
Neurosymbolic Autonomous Agents for
Cyber-Defense

Xenofon Koutsoukos

Department of Computer Science

Institute for Software Integrated Systems

Vanderbilt University

SoS Virtual Institute (VI) Meeting Year End Review 2025 January 30-31, 2025

2

Team

Xenofon Koutsoukos, PI
Neurosymbolic Agents

Gabor Karsai, co-PI
Assurance Methods

Sandeep Neema, co-PI
Evaluation of Cyber Agents

Ankita SamaddarNoah Dahle Nicholas Potteiger Robert Canady

3

Project Vision and Research Challenges

• Technical Rationale

• Autonomous agents for cyber applications need to learn, reason about, and adapt to deploy security
mechanisms for defending networked computer systems while maintaining critical operational workflows.

• Research Challenges

• Cyber agents need to complete multiple interdependent tasks over variable length time-intervals.

• Many tasks can be realized using learning-enabled components (LECs) to handle and uncertainty and
variability of the environment.

• Autonomous cyber agents must continuously explore, improve tasks already learned, learn new tasks,
and identify creative ways to synthesize goals, plans, and tasks to increase effectiveness.

• Robustness and generalizability in new cyber environments is necessary to address novel and fast
changing threats.

• Assurance methods must provide evidence for the correctness of the agents.

• Interpretability can improve human trust and human-machine teaming.

• Demonstration and evaluation using a cyber operational environment which is scalable and fast
enough to be used in RL training.

4

Overview

• Designing robust cyber-defense agents with evolving behavior trees

• Out-of-distribution detection for neurosymbolic autonomous cyber agents

• Demonstration and evaluation using emulation

• Designing cyber agents using LLMs (in progress)

• Multi-agent cyber defense (in progress)

• CAGE Challenge 3 and 4

• Conclusions

5

Neurosymbolic Autonomous Agents

N. Potteiger, A. Samaddar, H. Bergstrom and X. Koutsoukos, "Designing Robust Cyber-Defense Agents with Evolving
Behavior Trees," International Conference on Assured Autonomy (ICAA), Nashville, TN, USA, Oct. 10-11, 2024.

6

Assurance Challenges

Uncertainty due to
limited knowledge
about the runtime

behavior of the
operational system and

environment during
training of the

autonomous agents

Robustness and
generalizability of the

autonomous agents

Consequences can
propagate deep into the

system and impact
system behaviors at all

levels

Out-of-distribution detection (OOD) can be used to identify data
that is nonconformal with the training distribution.

7

Problem Statement

Given a network consisting of hosts, enterprise servers and operational servers and a neurosymbolic cyber-

agent trained with a policy π, our objective is to develop a runtime monitoring algorithm to detect shifts

from the training distribution.

A. Samaddar, N. Potteiger, and X. Koutsoukos. "Out-of-Distribution Detection for Neurosymbolic Autonomous Cyber
Agents.” 4th IEEE International Conference on AI in Cybersecurity (ICAIC). Houston, TX, USA,, Feb. 5-7, 2025.

8

System Model

• The system can be represented by a discrete-time Partially Observable Markov
Decision Process (POMDP) M = (S, A, T, R, μ0)

• S : set of discrete and partially observable states

• A : set of defender (blue agent) discrete actions

• T : conditional transition probabilities

• R: S x A x S → R : Reward function

• μ0: initial state and action

• Blue agent objective:

• Select actions at each timestep to maximize the cumulative reward:

𝒕=𝟏

𝒕=∞

𝒓𝒕 − 𝟏

St-1 St

at-1

t-1 t
T(st | st-1,at-1)

rt-1

9

Out-of-Distribution (OOD) Detection

Data Generation Training OOD Detection

➢ Collect transitions
(st−1, at−1) → st for τ
timesteps over N
episodes to generate
the training data Dtrain

➢ Develop a Probabilistic
Neural Network (PNN) the
transition (st−1, at−1) → st
probabilities for policy π
over Dtrain

➢ st : State at timestep t given
action at−1 on state st−1

➢ {s1
t, s

2
t,….sk

t} : set of k predicted
current states from PNN

➢ If st ϵ {s1
t, s

2
t,….sk

t} and
Pr((st−1, at−1) → st) > ρ, then
in-distribution

➢ Else st is out-of-distribution

10

Probabilistic Neural Network (PNN)

Red Agent

• Meander Agent

• B-line Agent

Blue Agent

• Evolving Behavior Tree (EBT)

Training

• Given a Red and a Blue Agent, construct a

 PNN with the training data from CybORG.

Testing

• For a given St-1 , At-1, run CybORG simulator to get St

• Predict the set of current states from the PNN.

10

St-1,At-1

S1
t

S2
t

Sm
t

S1
t-1,A1

t-1

Sn
t-1,An

t-1

.

.

.

.

S2
t-1,A2

t-1

.

.

.

.

.

.

.

Sn-1
t-1,An-1

t-1

Probabilistic Neural Network

m
distinct
output
states

Pattern layer
(size n)

Input layer
(size 1)

Output layer
(size m)

11

Simulation Results

Red Agent Blue Agent PNN Number of steps in
the Test data

Number of OOD
episodes (out of
1000)

B-line Agent EBT Trained with data
over 1000 episodes
with 100 steps

30 16

50 12

100 13

Meander Agent EBT Trained with data
over 1000 episodes
with 100 steps

30 65

50 95

100 128

12

Out of Distribution Generalization

13

Integration of OOD Detection in EBT

1. ID? : Determines if current
state st is In-Distribution

2. GetSafeAction! : Executes
Restore action to restore
the affected host/server to
a previously known “safe”
state, to assure safety

3. OOD? : Returns Failure if
current state st is In-
Distribution to ensure
normal execution of the
system

14

Experimental Setup

• CybORG CAGE Challenge 2

• Blackboard: Communication interface between the EBT and the simulator

• Experiments with two red agent strategies: Meander and B_line

• Generate Dtrain for each of these agents over 10,000 episodes each with 100 steps to
train the PNN

14

15

Results

15

Number of OOD transitions when the red agent switches to an unknown strategy
is significantly high as the blue agent has no knowledge about the strategy.

16

Results

GetSafeAction! behavior in the EBT significantly reduces the number of OOD transitions by
restoring the system to a “safe” state

17

Emulation Testbed (DARPA CASTLE)

18

10.10.10.0/24

.10.1

.10 .11 .12 .13 .14

Control net: 10.0.0.0/24

10.0.0.200

10.10.20.0/24 10.10.30.0/24

.10 .11 .12

.13.12.11.10

.20.100

.30.1

20.200

20.120

Key

Velociraptor clients

Velociraptor server

Velociraptor admin
console

Trained blue agent

Red agent

Emulation Testbed Architecture

Red agent: Executes an action based on its policy.
Goal: Reach Operational server and execute Impact action.

Blue agent: Selects action -> Calls Velociraptor Server -> Makes RPC calls to execute the action on the appropriate host.
Goal: Prevent the red agent from penetrating deep into the network.

19

Simulation vs Emulation Results

OOD results on emulator over one episode with 50 steps using PNN trained in simulation
against BlineAgent as Red Agent and EBT as Blue Agent over 1000 episodes with 100 steps.

Example. In Emulator,

S4 : [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0],

A4 : Analyze User 2,

S5 : [0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0]

Transition (S4, Analyze User2) → S5 , not
in Training data

20

Precision and Recall (in progress)

• Compromised host is defined as:

• Host that has one or more red sessions present.

• Any type of red session, either user or root.

• Recovered host is defined as:

• Host that does not have any red session at the current
time step t, after previously being compromised at time
step t-1.

• The most recent blue action was a remove or restore.

• Precision: Number of steps where blue agent
executes Restore/(Remove) operation with the red
agent having/(not having) access to the root shell
to the total number of steps where blue agent
executes Restore/(Remove) operation.

• Precision = TP/(TP + FP)

• Recall: Number of correctly recovered hosts out of
all compromised hosts.

• Recall = TP/(TP + FN)

Emulator
(over 4 episodes)

Simulator
(over 4 episodes)

Recall Mean: 0.9198
Stdev: 0.0037

Mean: 0.58
Stdev: 0.113

21

Using LLMs for Designing Behavior Trees

Feedback loop to optimize performance of a blue behavior tree.

LLM
Actor

LLM
Evaluator

Behavior
Database

Simulator dynamics,
Action constraints,

BT Grammar,
Task Description

Blue
Behavior Tree

Critics

Text Gradient: “This BT
can be improved by…”

Evaluation Instruction

Network
Simulator

Performance Metrics
(e.g. network disruption)

+

Red
Behavior Tree

0

1

2

3

4

5

6

Abstract Environment: Partially

Observable Markov game on Graphs

22

CAGE Challenge 3

=>
=>

Communicate =>

?Detect
Select
Action

=>=>=>

Allow? Allow! Block? Block! Retake? Retake!

=>

Remove? Remove!

23

Detection of Compromised Nodes using Graph ML

• PettingZoo Wrapper

1. Previous action successful for blue

agent

2. Drones that have been blocked

3. Malicious session found on host

drone

4. Number of malicious events from

drones its connected to

5. Position of host drone

6. Drone ID

7. Position of drones its connected to

8. If a new session has been added to

host drone

Graph
Classification

Ego Graphs

• Collected 55000 graphs

• 18 Drones

• Simulations with 200 time-steps

• Graph Classification

• Graph Convolutional Network

(PyG)

24

CAGE Challenge 4
Abstract Environment: Partially Observable

Multi-Agent Markov game on Graphs

25

Conclusions

• Neurosymbolic autonomous agents for cyber defense based on evolving behavior trees

• Symbolic components captured by the structure of the behavior tree.

• Neural components are used to realize the various behaviors.

• Out-of-distribution detection for neurosymbolic autonomous cyber agents

• OOD detection for RL agents with discrete states and actions.

• Integration of OOD Detection into neurosymbolic agents.

• Demonstration and evaluation using CAGE Challenge 2 based on CybORG simulation and DARPA

CASTLE emulation.

• Improved robustness and generalizibilty of cyber defense agents.

• Current and future work

• EBT design using LLMs.

• Multi-agent systems: CAGE Challenge 3 and 4.

• N. Potteiger, A. Samaddar, H. Bergstrom and X. Koutsoukos, "Designing Robust Cyber-Defense Agents with Evolving Behavior Trees," International

Conference on Assured Autonomy (ICAA), Nashville, TN, USA, Oct. 10-11, 2024.

• A. Samaddar, N. Potteiger, and X. Koutsoukos. "Out-of-Distribution Detection for Neurosymbolic Autonomous Cyber Agents.” 4th IEEE International

Conference on AI in Cybersecurity (ICAIC). Houston, TX, USA,, Feb. 5-7, 2025.

	Slide 1: Neurosymbolic Autonomous Agents for Cyber-Defense
	Slide 2: Team
	Slide 3: Project Vision and Research Challenges
	Slide 4: Overview
	Slide 5: Neurosymbolic Autonomous Agents
	Slide 6: Assurance Challenges
	Slide 7: Problem Statement
	Slide 8: System Model
	Slide 9: Out-of-Distribution (OOD) Detection
	Slide 10: Probabilistic Neural Network (PNN)
	Slide 11: Simulation Results
	Slide 12: Out of Distribution Generalization
	Slide 13: Integration of OOD Detection in EBT
	Slide 14: Experimental Setup
	Slide 15: Results
	Slide 16: Results
	Slide 17: Emulation Testbed (DARPA CASTLE)
	Slide 18: Emulation Testbed Architecture
	Slide 19: Simulation vs Emulation Results
	Slide 20: Precision and Recall (in progress)
	Slide 21: Using LLMs for Designing Behavior Trees
	Slide 22: CAGE Challenge 3
	Slide 23: Detection of Compromised Nodes using Graph ML
	Slide 24: CAGE Challenge 4
	Slide 25: Conclusions

