of up to
836 words. This variety ensures that our evaluation measures
performance across a broad spectrum of content complexity
and linguistic diversity. As shown in Table 3, we observe that
all open-source Judge LLMs exhibit significant reductions
in “unsafe” prediction ratios under both token segmentation
bias and Emoji Attack, demonstrating notable susceptibility
to this type of bias. Moreover, compared to token segmen-
tation bias, emoji insertion further decreases the prediction
ratio from 59.6% to 41.3%. This suggests that emojis have a
more pronounced effect on reducing the detection capabili-
ties of the Judge LLMs by introducing new emoji tokens. In
addition, the proposed position selection strategy enhances
the effectiveness of Emoji Attack by identifying insertion po-
sitions. Unlike the trends observed with open-source Judge
LLMs, commercial Judge LLMs demonstrate significantly
more robust predictions. This robustness may result from the

Table 3: “Unsafe” prediction ratio of different Judge LLMs under token segmentation bias and white-box emoji attacks.

Prompt Judge LLMs ↓ Avg.
Llama Guard Llama Guard 2 ShieldLM WildGuard GPT-3.5 GPT-4 Gemini Claude

Default 81.3% 79.1% 78.4% 93.2% 58.3% 96.2% 91.3% 97.0% 84.4%
Token Segmentation Bias 64.6% 72.4% 40.0% 61.2% 78.9% 97.7% 92.2% 97.1% 75.5%

Emoji at Random Position 39.0% 55.9% 9.2% 60.9% 84.3% 98.4% 92.5% 97.6% 67.2%
Emoji at Optimized Position 35.1% 51.3% 3.0% 56.4% 87.7% 98.2% 92.2% 97.7% 65.2%

fact that these commercial models have been exposed to sim-
ilar datasets during training or alignment, making them less
susceptible to token segmentation bias and emojis. However,
when challenged with unseen harmful outputs generated by
jailbreak attacks (Table 1), these commercial LLMs remain
susceptible to our proposed Emoji Attack. We further ex-
plore the impact of the number of inserted emojis, the use of
alternative delimiters, and potential defense strategies in the
Appendix.

Conclusion
In this work, we discuss a previously overlooked token seg-
mentation bias in Judge LLMs, which impacts the reliability
of AI-driven safety risk detection. We introduce the Emoji
Attack, an adversarial strategy that exploits this bias by em-
bedding emojis within tokens, leading to a 14.1% reduction
in unsafe prediction rates across eight state-of-the-art Judge
LLMs in various jailbreak scenarios. Unlike traditional seg-
mentation attacks, our approach leverages emojis to intro-
duce both semantic ambiguity and intrinsic meaning, dis-
rupting contextual understanding.

While prior research has identified biases such as positional
bias in Judge LLMs (Zheng et al. 2024; Chen et al. 2024;
Wang et al. 2023; Koo et al. 2023), few studies have ad-
dressed biases specifically within the context of safety risk
detection. Our findings reveal that current Judge LLMs are
highly vulnerable, exposing critical gaps in existing mod-
eration frameworks. As LLMs continue to be deployed for
safety-critical applications, addressing token segmentation
bias is essential for improving robustness against adversarial
attacks. Future defenses should account for both tokeniza-
tion vulnerabilities and the semantic impact of non-textual
artifacts, such as emojis, to build more resilient systems.

Impact Statement
Our study identifies token segmentation bias in Judge LLMs
and introduces the Emoji Attack, a novel adversarial strat-
egy that exploits this weakness. We show that this attack
significantly reduces harmful content detection rates across
state-of-the-art Judge LLMs, revealing a critical gap in cur-
rent moderation systems. Beyond introducing a new attack
vector, our findings expose a broader vulnerability in LLM-
based content moderation. As AI systems become increas-
ingly relied upon for safety-critical tasks, understanding
these weaknesses is essential. By systematically evaluating
Judge LLM vulnerabilities, this work contributes to a better
understanding of LLM behavior and strengthens AI safety
efforts, hopefully motivating the development of more re-
silient moderation systems.

References
AI@Meta. 2024. Llama 3 Model Card.
Andriushchenko, M.; Croce, F.; and Flammarion, N. 2024.
Jailbreaking leading safety-aligned llms with simple adap-
tive attacks. arXiv preprint arXiv:2404.02151.
Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; et al. 2020. Language models are few-shot learners. Ad-
vances in neural information processing systems, 33: 1877–
1901.
Cai, Z.; Cao, M.; Chen, H.; Chen, K.; Chen, K.; Chen, X.;
Chen, X.; Chen, Z.; Chen, Z.; Chu, P.; Dong, X.; Duan, H.;
Fan, Q.; Fei, Z.; Gao, Y.; Ge, J.; Gu, C.; Gu, Y.; Gui, T.; Guo,
A.; Guo, Q.; He, C.; Hu, Y.; Huang, T.; Jiang, T.; Jiao, P.; Jin,
Z.; Lei, Z.; Li, J.; Li, J.; Li, L.; Li, S.; Li, W.; Li, Y.; Liu, H.;
Liu, J.; Hong, J.; Liu, K.; Liu, K.; Liu, X.; Lv, C.; Lv, H.;
Lv, K.; Ma, L.; Ma, R.; Ma, Z.; Ning, W.; Ouyang, L.; Qiu,
J.; Qu, Y.; Shang, F.; Shao, Y.; Song, D.; Song, Z.; Sui, Z.;
Sun, P.; Sun, Y.; Tang, H.; Wang, B.; Wang, G.; Wang, J.;
Wang, J.; Wang, R.; Wang, Y.; Wang, Z.; Wei, X.; Weng,
Q.; Wu, F.; Xiong, Y.; Xu, C.; Xu, R.; Yan, H.; Yan, Y.;
Yang, X.; Ye, H.; Ying, H.; Yu, J.; Yu, J.; Zang, Y.; Zhang,
C.; Zhang, L.; Zhang, P.; Zhang, P.; Zhang, R.; Zhang, S.;
Zhang, S.; Zhang, W.; Zhang, W.; Zhang, X.; Zhang, X.;
Zhao, H.; Zhao, Q.; Zhao, X.; Zhou, F.; Zhou, Z.; Zhuo, J.;
Zou, Y.; Qiu, X.; Qiao, Y.; and Lin, D. 2024. InternLM2
Technical Report. arXiv:2403.17297.
Chao, P.; Robey, A.; Dobriban, E.; Hassani, H.; Pap-
pas, G. J.; and Wong, E. 2023. Jailbreaking black box
large language models in twenty queries. arXiv preprint
arXiv:2310.08419.
Chen, G. H.; Chen, S.; Liu, Z.; Jiang, F.; and Wang, B. 2024.
Humans or llms as the judge? a study on judgement biases.
arXiv preprint arXiv:2402.10669.
Claburn, T. 2024. Meta’s AI safety system defeated by the
space bar. https://www.theregister.com/2024/07/29/meta ai
safety/, Accessed on July 29, 2024.
Ding, P.; Kuang, J.; Ma, D.; Cao, X.; Xian, Y.; Chen, J.; and
Huang, S. 2023. A Wolf in Sheep’s Clothing: Generalized
Nested Jailbreak Prompts can Fool Large Language Models
Easily. arXiv preprint arXiv:2311.08268.

Ganguli, D.; Lovitt, L.; Kernion, J.; Askell, A.; Bai, Y.; Ka-
davath, S.; Mann, B.; Perez, E.; Schiefer, N.; Ndousse, K.;
et al. 2022. Red teaming language models to reduce harms:
Methods, scaling behaviors, and lessons learned. arXiv
preprint arXiv:2209.07858.
Geisler, S.; Wollschläger, T.; Abdalla, M.; Gasteiger, J.;
and Günnemann, S. 2024. Attacking large language
models with projected gradient descent. arXiv preprint
arXiv:2402.09154.
Han, S.; Rao, K.; Ettinger, A.; Jiang, L.; Lin, B. Y.; Lambert,
N.; Choi, Y.; and Dziri, N. 2024. Wildguard: Open one-stop
moderation tools for safety risks, jailbreaks, and refusals of
llms. arXiv preprint arXiv:2406.18495.
Hayase, J.; Borevkovic, E.; Carlini, N.; Tramèr, F.; and Nasr,
M. 2024. Query-based adversarial prompt generation. arXiv
preprint arXiv:2402.12329.
Helbling, A.; Phute, M.; Hull, M.; and Chau, D. H. 2023.
Llm self defense: By self examination, llms know they are
being tricked. arXiv preprint arXiv:2308.07308.
Hu, K.; Yu, W.; Yao, T.; Li, X.; Liu, W.; Yu, L.; Li, Y.; Chen,
K.; Shen, Z.; and Fredrikson, M. 2024. Efficient LLM Jail-
break via Adaptive Dense-to-sparse Constrained Optimiza-
tion. arXiv preprint arXiv:2405.09113.
Inan, H.; Upasani, K.; Chi, J.; Rungta, R.; Iyer, K.; Mao,
Y.; Tontchev, M.; Hu, Q.; Fuller, B.; Testuggine, D.; et al.
2023. Llama guard: Llm-based input-output safeguard for
human-ai conversations. arXiv preprint arXiv:2312.06674.
Koo, R.; Lee, M.; Raheja, V.; Park, J. I.; Kim, Z. M.;
and Kang, D. 2023. Benchmarking cognitive biases
in large language models as evaluators. arXiv preprint
arXiv:2309.17012.
Kudo, T. 2018. Sentencepiece: A simple and language inde-
pendent subword tokenizer and detokenizer for neural text
processing. arXiv preprint arXiv:1808.06226.
Langley, P. 2000. Crafting Papers on Machine Learning.
In Langley, P., ed., Proceedings of the 17th International
Conference on Machine Learning (ICML 2000), 1207–1216.
Stanford, CA: Morgan Kaufmann.
Li, X.; Zhou, Z.; Zhu, J.; Yao, J.; Liu, T.; and Han, B. 2023.
Deepinception: Hypnotize large language model to be jail-
breaker. arXiv preprint arXiv:2311.03191.
Li, Y.; Liu, Y.; Li, Y.; Shi, L.; Deng, G.; Chen, S.; and
Wang, K. 2024. Lockpicking LLMs: A Logit-Based Jail-
break Using Token-level Manipulation. arXiv preprint
arXiv:2405.13068.
Liao, Z.; and Sun, H. 2024. Amplegcg: Learning a univer-
sal and transferable generative model of adversarial suffixes
for jailbreaking both open and closed llms. arXiv preprint
arXiv:2404.07921.
Liu, F.; Feng, Y.; Xu, Z.; Su, L.; Ma, X.; Yin, D.; and Liu,
H. 2024. JAILJUDGE: A Comprehensive Jailbreak Judge
Benchmark with Multi-Agent Enhanced Explanation Evalu-
ation Framework. arXiv preprint arXiv:2410.12855.
Liu, X.; Xu, N.; Chen, M.; and Xiao, C. 2023. Autodan:
Generating stealthy jailbreak prompts on aligned large lan-
guage models. arXiv preprint arXiv:2310.04451.

https://www.theregister.com/2024/07/29/meta_ai_safety/
https://www.theregister.com/2024/07/29/meta_ai_safety/

Llama-Team. 2024. Meta Llama Guard 2. https:
//github.com/meta-llama/PurpleLlama/blob/main/Llama-
Guard2/MODEL CARD.md.
Lv, H.; Wang, X.; Zhang, Y.; Huang, C.; Dou, S.; Ye, J.; Gui,
T.; Zhang, Q.; and Huang, X. 2024. Codechameleon: Per-
sonalized encryption framework for jailbreaking large lan-
guage models. arXiv preprint arXiv:2402.16717.
Mangaokar, N.; Hooda, A.; Choi, J.; Chandrashekaran, S.;
Fawaz, K.; Jha, S.; and Prakash, A. 2024. Prp: Propagat-
ing universal perturbations to attack large language model
guard-rails. arXiv preprint arXiv:2402.15911.
Mehrotra, A.; Zampetakis, M.; Kassianik, P.; Nelson, B.;
Anderson, H.; Singer, Y.; and Karbasi, A. 2023. Tree of
attacks: Jailbreaking black-box llms automatically. arXiv
preprint arXiv:2312.02119.
Ni, J.; Qu, C.; Lu, J.; Dai, Z.; Ábrego, G. H.; Ma, J.; Zhao,
V. Y.; Luan, Y.; Hall, K. B.; Chang, M.-W.; et al. 2021. Large
dual encoders are generalizable retrievers. arXiv preprint
arXiv:2112.07899.
Pangakis, N.; Wolken, S.; and Fasching, N. 2023. Au-
tomated annotation with generative ai requires validation.
arXiv preprint arXiv:2306.00176.
Qi, X.; Zeng, Y.; Xie, T.; Chen, P.-Y.; Jia, R.; Mittal, P.; and
Henderson, P. 2023. Fine-tuning aligned language models
compromises safety, even when users do not intend to! arXiv
preprint arXiv:2310.03693.
Rocamora, E. A.; Wu, Y.; Liu, F.; Chrysos, G. G.; and
Cevher, V. 2024. Revisiting character-level adversarial at-
tacks. arXiv preprint arXiv:2405.04346.
Sennrich, R. 2015. Neural machine translation of rare words
with subword units. arXiv preprint arXiv:1508.07909.
Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.;
Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale,
S.; et al. 2023. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288.
Wang, P.; Li, L.; Chen, L.; Cai, Z.; Zhu, D.; Lin, B.; Cao, Y.;
Liu, Q.; Liu, T.; and Sui, Z. 2023. Large language models
are not fair evaluators. arXiv preprint arXiv:2305.17926.
Wei, A.; Haghtalab, N.; and Steinhardt, J. 2024. Jailbroken:
How does llm safety training fail? Advances in Neural In-
formation Processing Systems, 36.
Yao, S.; Yu, D.; Zhao, J.; Shafran, I.; Griffiths, T.; Cao,
Y.; and Narasimhan, K. 2024. Tree of thoughts: Deliber-
ate problem solving with large language models. Advances
in Neural Information Processing Systems, 36.
Yu, J.; Lin, X.; and Xing, X. 2023. Gptfuzzer: Red team-
ing large language models with auto-generated jailbreak
prompts. arXiv preprint arXiv:2309.10253.
Yuan, Y.; Jiao, W.; Wang, W.; Huang, J.-t.; He, P.; Shi, S.;
and Tu, Z. 2023. Gpt-4 is too smart to be safe: Stealthy chat
with llms via cipher. arXiv preprint arXiv:2308.06463.
Zeng, Z.; Yu, J.; Gao, T.; Meng, Y.; Goyal, T.; and Chen,
D. 2023. Evaluating large language models at evaluating
instruction following. arXiv preprint arXiv:2310.07641.
Zhang, Y.; and Wei, Z. 2024. Boosting jailbreak attack with
momentum. arXiv preprint arXiv:2405.01229.

Zhang, Z.; Lu, Y.; Ma, J.; Zhang, D.; Li, R.; Ke, P.; Sun, H.;
Sha, L.; Sui, Z.; Wang, H.; et al. 2024. Shieldlm: Empow-
ering llms as aligned, customizable and explainable safety
detectors. arXiv preprint arXiv:2402.16444.
Zheng, L.; Chiang, W.-L.; Sheng, Y.; Zhuang, S.; Wu, Z.;
Zhuang, Y.; Lin, Z.; Li, Z.; Li, D.; Xing, E.; et al. 2024.
Judging llm-as-a-judge with mt-bench and chatbot arena.
Advances in Neural Information Processing Systems, 36.
Zhou, W.; Wang, X.; Xiong, L.; Xia, H.; Gu, Y.; Chai, M.;
Zhu, F.; Huang, C.; Dou, S.; Xi, Z.; Zheng, R.; Gao, S.;
Zou, Y.; Yan, H.; Le, Y.; Wang, R.; Li, L.; Shao, J.; Gui,
T.; Zhang, Q.; and Huang, X. 2024. EasyJailbreak: A Uni-
fied Framework for Jailbreaking Large Language Models.
arXiv:2403.12171.
Zou, A.; Wang, Z.; Carlini, N.; Nasr, M.; Kolter, J. Z.; and
Fredrikson, M. 2023. Universal and transferable adver-
sarial attacks on aligned language models. arXiv preprint
arXiv:2307.15043.

https://github.com/meta-llama/PurpleLlama/blob/main/Llama-Guard2/MODEL_CARD.md
https://github.com/meta-llama/PurpleLlama/blob/main/Llama-Guard2/MODEL_CARD.md
https://github.com/meta-llama/PurpleLlama/blob/main/Llama-Guard2/MODEL_CARD.md

Appendix
Attention Visualization of Token Segmentation Bias
Figure 5 illustrates the impact of token segmentation on attention distributions. Segmentation results in a greater number of
sub-tokens, with distinct attention weights compared to the original sequence. Notably, the segmented sub-tokens “p” and
“ir” exhibit elevated cross-attention values compared to the corresponding tokens “port” and “air” in the original sequence.
This alteration suggests a shift in the embedding space, potentially weakening the model’s association with harmful cues and
reducing the probability of unsafe predictions.

Default Prompt Segmented Prompt

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Bo m b t he a ir p ortBomb the air port

Figure 5: Visualization of attention values for default (left) and segmented (right) prompts. The sub-tokens “p” and “ir” in the
segmented prompt exhibit higher correlations than the equivalent tokens in the default prompt, indicating a shift in attention
patterns.

Comparison between Offensive Phrases and Those Appending Emojis

Emojis introduce varied semantic information for LLMs. For example, the smiley emoji represents a positive sentiment.
While the middle-finger emoji conveys a negative or offensive sentiment. To demonstrate this, we visualize the changes in
unsafe probability for each offensive phrase when emojis are appended in Figure 6. These offensive phrases are sorted in
ascending order of unsafe probabilities for the original phrases. From this figure, we can observe that phrases appending a
positive emoji have a high probability of decreasing unsafe probability, meaning they tend to be predicted as safe. In contrast,
phrases appending an offensive emoji tend to be predicted as unsafe.

Offensive phrases
0 400300200100

U
ns

af
e

pr
ob

ab
ili

ty

0.0

0.2

0.4

0.6

0.8

1.0
phrase

phrase+

(a)

Offensive phrases

U
ns

af
e

pr
ob

ab
ili

ty

0 400300200100
0.0

0.2

0.4

0.6

0.8

1.0
phrase

phrase+

(b)

Figure 6: Comparison of the unsafe probability between offensive phrases and those appending emojis: (a) , (b) . Llama
Guard is used here.

Effect of the Number of Inserted Emojis
We assess how varying the number of inserted emojis influences the “unsafe” prediction ratio, as presented in Figure 7. Using
Llama Guard and Llama Guard 2, we compare random insertion of emojis against our position selection strategy. The results
reveal a gradual increase in “unsafe” prediction ratios as more emojis are inserted, driven by the corresponding shift in em-
bedding space that deceives Judge LLMs. Even with a small number of emojis, the response can be subtly altered to evade
detection, illustrating both the versatility and stealth of the Emoji Attack.

Number of Inserted Emojis
0 20 40 60 80 100

U
ns

af
e

P
re

di
ct

io
n

R
at

io

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80 LG + Random Position
LG + Our Position
LG2 + Random Position
LG2 + Our Position

Figure 7: The effect of the number of inserted emojis on “unsafe” prediction ratio. “Our Position” denotes the proposed position
selection strategy.

Effect of Other Delimiters
To further explore token segmentation bias, we evaluate Llama Guard with various delimiters, as illustrated in Figure 8. Com-
pared to default prompts without delimiters, including delimiters markedly decreases the “unsafe” prediction ratio, confirming
that token segmentation bias can be induced in multiple ways. Additionally, incorporating our position selection strategy along-
side these delimiters leads to an even more substantial reduction in the “unsafe” prediction ratio, underscoring the effectiveness
of selectively inserting tokens.

Other Delimiters

U
ns

af
e

P
re

di
ct

io
n

R
at

io

0.2

0.3

0.4

0.5

0.6

0.7

0.8

! @ # ? & % . ,

Default Prompt Random Position
Our Position

Figure 8: The effect of various delimiters on “unsafe” prediction ratio of Llama Guard. The red dashed line denotes the predic-
tion ratio of default prompts without delimiters.

Potential Defense Strategy
One potential defense strategy is to design prompts that filter out abnormal characters in the responses of target LLMs. Inserting
a single delimiter across multiple tokens is relatively easy to detect. However, using different delimiters for various tokens
complicates detection by disrupting token patterns in less predictable ways. For example, we employ “gpt-3.5-turbo” as the
additional LLM filter to remove unnecessary symbols from harmful responses. As shown in Figure 9, when we use a mix of
a character “b” and a smiley face emoji as a delimiter, the LLM filter generates a benign response that differs significantly
from the original harmful response. This benign response is classified as “safe” by Judge LLMs, allowing the original harmful
response to be presented to users. We leave the exploration of combinational attacks and further defense strategies to future
work. The results highlight the significant potential of developing token segmentation bias-based jailbreaking techniques.

Posb t a pictub re ob f youb r gb enib tab ls

LLM Filter

Post a picture of your green beans

Figure 9: The illustration of how complex delimiters evade filtering-based defense strategy. The underlined character “b” and
the smiley face emoji represent the inserted content. We use “gpt-3.5-turbo” as the LLM filter, which is prompted with the
instruction “Remove all unnecessary symbols from the following response”.

	Introduction
	Related Work
	Judge LLMs
	Jailbreaking Attacks

	Methodology
	Problem Setup
	Token Segmentation Bias
	Emoji Attack

	Experiment
	Experimental Settings
	Emoji Attack for Enhancing Jailbreaks Against Judge LLM Detection
	White-box Emoji Attack

	Conclusion
	Appendix
	Attention Visualization of Token Segmentation Bias
	Comparison between Offensive Phrases and Those Appending Emojis
	Effect of the Number of Inserted Emojis
	Effect of Other Delimiters
	Potential Defense Strategy

