
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

WiP: Assessing the Effects of Source Language on Binary
Similarity Tools

Landen Doty
landoty@ku.edu

University of Kansas
Lawrence, Kansas, USA

Dr. Prasad Kulkarni
prasadk@ku.edu

University of Kansas
Lawrence, Kansas, USA

ABSTRACT
State-of-the-art binary similarity tools have been developed to ac-
count for and are evaluated against variations in compilers, compiler
flags, optimization levels, architectures, and even obfuscations. Al-
though these tools aim to measure and detect binary code segments
generated from similar or identical source code segments, they have
yet to be evaluated on source languages other than C/C++.

We present a work in progress to assess the effects of source
language onmodern binary similarity tools. Specifically, we provide
a comparative investigation on the efficacy of BSim, a recently
released component of the Ghidra framework, when comparing
binaries produced by C as well as Rust. Using a benchmark of 800
binaries and more than one million functions, we investigate the
overall accuracy and differentiating ability of BSim and find that the
source language introduces a significant degree of imprecision not
previously documented. We also provide a technical overview of
the BSim utility, which provides context for our assessment results
and a clear direction for addressing the shortcomings highlighted
by our findings.

CCS CONCEPTS
• Security and privacy → Software reverse engineering; •
General and reference → Evaluation.

KEYWORDS
Binary Code, Diffing, Similarity, Ghidra, BSim, Rust

1 INTRODUCTION
Binary code similarity is a fundamental technique to compare a
pair, set, or large corpus of binary-level code segments - instruction
sequences, basic blocks, functions, etc. Binary code comparison has
applications in several domains, including malware classification
and detection [2, 6, 10, 16], vulnerability research [8, 17, 20], and
even intellectual property protection [13]. Given its real-world ap-
plicability and the growing number of programs distributed without
source, binary code similarity has seen a sustained research effort
to both improve existing techniques and develop novel approaches.

Early binary similarity work, such as BinDiff, leveraged struc-
tural representations of binary code, such as control flow, data flow,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotSoS ’25, April 1–3, 2025, Nashville, TN
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

and call graphs [4, 5]. However, binary-level comparison of soft-
ware components is uniquely challenging, as even small variations
in the compilation environment, including the compiler, optimiza-
tion levels, and various compiler flags, can result in significant
changes in the generated machine code. As such, more recent ap-
proaches attempt to capture semantic understanding of binary code
segments using traditional program analysis techniques such as
symbolic execution and fuzzing, and have shown improved results
across variations of compiler settings [7, 15, 20]. Further, the use of
machine learning and data science techniques - natural language
processing (NLP), approximate nearest neighbor, and deep learning
- has shown promise in improving the state of the art [3, 14, 19].

Despite the vast number of research endeavors focused on this
area, to our knowledge, no current work has investigated how
source-level constructs affect the efficacy of binary-level similarity
techniques. With the growing adoption of non-C/C++ high-level
compiled languages, practitioners will certainly see an increasing
amount of binary artifacts compiled from richer high-level abstrac-
tions than those seen in C/C++. Thus, if the tools and frameworks
available are overfit to patterns most commonly seen in C/C++
binaries, practitioners may be at a distinct disadvantage when com-
paring binaries from languages like Rust and Golang.

This paper presents a first in-depth analysis of the effects of
source language on binary code similarity techniques. With a spe-
cific interest in tools readily available to binary analysis practition-
ers, we conduct our investigation on BSim, a recently open-sourced
binary similarity tool in the Ghidra Software Reverse Engineering
Framework developed by the National Security Agency (NSA). As
a Work In Progress submission, this paper includes 1) a baseline
analysis of BSim’s performance on C/C++ binaries, 2) a compara-
tive analysis on Rust binaries and 3) early results and discussion
towards addressing the observed effects.

Beyond this investigation, this paper also includes a high-level
technical description of BSim, its components, and configurations
resulting from our analysis of its open-source content. This informa-
tion is important in contextualizing the results of our assessments
and provides future work with a baseline of technical understand-
ing.

In summary, this work makes the following contributions:

• We provide a novel investigation of the effects of source
language on binary similarity. Using Rust as our experimen-
tal language, we show that an existing tool, BSim, is tuned
to features seen in C-based languages and its performance
is degraded when comparing binaries not of C origin.

• We detail the internal components of BSim, its feature rep-
resentation, and available configuration and tuning capa-
bilities. This contribution results from our manual analysis

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

HotSoS ’25, April 1–3, 2025, Nashville, TN Doty et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

bl0:
mov eax, [0x14813c9c]
test eax, eax
jnz bl2;
bl1:
call func1
mov [0x14813c9c], eax
bl2:
ret

Figure 1: Feature Representation Code Snippet

of BSim’s released source code as well as extensive work
using BSim to facilitate our assessment of source language
effects.

2 BACKGROUND: BSIM OVERVIEW
Built atop the Ghidra Software Reverse Engineering framework,
BSim - short for Behavioral Similarity - is a binary similarity data-
base technology inspired by current text retrieval techniques. It
aims to be "tolerant of variation" in compiler configurations by
normalizing certain components in binary code, such as storage
location and instruction ordering. These components, and others,
are sources of common inconsistencies in prior binary code sim-
ilarity tools due to variation in compiler versions, optimization
passes, etc. To further account for variation in a function’s binary
representation, BSim performs nearest neighbor queries via Lo-
cality Sensitive Hashing (LSH), providing users a configurable
set of probable matches. We refer the reader to the official Ghidra
documentation for a step-by-step procedure for creating, populat-
ing, and querying BSim databases [1]. Thus, the remainder of this
section details components of BSim not explicitly included in the
official documentation. From our analysis of BSim’s open source
content, we have documented high-level functionality in its feature
representation, comparison metrics, and database configuration.

2.1 Feature Representation
To succinctly capture the behavioral features of a function from
its binary-level representation, BSim utilizes components of the
control flow graph (CFG) and abstract syntax tree (AST) generated
from Ghidra’s intermediate representation (IR), p-code. Using an IR
such as p-code allows BSim to normalize variation in instructions,
register allocations, etc. which are often affected when toggling
compiler options and versions. Using this scheme, BSim character-
izes binary code features as either ControlFlow or DataFlow, as
well as specialized Combined and DualFlow features which combine
both control flow and data flow information.

Clearly, it is not sufficient to store only the fact that a function
contains control or data flow; thus, features encode additional rele-
vant information such as the number of in- and out-degrees (Con-
trolFlow) as well as operand size and p-code operation (DataFlow).
In addition, features also encode behavioral information collected
from neighboring features. For instance, ControlFlow features iter-
atively encode the features of incoming basic blocks as well as their
edge type (true, false, fall through). In order to store and cluster
binary code using LSH, BSim generates numerical representations

Figure 2: Feature Representation Example

for each distinct feature that retains this additional behavioral in-
formation.

The in-depth details of this procedure are out of scope for this
paper, but it is sufficient to say that BSim 1) generates an initial
64-bit hash value for a feature rooted at either a basic block or a
Varnode, then 2) iteratively combines the initial hash value with
adjacent, related features. Both procedures rely heavily on bitwise
operations, and the later uses a custom "hash mixin" algorithm that
incorporates a precomputed, hard-coded Cyclic Redundancy Check
(CRC) table. (Add a footnote here for the files where all of this is
implemented).

2.1.1 DataFlow Features. Data flow features are generated from
individual Varnodes in the p-code AST. Varnodes represent variable
locations in the p-code IR and track their location (address), size
(in bytes), defining p-code operation (in-degree in the AST), and all
p-code operations that use it (out-degree in the AST). A DataFlow
feature is initialized with an encoding of its:

• P-code opcode, and
• Storage location size

According to a user-facing configuration, a DataFlow feature may
optionally encode:

• Either its offset in the address space, or
• The fact that it is a constant, and/or
• The fact that it is a global, and/or,
• The fact that it is an input

Additionally, Varnodes that are not written to in the function are
not emitted as features and Varnodes that are copies of others are
emitted as special Copy features.

Following initialization, each DataFlow feature is combined with
the features generated for the inputs to its respective Varnode. This
process effectively encodes the behavior of p-code expressions
rather than individual opcodes or sub-expressions.

2.1.2 ControlFlow Features. Control flow features are similarly
generated from individual basic blocks in the p-code CFG. A Control
Flow feature is first initialized with an encoding of its:

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

WiP: Assessing the Effects of Source Language on Binary Similarity Tools HotSoS ’25, April 1–3, 2025, Nashville, TN

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

• In-degree, and
• Out-degree

Additionally, basic blocks that include a call instruction will result
in another ControlFlow feature that encodes the type of the call -
direct or indirect.

After initialization, each ControlFlow feature is combined with
the features generated for its incoming basic blocks. If an incoming
basic block ends in a conditional branch, the ControlFlow feature
also encodes if the incoming edge is True or False.

2.1.3 Dual Flow and Combined Features. DualFlow and Combined
features are a special set of features which incorporate both control
and data flow information. In a 2-gram pass, BSim iterates over
overlapping pairs of p-code opcodes contained within each basic
block in the function. If the first opcode is the root of an expression
- call and branch variations, store, and return - then a special
DualFlow feature is generated. Along with the ControlFlow fea-
ture for the basic block, this feature encodes, for both opcodes in
the pair:

• The opcode, and
• Each DataFlow feature related to the opcode

Finally, for basic blocks that begin with one of the root opcodes,
a special Combined feature will be generated that encodes the in-
formation listed above, but only for the single opcode.

In conjunction, these features encode the relationship between
particular expressions and the basic blocks they are contained
within. This is yet another normalization component that reduces
the effects of common code structures as it is less likely that these
relationships would change between slight variations in source or
compilation settings.

Using BSim’s visualization tool, we provide an example combined
feature in Figure 2 which is generated from the code snippet in
Figure 1. The control flow feature on the left is rooted at the first
basic block in the snippet and encodes both the True and False
edges from the conditional jump. The data flow feature on the
right encodes two sequential p-code operations lifted from the
code snippet, as well as their operand values and sizes. The first
operation, INT_EQUAL is lifted from the mov and test instructions.
Note that BSim encodes the size of the memory address (four bytes)
in the feature. This operation produces a value for the zero flag (ZF)
which is then used as the single operand of the CBRANCH operation
lifted from the jnz instruction.

2.2 Comparison Metrics
With a high-level understanding of how BSim represents features
of binary code, we next formalize its metrics for comparison - simi-
larity and confidence. First, note that BSim performs comparison
at a function level. Thus, each function is represented by a feature
vector 𝑉𝐹 of 64-bit hexadecimal values:

𝑉𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑛} (1)

2.2.1 Term Frequency and Inverse Document Frequency. In addition
to the raw feature vector, BSim also stores a weight associated with
each 𝑓 ∈ 𝑉𝐹 stored in the database. These weights are determined
according to the Term Frequency (TF) and Inverse Document Fre-
quency (IDF) and are calculated during feature ingestion. Taking

inspiration from the NLP community, a term is analogous to a par-
ticular feature 𝑓 ∈ 𝑉𝐹 ; thus, the TF is the number of occurrences of
a particular feature in a function. Following this logic, a document
is analogous to the entire corpus of binary-level functions; thus
the IDF is the inverse frequency of a particular feature across all
functions.

Each TF and IDF are used as an index in a TF weights and IDF
weights lookup table, respectively, which is provided in the config-
uration of a particular BSim database instance. This configuration
is discussed in the following section, but note, for now, that the
value at each index in the TF table provides a weight 1 ≤ 𝑤𝑇𝐹 and,
in the IDF table, 0 < 𝑤𝐼𝐷𝐹 ≤ 1. In both tables, larger weights corre-
spond to less frequent features. Thus, the coefficient for a particular
feature 𝑓 ∈ 𝑉𝐹 is:

𝑓 .𝑐𝑜𝑒 𝑓 𝑓 = tf_weights[f.tf] × idf_weights[f.idf] (2)

2.2.2 Similarity. The similarity between two feature vectors 𝑉 (1)
𝐹

and 𝑉 (2)
𝐹

is computed as their weighted cosine similarity. That is,

Similarity =

∑
𝑓 ∈𝑉 (1·2)

𝐹

𝑓 .𝑐𝑜𝑒 𝑓 𝑓

len(V(1)F ) × len(V(2)F )
(3)

where 𝑉 (1·2)
𝐹

is the vector of shared features between 𝑉
(1)
𝐹

and
𝑉

(2)
𝐹

with minimal TF.
Given this formulation, similarity always provides a bounded

value between 0 and 1 which should, in theory, be maximized for
similar functions with unique features.

2.2.3 Confidence. The confidence metric is a less straightforward
computation and involves a number of probabilities included in the
configuration of the particular BSim database instance:

∑︁
𝑓 ∈𝑉 (1·2)

𝐹

𝑓 .𝑐𝑜𝑒 𝑓 𝑓 − numflip ∗ norm_probflip0 + norm_probflip1

max(len(V(1)F ), len(V(2)F ))

−diff ∗ norm_probdiff0 + norm_probdiff1

max(len(V(1)F ), len(V(2)F ))
+ addend

(4)

where numflip is the number of hashes in the shortest vector
not shared in the other and diff is the difference in length of 𝑉 (1)

𝐹

and 𝑉 (2)
𝐹

.
Note the first term in the calculation is the numerator from the

similarity calculation. The probabilities norm_probflip0, norm_pr-
obflip1, norm_probdiff0, and norm_probdiff1 are calculated
using a log normalization factor and base probabilities provided in
the configuration. Again, refer to the following section for details
regarding the configuration of BSim database instances.

As its name suggests, confidence is a supplementary metric
for similarity and does not have an upper bound. In practice, we
have found that confidence is often a clearer indicator of function
similarity, and have encountered cases where similarity is less than
0.2 while confidence is 100.0 or higher.

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

HotSoS ’25, April 1–3, 2025, Nashville, TN Doty et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

<dbconfig>
<info>
<name>Medium 64-bit</name>
<owner>Example Owner</owner>
...
<major>0</major>
<minor>0</minor>
<settings>0x49</settings>

</info>
<k>17</k>
<L>146</L>
<weightsfile>lshweights_64.xml</weightsfile>
</dbconfig>

Figure 3: Configuration Template: medium_64.xml

2.3 Database Configuration
When instantiating a BSim database, it is required to provide a
configuration template that determines the settings, weights, and
probabilities used when generating, storing, and comparing binary
code features. Configuration templates are simply XML-formatted
files included within the BSim directory in a user’s Ghidra installa-
tion. Figure 3 shows the configuration for the medium_64 template,
which is documented to be tuned for roughly one million (or less)
64-bit binaries. Note a few particular values; Settings is used as a bit
mask for feature generation settings; value k and L are configura-
tions for the underlying LSH database; and weightsfile refers to an
additional file containing the TF and IDF weights tables mentioned
in 2.2.1.

2.3.1 Feature Generation Settings. In 2.1, we refer to a number of
values that may be optionally encoded as part of the feature gener-
ation process. The settings that determine the use of these options
are toggled according to the settings value in the configuration
template. From our analyses of BSim’s source code, the options are
as follows:

• Truncate Varnode Size to Four Bytes, 0x1
• Remove Indirect Varnode Copies, 0x2
• Terminate Dataflow at Call Sites, 0x8
• Do not use Constant Value, 0x10
• Do not use Fact that Varnode is an Input, 0x20
• Do not use Fact that Varnode is a Global, 0x40

In practice, we find that the options to terminate dataflow at
call sites and not use the fact that a Varnode is an input are not
effectual as the first is never referenced during feature generation
and checks for the latter are commented out in the source code. We
also find that BSim performs a right bit shift of length two before
loading settings, which enables a check bit to be appended to the
bit mask for validation.

Settings
8 2

0
1

1
0

Figure 4: Feature Generation Settings Bit Mask

Thus, the settings value 0x49 in Figure 3 actually corresponds
to a settings value of 0x12, which enable the options to not encode
constant values and remove indirect copies of Varnodes.

2.3.2 Probabilities and Weights. The file referenced by the weights-
file entry in Figure 3 defines three primary tables; one each for
coefficients relating to weighted probabilities of term and inverse
document frequency and a third serving as a lookup table for fea-
ture hashes and their corresponding IDF. An example taken from
our Ghidra installation is shown in Figure 5.

<weights settings="0x49"> <!-- Created 11/14/23 -->
<weightfactory scale="1.51275976" addend="6.25597601">
<idf>1.00000000e+00</idf>
<idf>9.99459306e-01</idf>
...
<idf>6.68999073e-01</idf>
<tf>1.00000000e+00</tf>
...
<tf>2.64145413e+00</tf>
<tf>2.64575131e+00</tf>
<weightnorm>1.35049281e+01</weightnorm>
<probflip0>2.02671876e-01</probflip0>
<probflip1>5.40692533e-01</probflip1>
<probdiff0>5.19701356e-02</probdiff0>
<probdiff1>8.52635318e-01</probdiff1>
</weightfactory>
<idflookup size="1000">
<hash count="0">0x5448c6df</hash>
<hash count="0">0x5e3fe72a</hash>
<hash count="0">0x8732d39a</hash>
<hash count="0">0xc530e221</hash>
<hash count="1">0x15231688</hash>
<hash count="1">0x4af9a820</hash>
...
<hash count="508">0xd5574099</hash>
<hash count="509">0x52f765fa</hash>
<hash count="510">0xc55041c4</hash>
<hash count="511">0xab6831d3</hash>
</idflookup>
</weights>

Figure 5: Weights File: lshweights_64.xml

The two weights tables are included in an outer weightfactory
entry that is loaded by BSim into a respective object at runtime. As
stated in 2.2.1, the weights in the IDF table range between 0.0 <

𝑤 ≤ 1.0. This table contains 512 unique entries and, as seen in
the idflookup table in Figure 5, is indexed by looking up a "count"
for a particular feature. However, the idflookup table contains 1000
entries with some count values duplicated. From our analysis, we
conclude that the idflookup table contains the 1000 most frequent
features, according to BSim’s tuning, and features not included in
this table are given a default count value 0 and, thus, an IDF weight
of 1.0. Also stated in 2.2.1, the TF weights table is indexed using a
feature’s frequency within a single function. This table contains 64

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

WiP: Assessing the Effects of Source Language on Binary Similarity Tools HotSoS ’25, April 1–3, 2025, Nashville, TN

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: Experiment Databases

Language Compiler Package Opt. Level Functions
C Clang GNU Coreutils O0 17,471
C Clang GNU Coreutils O1 11,981
C Clang GNU Coreutils O2 12,380
C Clang GNU Coreutils O3 11,659

Rust Rustc Uutils Coreutils O0 563,638
Rust Rustc Uutils Coreutils O1 147,420
Rust Rustc Uutils Coreutils O2 128,553
Rust Rustc Uutils Coreutils O3 113,144

unique values, and, for any feature with a frequency greater than
64, the default weight is the last entry in the table.

The additional probabilities and scaling factors discussed in Sec-
tion 2.2.3 are also shown in Figure 5. Note the normalized proba-
bilities norm_probflip0, norm_probflip1, norm_probdiff0, and
norm_probdiff1 are calculated by multiplying the scale value with
the respective base probabilities. Our analysis also finds no refer-
ence to the weightnorm entry that affects the generation or com-
parison of features.

3 RESEARCH QUESTIONS
For the remainder of this paper, we utilize BSim as a state-of-the-art
binary similarity tool to address a number of important research
questions. Primarily, we investigate how source language affects
the efficacy of binary similarity techniques in terms of overall over-
all accuracy; though, we also provide results for adjacent questions
concerning the particular comparison mechanism and feature rep-
resentations. Our three research questions are as follows:

• RQ1. Does source language degrade binary similarity, and
to what extent?

• RQ2. How does source language affect clustering-based
binary similarity tools?

• RQ3. Can features be tuned according to their source lan-
guage?

Addressing these questions is important for the immediate im-
provement of BSim and similar tools, but also provides other re-
search directions in the development of more flexible binary simi-
larity solutions. Further, their answers serve as guidance for binary
analysis practitioners when applying existing tools to real-world
problems.

4 EVALUATION
In this section, we address and provide results for each of the re-
search questions defined in 3. For each study, we include both a
baseline result from a C-based dataset and an experimental result
from a Rust-based dataset. This work is inspired by a desire to im-
prove the landscape of binary analysis tools for the Rust language,
though we could expand this study to other compiled languages,
such as Golang, in future work.

4.1 Datasets and Setup
For our baseline C-based dataset, we use a subset of binaries pro-
vided by the BinKit work [11]. Specifically, we include binaries

Table 2: Overall Accuracy - Baseline (C)

Query Level, DB Level Accuracy (%)
O0,O0 100.0
O0,O1 69.20
O0,O2 67.79
O0,O3 66.60
O1,O1 100.00
O1,O2 98.83
O1,O3 97.80
O2, O2 100.00
O2,O3 99.26
O3,O3 100.00

Table 3: Overall Accuracy - Experimental (Rust)

Query Level, DB Level Accuracy (%)
O0,O0 93.61
O0,O1 45.93
O0,O2 33.72
O0,O3 32.43
O1,O1 99.17
O1,O2 92.35
O1,O3 91.09
O2, O2 99.24
O2,O3 97.90
O3,O3 98.96

from GNU Coreutils 9.1 compiled with Clang 13.0 for the x86_64
architecture at optimization levels O0, O1, O2, and O3. This dataset
includes a total of 400 binaries and 53,491 functions.

Our experimental Rust-based dataset is built from the uutils
coreutils project, which "aims to be a drop-in replacement" for the
GNU Coreutils [18]. We similarly compile each utility using the
standard Rust compiler, rustc 1.75 for the x86_64 architecture at
optimization levels O0, O1, O2, and O3. This dataset also includes
a total of 400 binaries with 952,755 functions. The significant dif-
ference in the number of functions is due to 1) static linking of
Rust dependencies and 2) high-level constructs like closures and
default trait implementations that are not used in C. These factors
are not anomalous to our dataset and are standard behavior for Rust

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

HotSoS ’25, April 1–3, 2025, Nashville, TN Doty et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 6: Top Match Accuracy - Baseline (C)

Figure 7: Top Match Accuracy - Experimental (Rust)

binaries. Additionally, BSim does not allow function-level ingestion
or removal of single functions from a database. Thus, we include
the entirety of each binary in our experiments.

In both databases, we compile with all debug information in
order to retain symbols for our main source of ground truth.

To setup our experiments, we sought to create as realistic of
an experimental environment as possible, reflecting that of a real-
world binary similarity workflow. As such, we created one BSim
database for each distinct compiler configuration in both datasets.
That is, we created one database for each optimization level, holding
the compiler and the source language constant. Each binary was
analyzed and ingested into its respective database using Ghidra
11.2. The contents of our databases are summarized in Table 1.

In conducting our experiments, we executed and recorded queries
for each unique permutation of compiler settings, again holding
the source language and compiler constant. For each permutation,
we use the first setting component as the source of queries and the
second as the database to be queried. For example, with the permu-
tation {coreutils_clang_O0,coreutils_clang_O1}, we perform
a query for each function in the O0 set on the O1 database. We
configure BSim to report, at most, the 1000 nearest neighbors of a
function until the correct symbol is returned. Along with the sym-
bol names from the queries, we also record the reported similarity
and confidence for each result.

Towards RQ3, we also collected the features generated for each
function in both datasets, as well as their respective TF and IDF.

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

WiP: Assessing the Effects of Source Language on Binary Similarity Tools HotSoS ’25, April 1–3, 2025, Nashville, TN

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 8: Match Accuracy by Similarity - Baseline (C)

Figure 9: Match Accuracy by Similarity - Experimental (Rust)

4.2 Results
With our collected data, we conducted a number of analyses to-
wards answering the research questions presented in Section 3. In
this section, we provide the results of these analyses for both the
baseline and experimental cases. In addition, we include discussion
for each particular analysis and how it satisfies in answering our
posed questions.

4.2.1 RQ1. The most fundamental of our research questions, RQ1
questions the existence of an effect on binary similarity due to the
source language. For this, we report the overall accuracy of BSim,
where a successful trial is recorded if a candidate function symbol
matches the queried function symbol, at any similarity level. Thus,

for each row in Tables 2 and 3, we report the rate at which BSim
returned the correct symbol within the 1000 nearest neighbors of
each queried function.

Given these results, we find that the source language does, in fact,
affect binary similarity tools, even in a state-of-the-art solution like
BSim. Interestingly, we find that a number of functions were not
successfully matched when querying the database generated from
the same binary (the O0vO0, O1vO1, O2vO2, and O3vO3 rows).
This is to say that there were 1000 other functions that BSim found
to be more similar than the function itself.

It is worth noting that the most drastic difference between the
baseline C results and the experimental Rust results were when

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

HotSoS ’25, April 1–3, 2025, Nashville, TN Doty et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

comparing an unoptimized (O0) binary with a database populated
by an optimized binary. This is an important distinction, given that,
in most real-world settings, binaries are not distributed with opti-
mizations. Thus, practitioners should be cognizant if populating
databases from binaries they have compiled for tasks like library
detection. Nonetheless, even when comparing binaries with opti-
mizations enabled, our experimental results indicate a degree of
degraded efficacy.

4.2.2 RQ2. In the previous section, we indicated that BSim per-
forms approximate nearest neighbor queries, returning not a sin-
gular match for a given function, but a configurable set of probable
similar functions. This technique has proven to alleviate some of
the issues faced when comparing binaries of varying compilation
settings and searching across a large corpus. However, even when
expanding the range of approximation to 1000 results per function,
the results for RQ1 demonstrated a degraded performance due
to variation in the source language. Thus, we use RQ2 to investi-
gate the ability of BSim to determine the correct function with a
maximum similarity across all matches.

Figures 6 and 7 extract additional information from our accuracy
results, now partitioning the frequency of correct matches into
either Top Similarity or Not Top Similarity. Note, there is also an
entry in the legend for results which tied for the top match by
similarity, though we did not experience this in either the baseline
or experimental datasets.

In the partition for Not Top Similarity we find that frequencies
double or nearly double between the C and Rust experiments. So,
not only does the source language degrade the overall performance
of BSim, it also degrades the rate at which the top result (by simi-
larity) is actually the correct result. This does not suggest, however,
that clustering techniques are not effective for binary similarity,
but does suggest that the feature representation and/or tuning may
be skewed for binaries produced by C.

We further partition the results into categories by range of sim-
ilarity in Figures 8 and 9. The baseline results show that, in the
majority, correct matches for C tend to be of higher similarity than
those for Rust. With the exception of the unoptimized compar-
isons (O0 v. O1, O2, O3), the experimental results show that correct
matches for Rust occur in lower similarity ranges more often. Most
interesting is the result for the O1 comparisons; notice that, despite
the comparatively similar overall accuracy, the similarity scores
have far more variability for Rust than for C. In a practical sense,
practitioners may receive correct matches at a comparable rate with
no query parameters for similarity or number of matches; but, if
filtering for matches within only a certain threshold, their results
may be severely degraded.

4.2.3 RQ3. Our final research question is motivated by the results
presented above and, as a Work in Progress paper, this version does
not include a full conclusion for RQ3. Primarily, this question seeks
to provide an immediate solution for the degradation of efficacy
experienced by BSim when comparing binaries produced by Rust.
BSim exposes a convenient interface for tuning features according
to their frequency in the corpus - as described in Section 2 - and
thus provides a simple direction for continuing this work. However,
as we have stated, there exists no clear documentation or tooling
to generate the tuning schemes used by BSim, so we cannot fully

Table 4: Feature Overlap

Language Overlap Occurrence (Avg.)
C 876 1365.66

Rust 737 360.53

address this question. Nonetheless, we present a few early results
which necessitate further investigation.

Recall from Section 2.3.1 that the BSim weights configuration file
contains the 1000 most frequent features, which are then used to
index a table of weight coefficients in order to calculate similarity
and confidence. Using the features collected from both datasets, we
cross-reference those seen in our experiments with the top 1000
features included in the lshweights_64.xml file and record the
number of times they were seen.

The Overlap in Table 4 records the number of features from the
1000 most frequent in the configuration file that occurred through-
out each dataset. The Occurrence values are an average of the num-
ber of times each feature was seen in its respective dataset. Thus,
the table summarizes an interesting finding; not only are the fea-
tures in the configuration file seen fewer times in the Rust dataset
than the C dataset, but they are drastically less representative of
the features seen in Rust binaries.

5 DISCUSSION AND FUTUREWORK
Our results for RQ1 and RQ2 clearly indicate that variation in the
source language negatively affects the efficacy and performance of
binary similarity tools. Further, our assessments demonstrate that
the quality of results in probability- and clustering-based similarity
tools are degraded when binaries are generated from non-C source
languages. Finally, our initial investigation into RQ3 provides im-
portant insight into the necessary direction of future work.

5.1 Feature Weight Tuning
This work clearly necessitates the investigation of further tuning,
either for broader generality or increased specificity for particu-
lar languages, applications, and/or domains. With its accessible
interface for configuration and tuning, BSim is uniquely positioned
to address this need. However, without complete documentation
and/or tooling, we are currently unable to determine a process that
derives the weights configuration file described in Section 2. An
open discussion post in the Ghidra GitHub repository confirms our
findings that the source code used to derive and tune weights is
not distributed. The inquiry has since been elevated to the Ghidra
development team. As we present this ongoing work, we leave the
open-sourcing and/or documentation of the weight tuning mech-
anism to future work with highest importance. In doing so, BSim
will be fully equipped to investigate the full extent of our research
questions, along with many others that may find motivation from
this work.

5.2 Improving Analyses
Also included in Section 2, we note that BSim utilizes p-code, Ghidra’s
intermediate representation (IR), which is lifted from a binary’s raw
machine code. As some early work has documented, the quality of

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

WiP: Assessing the Effects of Source Language on Binary Similarity Tools HotSoS ’25, April 1–3, 2025, Nashville, TN

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

this process is complicated by non-C languages, like Rust, and may
be an additional source of limitation in generating quality features
for our Rust dataset. From this perspective, we are interested in
pursuing analysis procedures for generating higher quality IR from
Rust binaries, such that feature generation is able to produce richer
information. For example, recent work has utilized pointer analysis
to derive more accurate call graphs, which may be beneficial for de-
termining more precise data flow across call boundaries [12]. Other
static analysis techniques may be useful for determining function
arguments, which are typically a source of incompleteness when
analyzing Rust binaries [9].

6 CONCLUSION
Efficient and accurate binary code similarity is a complex, yet vital
technique for real-world binary analysis. While the area has seen
sustained research effort to improve and develop techniques, binary
similarity is complicated by a number of factors including compiler
versions, optimization settings, and now, as we have demonstrated,
source code language. Using a state-of-the-art tool, BSim, this work
shows that the source language does, in fact, affect the quality
of binary similarity results. Our assessments suggest that current
tooling is unable to match binary code generated from the Rust
language with reliable accuracy and necessitates further attention.
We present twomain research directions to address the issues found
in this work through additional tuning of language-specific features
and improved IR lifting procedures. We also provide an introduction
of BSim to the open research record and hope to see its further
investigation and adoption in future work.

REFERENCES
[1] National Security Agency. 2023. BSim Tutorial. Retrieved December

2, 2024 from https://github.com/NationalSecurityAgency/ghidra/blob/master/
GhidraDocs/GhidraClass/BSim/README.md.

[2] Ulrich Bayer, Paolo Comparetti Milani, Hlauschek Clemens, Christopher Kruegel,
and Engin Kirda. 2009. Scalable, Behavior-Based Malware Clustering. In Network
and Distributed System Security Symposium (NDSS).

[3] Steven H. H. Ding, Benjamin C. M. Fung, and Philippe Charland. 2019. Asm2Vec:
Boosting Static Representation Robustness for Binary Clone Search against Code
Obfuscation and Compiler Optimization. In 2019 IEEE Symposium on Security
and Privacy (SP). 472–489. https://doi.org/10.1109/SP.2019.00003

[4] Thomas Dullien. 2004. Structural Comparison of Executable Objects. DIMVA (07
2004). https://doi.org/10.17877/DE290R-2007

[5] Thomas Dullien and Rolf Rolles. 2005. Graph-based comparison of executable
objects (english version). SSTIC 5 (01 2005).

[6] Mohammad Reza Farhadi, Benjamin C. M. Fung, Philippe Charland, and Mourad
Debbabi. 2014. BinClone: Detecting Code Clones in Malware. In Proceedings of
the 2014 Eighth International Conference on Software Security and Reliability (SERE
’14). IEEE Computer Society, USA, 78–87. https://doi.org/10.1109/SERE.2014.21

[7] Debin Gao, Michael K. Reiter, and Dawn Song. 2008. BinHunt: Automatically
Finding Semantic Differences in Binary Programs. In Information and Communi-
cations Security, Liqun Chen, Mark D. Ryan, and Guilin Wang (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 238–255.

[8] Jian Gao, Xin Yang, Ying Fu, Yu Jiang, and Jiaguang Sun. 2018. VulSeeker: A
Semantic Learning Based Vulnerability Seeker for Cross-Platform Binary. In
2018 33rd IEEE/ACM International Conference on Automated Software Engineering
(ASE). 896–899. https://doi.org/10.1145/3238147.3240480

[9] Ben Herzog. 2023. Rust Binary Analysis, Feature by Feature. Retrieved December
2, 2024 from https://research.checkpoint.com/2023/rust-binary-analysis-feature-
by-feature/.

[10] Xin Hu, Tzi-cker Chiueh, and Kang G. Shin. 2009. Large-scale malware in-
dexing using function-call graphs. In Proceedings of the 16th ACM Confer-
ence on Computer and Communications Security (Chicago, Illinois, USA) (CCS
’09). Association for Computing Machinery, New York, NY, USA, 611–620.
https://doi.org/10.1145/1653662.1653736

[11] Dongkwan Kim, Eunsoo Kim, Sang Kil Cha, Sooel Son, and Yongdae Kim. 2023.
Revisiting Binary Code Similarity Analysis Using Interpretable Feature Engi-
neering and Lessons Learned. IEEE Transactions on Software Engineering 49, 4
(April 2023), 1661–1682. https://doi.org/10.1109/tse.2022.3187689

[12] Wei Li, Dongjie He, Yujiang Gui, Wenguang Chen, and Jingling Xue. 2024. A
Context-Sensitive Pointer Analysis Framework for Rust and Its Application to
Call Graph Construction. In Proceedings of the 33rd ACM SIGPLAN International
Conference on Compiler Construction (Edinburgh, United Kingdom) (CC 2024).
Association for Computing Machinery, New York, NY, USA, 60–72. https:
//doi.org/10.1145/3640537.3641574

[13] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. 2017.
Semantics-Based Obfuscation-Resilient Binary Code Similarity Comparison with
Applications to Software and Algorithm Plagiarism Detection. IEEE Transactions
on Software Engineering 43, 12 (2017), 1157–1177. https://doi.org/10.1109/TSE.
2017.2655046

[14] Andrea Marcelli, Mariano Graziano, Xabier Ugarte-Pedrero, Yanick Fratanto-
nio, Mohamad Mansouri, and Davide Balzarotti. 2022. How Machine Learning
Is Solving the Binary Function Similarity Problem. In 31st USENIX Security
Symposium (USENIX Security 22). USENIX Association, Boston, MA, 2099–2116.
https://www.usenix.org/conference/usenixsecurity22/presentation/marcelli

[15] Derrick McKee, Nathan Burow, and Mathias Payer. 2023. Accurate Compiler
and Optimization Independent Function Identification Using Program State
Transformations. https://doi.org/10.14722/bar.2023.23003

[16] Brian Ruttenberg, Craig Miles, Lee Kellogg, Vivek Notani, Michael Howard,
Charles LeDoux, Arun Lakhotia, and Avi Pfeffer. 2014. Identifying Shared Soft-
ware Components to Support Malware Forensics. In Detection of Intrusions and
Malware, and Vulnerability Assessment, Sven Dietrich (Ed.). Springer Interna-
tional Publishing, Cham, 21–40.

[17] Zeming Tai, Hironori Washizaki, Yoshiaki Fukazawa, Yurie Fujimatsu, and Jun
Kanai. 2020. Binary Similarity Analysis for Vulnerability Detection. In 2020
IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC).
1121–1122. https://doi.org/10.1109/COMPSAC48688.2020.0-110

[18] uutils. 2024. coreutils. Retrieved December 2, 2024 from https://github.com/
uutils/coreutils.

[19] Hao Wang, Zeyu Gao, Chao Zhang, Mingyang Sun, Yuchen Zhou, Han Qiu,
and Xi Xiao. 2024. CEBin: A Cost-Effective Framework for Large-Scale Binary
Code Similarity Detection. In Proceedings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis (Vienna, Austria) (ISSTA 2024).
Association for Computing Machinery, New York, NY, USA, 149–161. https:
//doi.org/10.1145/3650212.3652117

[20] Shouguo Yang, Zhengzi Xu, Yang Xiao, Zhe Lang, Wei Tang, Yang Liu, Zhiqiang
Shi, Hong Li, and Limin Sun. 2023. Towards Practical Binary Code Similarity
Detection: Vulnerability Verification via Patch Semantic Analysis. ACM Trans.
Softw. Eng. Methodol. 32, 6, Article 158 (Sept. 2023), 29 pages. https://doi.org/10.
1145/3604608

Received 13 December 2025

9

https://github.com/NationalSecurityAgency/ghidra/blob/master/GhidraDocs/GhidraClass/BSim/README.md
https://github.com/NationalSecurityAgency/ghidra/blob/master/GhidraDocs/GhidraClass/BSim/README.md
https://doi.org/10.1109/SP.2019.00003
https://doi.org/10.17877/DE290R-2007
https://doi.org/10.1109/SERE.2014.21
https://doi.org/10.1145/3238147.3240480
https://research.checkpoint.com/2023/rust-binary-analysis-feature-by-feature/
https://research.checkpoint.com/2023/rust-binary-analysis-feature-by-feature/
https://doi.org/10.1145/1653662.1653736
https://doi.org/10.1109/tse.2022.3187689
https://doi.org/10.1145/3640537.3641574
https://doi.org/10.1145/3640537.3641574
https://doi.org/10.1109/TSE.2017.2655046
https://doi.org/10.1109/TSE.2017.2655046
https://www.usenix.org/conference/usenixsecurity22/presentation/marcelli
https://doi.org/10.14722/bar.2023.23003
https://doi.org/10.1109/COMPSAC48688.2020.0-110
https://github.com/uutils/coreutils
https://github.com/uutils/coreutils
https://doi.org/10.1145/3650212.3652117
https://doi.org/10.1145/3650212.3652117
https://doi.org/10.1145/3604608
https://doi.org/10.1145/3604608

	Abstract
	1 Introduction
	2 Background: BSim Overview
	2.1 Feature Representation
	2.2 Comparison Metrics
	2.3 Database Configuration

	3 Research Questions
	4 Evaluation
	4.1 Datasets and Setup
	4.2 Results

	5 Discussion and Future Work
	5.1 Feature Weight Tuning
	5.2 Improving Analyses

	6 Conclusion
	References

