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Project Vision and Research Challenges

• Technical Rationale

• Autonomous agents for cyber applications need to learn, reason about, and adapt to deploy security 
mechanisms for defending networked computer systems while maintaining critical operational workflows.

• Research Challenges

• Cyber agents need to complete multiple interdependent tasks over variable length time-intervals.

• Many tasks can be realized using learning-enabled components (LECs) to handle and uncertainty and 
variability of the environment.

• Autonomous cyber agents must continuously explore, improve tasks already learned, learn new tasks, 
and identify creative ways to synthesize goals, plans, and tasks to increase effectiveness.

• Robustness and generalizability in new cyber environments is necessary to address novel and fast 
changing threats.

• Assurance methods must provide evidence for the correctness of the agents.

• Interpretability can improve human trust and human-machine teaming.

• Demonstration and evaluation using a cyber operational environment which is scalable and fast         
enough to be used in RL training.
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Overview

• Designing robust cyber-defense agents with evolving behavior trees

• Out-of-distribution detection for neurosymbolic autonomous cyber agents

• Demonstration and evaluation using emulation

• Designing cyber agents using LLMs (in progress)

• Multi-agent cyber defense (in progress)

• CAGE Challenge 3 and 4

• Conclusions 
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Neurosymbolic Autonomous Agents

N. Potteiger, A. Samaddar, H. Bergstrom and X. Koutsoukos, "Designing Robust Cyber-Defense Agents with Evolving 
Behavior Trees," International Conference on Assured Autonomy (ICAA), Nashville, TN, USA, Oct. 10-11, 2024.
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Assurance Challenges

Uncertainty due to 
limited knowledge 
about the runtime 

behavior of the 
operational system and 

environment during 
training of the 

autonomous agents

Robustness and 
generalizability of the 

autonomous agents

Consequences can 
propagate deep into the 

system and impact 
system behaviors at all 

levels

Out-of-distribution detection (OOD) can be used to identify data 
that is nonconformal with the training distribution.
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Problem Statement

Given a network consisting of hosts, enterprise servers and operational servers and a neurosymbolic cyber-

agent trained with a policy π, our objective is to develop a runtime monitoring algorithm to detect shifts 

from the training distribution.

A. Samaddar, N. Potteiger, and X. Koutsoukos. "Out-of-Distribution Detection for Neurosymbolic Autonomous Cyber 
Agents.” 4th IEEE International Conference on AI in Cybersecurity (ICAIC). Houston, TX, USA,, Feb. 5-7, 2025.
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System Model

• The system can be represented by a discrete-time Partially Observable Markov 
Decision Process (POMDP) M = (S, A, T, R, μ0) 

• S : set of discrete and partially observable states

• A : set of defender (blue agent) discrete actions

• T : conditional transition probabilities

• R: S x A x S → R : Reward function

• μ0: initial state and action

• Blue agent objective: 

• Select actions at each timestep to maximize the cumulative reward:
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Out-of-Distribution (OOD) Detection

Data Generation Training OOD Detection

➢ Collect transitions 
(st−1, at−1) → st for τ 
timesteps over N 
episodes to generate 
the training data Dtrain

➢ Develop a Probabilistic 
Neural Network (PNN) the 
transition (st−1, at−1) → st 
probabilities for policy π 
over Dtrain

➢ st : State at timestep t given 
action at−1 on state st−1

➢ {s1
t, s

2
t,….sk

t} : set of k predicted 
current states from PNN 

➢ If st ϵ {s1
t, s

2
t,….sk

t} and       
Pr((st−1, at−1) → st) > ρ, then       
in-distribution

➢ Else st is out-of-distribution
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Probabilistic Neural Network (PNN)

Red Agent

• Meander Agent

• B-line Agent

Blue Agent

• Evolving Behavior Tree (EBT)

Training

• Given a Red and a Blue Agent, construct a 

    PNN with the training data from CybORG.

Testing

• For a given St-1 , At-1, run CybORG simulator to get St

• Predict the set of current states from the PNN.
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Simulation Results

Red Agent Blue Agent PNN Number of steps in 
the Test data

Number of OOD  
episodes (out of 
1000)

B-line Agent EBT Trained with data 
over 1000 episodes 
with 100 steps

30 16

50 12

100 13

Meander Agent EBT Trained with data 
over 1000 episodes 
with 100 steps

30 65

50 95

100 128
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Out of Distribution Generalization
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Integration of OOD Detection in EBT

1. ID? : Determines if current 
state st is In-Distribution

2. GetSafeAction! : Executes 
Restore action to restore 
the affected host/server to 
a previously known “safe” 
state, to assure safety

3. OOD? : Returns Failure if 
current state st is In-
Distribution to ensure 
normal execution of the 
system
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Experimental Setup

• CybORG CAGE Challenge 2

• Blackboard: Communication interface between the EBT and the simulator 

• Experiments with two red agent strategies: Meander and B_line

• Generate Dtrain for each of these agents over 10,000 episodes each with 100 steps to 
train the PNN 

14



15

Results

15

Number of OOD transitions when the red agent switches to an unknown strategy 
is significantly high as the blue agent has no knowledge about the strategy.
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Results

GetSafeAction! behavior in the EBT significantly reduces the number of OOD transitions by 
restoring the system to a “safe” state 
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Emulation Testbed (DARPA CASTLE)
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10.10.10.0/24

.10.1

.10 .11 .12 .13 .14

Control net: 10.0.0.0/24

10.0.0.200

10.10.20.0/24 10.10.30.0/24

.10 .11 .12

.13.12.11.10

.20.100

.30.1

20.200

20.120

Key

Velociraptor clients

Velociraptor server

Velociraptor admin 
console

Trained blue agent

Red agent

Emulation Testbed Architecture

Red agent: Executes an action based on its policy.
Goal: Reach Operational server and execute Impact action. 

Blue agent: Selects action -> Calls Velociraptor Server -> Makes RPC calls to execute the action on the appropriate host.
Goal: Prevent the red agent from penetrating deep into the network.
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Simulation vs Emulation Results

OOD results on emulator over one episode with 50 steps using PNN trained in simulation 
against BlineAgent as Red Agent and EBT as Blue Agent over 1000 episodes with 100 steps.

Example. In Emulator, 

S4 : [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0],

A4 : Analyze User 2,

S5 : [0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0]

Transition (S4, Analyze User2) → S5 , not 
in Training data 
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Precision and Recall (in progress)

• Compromised host is defined as:

• Host that has one or more red sessions present.

• Any type of red session, either user or root.

• Recovered host is defined as:

• Host that does not have any red session at the current 
time step t, after previously being compromised at time 
step t-1.

• The most recent blue action was a remove or restore.

• Precision: Number of steps where blue agent 
executes Restore/(Remove) operation with the red 
agent having/(not having) access to the root shell 
to the total number of steps where blue agent 
executes Restore/(Remove) operation. 

• Precision = TP/(TP + FP)

• Recall: Number of correctly recovered hosts out of 
all compromised hosts.

• Recall = TP/(TP + FN)

Emulator 
(over 4 episodes)

Simulator 
(over 4 episodes)

Recall Mean: 0.9198
Stdev: 0.0037

Mean: 0.58
Stdev: 0.113
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Using LLMs for Designing Behavior Trees

Feedback loop to optimize performance of a blue behavior tree.

LLM
Actor

LLM
Evaluator

Behavior 
Database

Simulator dynamics,
Action constraints,

BT Grammar,
Task Description

Blue
Behavior Tree

Critics

Text Gradient: “This BT 
can be improved by…”

Evaluation Instruction

Network
Simulator

Performance Metrics
(e.g. network disruption)

+

Red 
Behavior Tree

0

1

2

3

4

5
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Abstract Environment: Partially 

Observable Markov game on Graphs
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CAGE Challenge 3

=>
=>

Communicate =>

?Detect
Select 
Action

=>=>=>

Allow? Allow! Block? Block! Retake? Retake!

=>

Remove? Remove!
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Detection of Compromised Nodes using Graph ML

• PettingZoo Wrapper

1. Previous action successful for blue 

agent

2. Drones that have been blocked

3. Malicious session found on host 

drone

4. Number of malicious events from 

drones its connected to

5. Position of host drone

6. Drone ID

7. Position of drones its connected to

8. If a new session has been added to 

host drone

Graph 
Classification

Ego Graphs

• Collected 55000 graphs

• 18 Drones

• Simulations with 200 time-steps

• Graph Classification

• Graph Convolutional Network 

(PyG)
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CAGE Challenge 4
Abstract Environment: Partially Observable 

Multi-Agent Markov game on Graphs
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Conclusions

• Neurosymbolic autonomous agents for cyber defense based on evolving behavior trees

• Symbolic components captured by the structure of the behavior tree.

• Neural components are used to realize the various behaviors.

• Out-of-distribution detection for neurosymbolic autonomous cyber agents

• OOD detection for RL agents with discrete states and actions.

• Integration of OOD Detection into neurosymbolic agents.

• Demonstration and evaluation using CAGE Challenge 2 based on CybORG simulation and DARPA 

CASTLE emulation.

• Improved robustness and generalizibilty of cyber defense agents. 

• Current and future work

• EBT design using LLMs.

• Multi-agent systems: CAGE Challenge 3 and 4.

• N. Potteiger, A. Samaddar, H. Bergstrom and X. Koutsoukos, "Designing Robust Cyber-Defense Agents with Evolving Behavior Trees," International 

Conference on Assured Autonomy (ICAA), Nashville, TN, USA, Oct. 10-11, 2024.

• A. Samaddar, N. Potteiger, and X. Koutsoukos. "Out-of-Distribution Detection for Neurosymbolic Autonomous Cyber Agents.” 4th IEEE International 

Conference on AI in Cybersecurity (ICAIC). Houston, TX, USA,, Feb. 5-7, 2025.
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