WiP: Steerability of Autonomous Cyber-Defense Agents by
Meta-Attackers

Luis Burbano
Iburbano@ucsc.edu
University of California Santa Cruz
Santa Cruz, California, USA

Abstract

Al agents are increasingly automating several traditional manual
tasks. One area where Al agents show promise is computer inci-
dent response, as this is a significantly slow and sometimes tedious
process managed by operators who are overwhelmed with alarms.
However, before deploying these Al systems, we need to make sure
that an attacker cannot exploit them. This paper formally analyzes
an attacker who has partially compromised an autonomous cyber
defense agent. Our goal is to understand how such an attacker can
steer the defenses and manipulate the system to achieve its ob-
jectives. Our results can help defenders identify the most critical
components of their defenses and harden resources that (if com-
promised) may give an attacker a large advantage.

ACM Reference Format:

Luis Burbano, Hampei Sasahara, and Alvaro Cardenas. 2025. WiP: Steerabil-
ity of Autonomous Cyber-Defense Agents by Meta-Attackers. In Proceed-
ings of Hot Topics in the Science of Security Symposium (HotSoS) (HotSOS °25).
ACM, New York, NY, USA, 9 pages. https://doi.org/XXXXXXX XXXXXXX

1 Introduction

As computer networks continue to advance technologically, they
provide new functionalities that increase their attack surface and
allow sophisticated threats to move across the network. Detect-
ing and removing these attackers from partially compromised net-
works before they reach their targets is a critical aspect of cyber
resilience. The state of the art security practices to respond to at-
tacks involve a delay where human analysts need to review the in-
dicators of compromise in the network and then follow incident re-
sponse playbooks. Unfortunately, an increasing number of devices
on these networks and a large number of false alarms prevent hu-
man analysts from handling all alerts. Furthermore, human-based
recovery is often a lengthy process, and current incident response
practices lag behind the attacker’s ability to find new network vul-
nerabilities and keep their presence in the network, allowing the
attacker to remain in the network.

To address these limitations, researchers are developing and test-
ing new Al agents to respond to attacks autonomously [15]. These
new Autonomous Cyber Defense (ACD) agents provide real-time

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

HotSOS °25, April 1-3, 2025,

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-X/YY/MM

https://doi.org/XXXXXXX.XXXXXXX

Hampei Sasahara
sasahara@sc.eng.isct.ac.jp
Institute of Science Tokyo

Tokyo, Japan

Alvaro Cardenas
alacarde@ucsc.edu
University of California Santa Cruz
Santa Cruz, California

responses to attacks [11, 12]. ACD agents can automatically block
or quarantine malicious traffic, isolate infected endpoints, reset
user or device credentials, and reboot or reimage devices in the
core network. The goal is that this proactive recovery will (1) pre-
vent an adversary from retaining a foothold in the network and (2)
minimize the time between detection and removal of the attacker
from the network.

These agents, however, will be deployed on a network with ad-
versaries, and parts of the infrastructure on which the agents rely
may be compromised. An attacker can potentially (1) alter the in-
formation that the ACD reads to make decisions (we call these
sources of information “sensors”), or (2) alter the actions the ACD
takes (we call tampering with the actions of the ACD “actuation”
attacks). For example, an attacker may compromise a machine and
send fake logs to the ACD, implying that it is being targeted by an-
other device, and after receiving this information, the ACD agent
might decide to block or quarantine the framed device.

This paper focuses on the risks and consequences of test-time
attacks on ACDs. We create a formal model of the problem and
evaluate how a partially compromised ACD can be manipulated by
attackers at test time. Our model and results can help the defend-
ers identify the most critical components of the ACD agents; for
example, if the ACD is more steerable when the attacker compro-
mises “sensor 1” than “sensor 2”, then the defender should allocate
more resources to harden “sensor 1

Our contributions include:

o We define a new threat model that we call meta-attacker and
formulate the steerability problem in an ACD infrastructure.

e We propose two new algorithms to find the impact of differ-
ent types of attacks on the ACD infrastructure.

e We design an experiment based on the CAGE Challenge 2
[1], a popular competition for testing ACD agents. Our ex-
periments show how our analysis can find new insights into
this problem, such as the fact that the optimality of meta-
attacks depends on the time deadline the attacker has to
reach its target in the network.

The remainder of the paper is organized as follows. Section 2
gives a brief introduction to ACD. Section 3 formulates the prob-
lem of ACD with a meta-attacker and introduces the mathemati-
cal framework. Section 4 presents tools to analyze the steerability
problem from the attacker’s point of view. Section 5 presents a
solution to the steerability of a network with a meta-attacker. Sec-
tions 6 and 7 show a study case and the results. Section 8 concludes
the paper.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

HotSOS 25, April 1-3, 2025,

2 Background

ACD agents have primarily been designed by the use of Reinforce-
ment Learning (RL). Ridley et al. [12] implemented one of the first
efforts by using Q-learning to obtain agents that respond to threats.
Since then, several efforts have addressed this problem using deep
RL (DRL) in hopes that deep neural networks can learn a better
policy.

DRL approaches to train ACD agents include deep Q-learning
[2] and Proximal Policy Optimization (PPO) [7]. A key aspect of
the performance of these agents is the design of the reward func-
tion [4]. To avoid overfitting the RL policy to a given attacker, cur-
riculum learning [5] has been proposed as a way to train RL ACD
agents that generalize to different settings.

Most of the previous work focuses on designing new ACD agents
without discussing attacks on this autonomous defense. This is
important because ACD agents operate in an adversarial environ-
ment, where advanced attackers can not only target the network
but also the ACD agents [?]. Automated responses might be a
double-edged sword in that they can be very good at protecting
a network, but at the same time, they might be abused by attack-
ers.

An attacker can send false information to the ACD agent in the
hope that the ACD agent takes an action that the attacker wants.
Similarly, an attacker can block or change the intended actions
of the ACD agent before reaching their target. We call an attack
that compromises the integrity of the ACD infrastructure a meta-
attack because the adversary exploits an agent that defends the
network from “classical” attacks. Meta-attacks are a new risk for
ACD agents, and therefore, we need to develop new tools to un-
derstand the consequences of these attacks and allocate defense
resources. In this paper, we make the first attempt to achieve this
goal.

3 Problem formulation

Our goal is to propose a formal framework to analyze meta-attacks
against ACDs. A common approach to formalize ACD agents us-
ing DRL is using probabilistic models, such as Markov Decision
Process (MDP) [2, 12, 17] or partially observable MDP (POMDP)
[9, 12]. With these formalisms, we propose a framework to ana-
lyze the impact of a partially compromised ACD infrastructure.

3.1 Mathematical framework

We consider a network with ny € N hosts, an attacker, and an ACD
as in Fig. 1. We model the interaction between the attacker and the
defender as two agents that modify a system by their actions. As
a consequence of the agent’s action, the network changes from an
initial state (e.g., no host is compromised) to a new state (e.g., one
host is compromised).

The attacker and the defender share the same network, whose
dynamics can be modeled as a POMDP:

M=(S8T,AD, A@D 0D 0@ o 0@ ap L), (1)

Each element of the POMDP is:

e State set S: The finite state set models the current state of
the network and contains information on each host.

Luis Burbano, Hampei Sasahara, and Alvaro Cardenas

e Action sets: The finite action sets define the possible ac-
tions that the defender A(9), and attacker A% can take.

e Transition function: The transition function T : S X S x
A@ x A [0, 1] models the probabilistic behavior of
a network. Given that the network is in a state s € S, and
that the attacker and defender take actions a(®) ¢ ﬂ(“),
a@ ¢ A the function T(s’|s, al@), a(d)) describes the
probability that the network reaches a new state s’.

o Observation sets: the observation sets model the informa-
tion that the attacker O(@) and the defender O(9) obtain
from the network after their actions.

e Observation functions: They are functions o .00 x
SxA@DxA@D 5 [0,1],fori € {d, a} that model the prob-
ability that the defender and the attacker obtain the obser-
vation o(i), given the state s € S, and actions al®) e A,

o Set of atomic propositions: AP is a finite set of atomic
propositions, which are labels that provide information about
the network at a given state.

e Labeling function: this function L : S — 24P determines
the atomic propositions that are true at a state s.

Modeling attacker’s objective: The attacker wants to compro-
mise a subset of hosts. As the state models which hosts are under
control, the attacker’s objective is to steer the POMDP to any
state s € B C S, where B is the target set that contains all possi-
ble target states (e.g., the crown jewel of the network, such as the
designs of the next fighter plane).

Modeling the agents behavior: The defender and the attacker
use simultaneously a policy 7)), for i € {a,d}. The policy as-
signs the probability of using a) e A0 given the observation
0 ¢ 0 The policies may depend on previous states and previ-
ous actions by the attacker and the defender [3].

Networks as a POMDP: The POMDP state s € S encodes infor-
mation about the network, such as the hosts that the attacker has
compromised. At each time instant, the attacker and the defender
can modify the POMDP state using an action from the set of ac-
tions A(? and A, respectively. The POMDP transitions from
an initial state s € S to a new state s’ € S in a probabilistic way
(given by the transition function T). Simultaneously, each agent
receives information regarding the state due to their actions, with
the functions 0@ and 09 _ In the next step, the attacker and the
defender use the observation and their policies to take a new action
and repeat the process.

3.2 Baseline scenario

We first consider the baseline scenario illustrated in Fig. 1. This
scenario has a vanilla attacker that spawns somewhere in the
network—for example, due to a spear-phishing attack. This attacker
moves laterally to a different host in the network, where it at-
tempts to obtain administrator privileges. Meanwhile, a defender
(an ACD agent) wants to remove any attacker from the network
while keeping services available.

Remark: While the vanilla attacker may be aware of the ACD
agent and change their strategy to evade the ACD agent, the vanilla
attacker cannot affect the integrity of the ACD agent. This is the
classical setting of most of the literature on Al-based ACD agents [2,
4,8,13-16].

WiP: Steerability of Autonomous Cyber-Defense Agents by Meta-Attackers

l 2@

2@
|Attacker':| Network| ACD
0(‘1) | O(d)

Figure 1: ACD protecting a network against a vanilla at-
tacker.

Our first step is to study the capacity of vanilla attackers to com-
promise the network (how far in the network they can go, given
that the network has a defensive agent) and the time the attacker
requires. We can model the vanilla scenario in the POMDP frame-
work as finding the likelihood that the POMDP state eventually
reaches a state in the target set B.

PROBLEM 1 (VANILLA SCENARIO — MATHEMATICAL FORMULATION).

Consider a network with an ACD and a vanilla attacker modeled with
POMDP Eq. (1) and a target set B C S. We want to 1) determine if
the vanilla attacker can steer the POMDP to a state in the target set
B from an initial state sy € S, and 2) the time the attacker needs to
achieve this objective.

3.3 Meta Attacker scenario

Next, we turn our attention to the case where the attacker com-
promises the integrity of ACD agents. In particular, we define two
attacks: sensor attacks (giving wrong information to the ACD
agent) and actuator attacks (compromising the defensive ACD
action). This terminology is aligned with previous work in ACD
[18]; where sensors refer to devices that obtain information about
the state of the network and send it to ACD agents, and actuators
are the devices that execute the ACD defensive action.

The actuator and sensor meta-attacks can be seen in Fig. 2. The
actuator attack compromises the integrity of some actions a@ by
sending to the network a(™® % (@) The sensor attack compro-
mises some observations so that the ACD sees o(™®)
ferent from the ground truth o),

, a vector dif-

ol ol

Figure 2: ACD protecting a network against a vanilla at-
tacker and a meta-attacker.

The goal of the meta-attacker is to help the vanilla attacker get
to its target. In practice, both vanilla and meta-attackers will be
launched by the same adversary, but differentiating them allows
us to model the problem in a clearer format.

Remark: While the vanilla attacker plays the game within the
confines of the POMDP, the meta-attacker can change the struc-
ture of the POMDP: it can add or remove transitions between states.

PROBLEM 2 (META-ATTACKER SCENARIO — MATHEMATICAL FOR-
MULATION). Consider the scenario from Problem 1. Given that the

HotSOS 25, April 1-3, 2025,

POMDP begins at a state s) € S, we want to find the i) action al@)
or i) observation 0'9) the meta-attacker should compromise to max-
imize the probability of steering the POMDP to a state in the target
set B.

In both cases, the meta-attacker needs to be strategic. First, com-
promising several actions may create several alerts in the network,
making them more detectable. Second, compromising several re-
sources can be complicated. Therefore, we need a methodology to
identify the optimal strategy the meta-attacker should follow to
maximize the probability of steering the state to the target set.

We now need to look at the theoretical background that can help
us solve these problems. In the next Section, we present algorithms
to study the reachability problem in MDPs. Later, we will show
how to apply those techniques to our POMDP model in Eq. (1).

4 Preliminaries
4.1 MDP as a transition system

Let us assume an MDP as a tuple,
M =(S, AT, AP, L))

where T : SXSXA — [0,1],and S, A, AP, L are defined similar to
Eq. (1). One approach for solving the reachability problem in MDPs
is using transition systems, as it allows us to use graph theory to
analyze the MDP.

Directed graphs: We associate a directed graph with the MDP in
Eq. (2); we refer to the graph as the underlying MDP graph. An
MDP has an underlying graph, given by the tuple G = (V, &).
Each node in the graph represents a state in the MDP, meaning that
V =8.8 €V xYV is the set of edges that models the transition
from state s € S to s’ € S given the actions a € A; each edge is
augmented with the probability T(s’|s, a).

4.2 Attacker objective formal definition

We introduce a formal language to formulate the reachability prob-
lem mathematically and specify the attacker’s objective. Linear
temporal logic (LTL) extends propositional logic by adding time
operators. We define an LTL formula as,

Yue=Tlal -~y Y1 AYe Y1 U

where T, -, A are true, negation and disjunction from proposi-
tional logic. ¢/, /1 and ¢; are LTL formulas, and a € AP is an atomic
proposition. The operator ¥, U 1, states that i/ is true at least until
/2 becomes true. We define the operator Fiy = T U ¢, which states
that ¢ becomes true eventually. Finally, we use the constrained
eventually operator F<™y to indicate that ¢ becomes true in the
next n time steps.

Usually, we define the satisfaction operator |= of LTL formulas
using Boolean semantics [6]. In this paper, we use the satisfaction
operator [= to express the state properties of the MDP graph. We
can write the condition that the state s eventually arrives at some
state in B as s |= FB.

HotSOS 25, April 1-3, 2025,

4.3 Reachability in Markov Decision Process
(MDP)

With the formal grammar, we can now proceed to formulate the
reachability problem in MDP mathematically. We compute the max-
imum probability the MDP arrives at a state in B,

Privt*(s | FB) = sgp Pr’y (s £ FB),

where the supremum searches over all policies 7(@) Let us define
the vector (x5)secs, With x5 = Pr/’(‘/t“x(s = FB). We want to com-
pute the values of x5 for all s € S.

The solution to this problem is presented in [3, Theorem 10.105].
It is an algorithm to obtain the probability of steering the MDP to
a state in the target set after infinite time. However, we also study
the constrained time steerability problem.

We use an iterative algorithm, value iteration, for finding the
maximum probability the attacker can steer the MDP to a target
state in B after n steps. We denote the probability as,

" = Prax (s | F<"B). 5)

Let us define the set Pre*(s) as the states s’ € S that can even-
tually reach s (we omit the formal definition for space constraints).
That is, there is a path from s’ to s in the underlying MDP graph.
We also define Pre*(B) = UscgPre*(s). -

n

Value iteration [3]: For the states s € Pre*(B)\B, xs = limp—c0 x5 ~,

where,
xs(o) =0and xs(nH) = max { Z T(s|s’, a)xs(,n) ae ﬂ}
s’eS
and, xs(") =1ifs € Band xs(n) =0ifs ¢ Pre*(B).

With this algorithm, we can study the probability the attacker
steers the MDP from an initial state to another state in the target
set after a constrained amount of time.

5 New Algorithms to Quantify ACD
Steerability

The algorithm we presented to analyze the reachability is valid
for MDPs. However, we model the network as POMDP with two
agents, where those algorithms do not apply directly. In this Sec-
tion, we show how we can use the reachability algorithms to ana-
lyze networks. Then, we encode the reachability with a meta-attacker
as optimization problems and solve them.

5.1 Reachability in the baseline network

We consider an ACD agent that already has a fixed policy 7@,
We then model the network as a POMDP with only one agent (the
attacker), who has the action set A = Al

We assume that the defender can observe the full state for nota-
tion and presentation simplicity. However, whether the defender
can fully observe the state or not does not change our analysis;
therefore, the transition probability becomes,

T (s'|s,a(“)) = Z T (s'|s,a(a),d) (@ (d|s) (4)
de Ad)

for any s,s" € S, and al@ ¢ q@, Consequently, we can use
the theory from MDPs that we presented in Section 4. This means

Luis Burbano, Hampei Sasahara, and Alvaro Cardenas

that we have algorithms to study the reachability of networks. We
can get the probability that the attacker compromises a host after
infinite and constrained time, solving Problem 1.

Although we have solved the reachability problem in the vanilla
case, we still need tools to study reachability in a network with a
meta-attacker.

5.2 Reachability with a meta-attacker

We now formally define the sensor and actuator meta-attackers
and the optimization problem they want to solve.

Actuator meta-attacker: Before defining the actuator meta-attacker,

let us first introduce some notation. This meta-attacker changes
from one defender action a(® € A to a new action a(™) ¢
A when the POMDP is in s € S. We model the meta-attacker
by changing the defender’s policy:

0 ifa=a
ands’ =s
—(d .
A) = @@y ifa=amd ()
+7@ (@ @D|s) ands’ =s
7D (a|s") otherwise.

The modification to the defender policy means that the probabil-
ity of choosing the action a'?) when the MDP is in state s, is zero
due to the meta-attacker action. The probability of using the ac-
tion a(™@) at state s becomes equal to the defender’s original pol-
icy probability 7 (als) plus the probability of the action the meta-
attacker compromised n(a@)s).

We remark that the defender still uses the policy 7(9 However,
the MDP in Eq.(1) will receive the action a{4) sampled from the pol-
.. —=(d
icy ”i,a)(d),a(m“f
the actuator meta-attacker behavior, as defining a new MDP and
several of its elements, the modeling we present here is enough for
our analysis.

The modification of the defender’s policy produces a new MDP
with a new transition probability, given by Eq. (4) but with the
modified policy from Eq. (5). Let us denote as

M (ﬁ(d)) ©6)

s,a(d) g(ma)

Although there are several alternatives to model

the MDP that models the network when the meta-attacker com-

promises the action a(?) € A at state s € S, and changes it to
a(ma), making the defender’s policy as Eq. (5).

As in Eq.(3), we denote Pr™meX (so = FS"B) as the

M(fida)(d) a(ma))

maximum probability that the states reach the set B, starting at sp

of the MDP M (E(d)) With these definitions and notation,

s.ald) g(ma)
we can now introduce the optimization problems that the actuator
meta-attacker solves.

DEFINITION 1 (ACTUATOR META-ATTACKER). An actuator meta-
attacker in the MDP M wants to find the action d* € Ad) they
should compromise and change it to the action a\m@) inq given state
s* € S to maximize the probability of steering the MDP to the target
set B in no more than N € N time instants, given that the MDP begins
at a state so. Thus, the meta-attacker wants to find a solution to the

WiP: Steerability of Autonomous Cyber-Defense Agents by Meta-Attackers

HotSOS 25, April 1-3, 2025,

Algorithm 1 Optimal actuator meta-attack

Algorithm 2 Optimal sensor meta-attack

Input: Target set B, initial state so, the time constraint N, and the
action that the meta-attacker applies a(™®) .

Output: The best action d* a meta-attacker should compromise
at a state s* to steer the MDP to the target set B after N time
steps with the greatest probability.

1: d* < None, s* < None, P* «— 0
2. for each state s € S do
3. for each a® € A where 7(9) (a(d) |s) >0 do

—(d . .
4 ”i,a)(d),awa) « The modified policy (Eq. (5)).
s M7,) < Model of the MDP with defender’s
s,a'?) a
. ()
policy ”s,a(d),a(m“) .
(N)) max ’ <N
6: (x, « prmax (s’ E F=VB),
s s’eS M(”;ia)(d)'a(ma))
7: if xs((f\]) > P* then
8: d* <—a(d),s* «— s, P* <—xS(ON)
9: return d*,s*.
following optimization problem:
max Pr’™%¥ (so £ F<"B)
sa@yn — MED,)
st. neN,n<N,s€S (7)

(s,a(d)) eSS x ﬂ(d), a(ma) ¢ .?l(d)

Sensor meta-attacker: We present the optimization problem the
sensor meta-attacker wants to solve. This meta-attacker introduces
a new set of states S to the MDP graph. The sensor meta-
attacker creates a new augmented MDP M, with graph§ = S(ma) y
Sand & C S x S. Let us define the set &%) ¢ & x & that con-
tains all the pairs of edges the meta-attacker can introduce. Let us
denote the MDP

M(e1, €2)
to the augmented MDP where the sensor meta-attacker introduces
to the MDP M, the states S(m“), the edges (e1,e2) € 8(’”‘1), with
probability p1, p2 € [0, 1] modeling the capacity the sensor meta-
attacker of creating the attack.

DEFINITION 2 (SENSOR META-ATTACKER). A sensor meta-attacker
wants to introduce a state s* € SM%) and two edges (e],e;) €
&(ma) to qugment the MDP M to maximize the probability of steer-
ing the MDP state to the target set B from the initial state s) € S
after no more than N € N time steps. Then, the meta-attacker solves
the optimization problem:

max Pr¢*)(so = F<"B)

(er.e2),n Meyez

st. neN,n<N, (e,e) € 8(’"“), so €S

®

Solution: We present a solution to the problem in Eq. (7) in Algo-
rithm 1. We iterate through each possible state s € S and each pos-
sible action a(?) € A where the probability the defender takes
such an action in state s is not zero, i.e., (49 (a(®|s) > 0 (lines 2,

3). We then generate a model of the MDP M (ﬁ(d)

s.a(d) q(ma))’ where

Input: Target set B, initial state s, and time constraint N. The set
of edge pairs that the sensor meta-attacker can create g(ma)
and the corresponding probability p1, p2.

Output: The best edge e}, €] a sensor meta-attacker can introduce
into the MDP to steer it to the target set B after N time steps
with the greatest probability.

1: ei‘ < None, eg < None, P* « 0.

2. for each state pair of edges in (e, e3) € & do

3: m(el, e2) < Model of the MDP with a new action that in-

duces the transition e; with probability p; and another tran-

sition ey with probability ps.

(N)) max ’ <N

4: X, «— pritd s F="B
(s s’eS M(El,ez)(=)
5. if xs((fv) > P* then

6: el «— e, e —e P*<—x(N)

: 1 1, € 2> S0

7: return ei‘, e’zk.

we change the action a(@) to another action a(m“)&zl(d), at state
s € 8. We use the value iteration algorithm to find the probabil-
ity the attacker steers the MDP to a state in the target set after N
steps, beginning from s, and pick the pair (s*, d*) that maximizes
the probability.

Algorithm 2 follows a similar idea of Algorithm to solve the
problem in Eq. (8). We iterate over all possible edges (e, e2) €
&(ma) the meta-attacker can add. We then generate a model that
includes the new states S{™®) and edges (e1,e2) € &(ma) with
probabilities p1, p2 into the MDP M. We then use the value itera-
tion algorithm to determine the probability the attacker steers the
MDP to a state in B after N steps from state sop. We then get the
edges (e],e3) € &(ma) that maximize the probability the MDP is
in a state s € B at step N.

Algorithm 1 provides the optimal state-action pair the meta-
attacker should compromise to maximize the probability of getting
control of a host in the network after a constrained amount of time.
Algorithm 2 provides the optimal edges the meta-attacker should
compromise to maximize the probability the attacker gets control
of a target host after a constrained time. Thus, we have algorithms
to solve Problem 2.

6 Experimental Setup

In this section, we present the network we use to analyze the steer-
ability of ACDs with meta-attackers. We first present the study
case and then model it using the MDP framework.

6.1 Scenario description

Several ACD studies test their agents in CybORG[1], which is a
network simulator suitable for training RL agents. Our use case
is inspired by CAGE 2 [10], a popular scenario for training ACD
agents with CybORG.

For simplicity, we consider a network with three hosts and two
subnetworks presented in Fig. 3. The attacker spawns in subnet-
work 0 and wants to compromise host 1. The attacker needs to get

HotSOS 25, April 1-3, 2025,

iSubnet 0 ‘Subnet 1
: e

I_,I_>|
B2 5

Figure 3: Study case. The attacker spawns at subnetwork 0.

root capabilities on host 0 before compromising host 1. Similarly
to CAGE 2, we consider the following actions.
Vanilla Attacker actions: The attacker has the next actions:
e scan: scan subnetwork to obtain the hosts’ IP addresses.
e port swipe: the attacker performs a swipe to identify the
vulnerable ports of a host.
e compromise: the attacker attempts to compromise the host
to get user capabilities.
e escalate: the attacker attempts to get root capabilities after
obtaining user capabilities.
o sleep: the defender does nothing in one step.
Defender actions: The defender has three actions per host:

e restart: the defender restarts a host to eliminate the at-

tacker with user capabilities.

o restore: the defender restores a host to a trusted image to

eliminate an attacker with user or root capabilities.

o sleep: the defender does nothing in one step.
Meta-Attacker actions: We augment CAGE 2 with meta-attacker
actions. The meta-attacker has to select only one of the following
options (otherwise, the meta-attacker would be too powerful to
fully disable the ACD):

o Prevent the execution of a restart

e Prevent the execution of a restore.

e Send a false alert to the ACD asking for a restart.!

6.2 Model of the Scenario

We now present the MDP model of the previous network. Fig. 4
presents the underlying graph of the MDP. Next, we explain each
element of the MDP in Eq. (1) to model the network and the actions
of the defender, attacker, and meta-attacker.

Atomic propositions: Each host has four atomic propositions:

e po: the attacker knows the IP of host 0.

o pj: the attacker knows the vulnerable port of host 0.
e py: the attacker has user capabilities of host 0.

e ps: the attacker has root capabilities of host 0.

Similarly, we define propositions p4, ps, ps and p7 for host 1.
States and labeling function: We model the vanilla scenario with
13 states (without meta-attacker). For each state, the labeling func-
tion L determines the information and level of compromise the at-
tacker has on the network. The attacker begins at state so, where
the attacker has no information or compromise on the hosts, ie.,
L(sp) = {}. The states from s; to s4 model the different levels of
knowledge and access about host 0 by the attacker. The states ss5
to sg model the compromise of host 1 after the attacker moves later-
ally from host 1. Thus, the labeling functionis L(s;) = {po, ... pi-1},i €
{1,2,...,8}. So, for example, L(s2) = {po, p1}, which means the at-
tacker knows the IP and the vulnerable ports of host 0.

This case models an attacker with user privileges that requires a restart to obtain
root privileges but cannot force a restart by itself like in a DLL hijack.

Luis Burbano, Hampei Sasahara, and Alvaro Cardenas

Escalate
ho

Netscan Port
subnetwork swipe hg !
0 UII

Exploit hg

'\(I)
Restart hy
Esca lldlL/{\/L\
O hy ploit hy 36 Port swipe h;
Target BTt]
2
B = {58} S
. > N
Exploit % > Exploi? S
ACD | = ACD |

Figure 4: MDP for the two-hosts scenario in Fig. 3. Blue
and red edges represent the transitions the defender and at-
tacker induce due to their actions. Magenta circles and dot-
ted lines model the possibility the sensor meta-attack com-
promises ACD. For simplicity, we omit the atomic proposi-
tions and the self-loops, modeling that the attacker’s action
may not succeed.

Additionally, we introduce four states: sz,s3 and 32 ,s3 These
states are similar to s and s3 but necessary to model the defensive
actions from the ACD agent. For example, if the MDP is in the
state s5, the attacker has root capabilities on host 0 and the IP of
host 1. However, the defender may remove the attacker from host
0 by restoring the host. Then, the MDP jumps to s} to model that
the attacker has no control over host 0 but has information about
host 1. Therefore, sy is not the same as sg; in this state, we have
L(s}) = {po,p1,pa} # L(s2). We use sé,s;’,sé’ to model similar
scenarios.

Vanilla defender and attacker actions: The vanilla defender ac-
tion set has 5 actions, and the vanilla attacker has 9 actions. Fig.
4 shows the transitions that each agent action induces in the net-
work. We label each edge with the action that induces the transi-
tion from one state to another. The red arrows are the attacker’s
possible actions, while the blue arrows correspond to the defender’s
actions. We omit the self-loops arrows that represent the probabil-
ity the actions may not succeed.

Sensor meta-attacker actions: The sensor meta-attacker sends
a false alert to the ACD asking for a restart. In the graph repre-
sentation of the MDP, this can be modeled as an extra state and
transition that then helps the defender move to a state with root
privileges.

In our example, we introduce the states s3 ;,, s . Which
represent that the meta-attacker compromises the ACD. Then, the
ACD uses the restart action to give the attacker root capabilities
over host 0. These states satisfy that L(s3 ;) = L(s3), L(sésm) =
L(s3), L(séfm) = L(s3).

Actuator meta-attacker actions: The actuator meta-attacker blocks
the execution of the defender actions. We model this by eliminat-
ing a blue edge in the MDP graph representation.

Transition probability: As we mention in Section 3, this function
defines the probability the MDP (or network) reaches a final state

ands

WiP: Steerability of Autonomous Cyber-Defense Agents by Meta-Attackers

from an initial state, given the actions. We present the transition
probabilities in Appendix A.

Attacker objective: The attacker wants to compromise host 1 with
root capabilities, meaning that the target set is B = {sg}.

7 Numerical Results

In this section, we present the numerical results of applying our
modeling and reachability algorithms to the network we introduced
in Section 6.

The actuator meta-attacker must decide to deny the execution
of an action at a state. For instance, the attacker can compromise
block the restore action for host 1. This would impede the attacker
from getting eliminated from host 1 once the attacker manages
to compromise it. Similarly, the sensor meta-attacker must decide
when to deploy the attack:

(1) when the vanilla attacker does not have information on host
1 (state s3,m),

(2) when the vanilla attacker has the IP of host 1 but lost control
of host 0 (state s}),

(3) when the attacker has the IP and vulnerable port of host 1
but lost control of host 0 (state sg' "

Following our discussion in Section 1, we formulate and answer
three research questions.

e RQ1: What is the impact of meta-attackers helping vanilla
attackers?

With this question, we want to understand if the meta-attacker
can help to compromise the target host faster.
The meta-attacker speeds up the compromising process: Fig.
5 shows the effect of the meta-attacker when they use each possible
strategy. When the meta-attacker compromises certain actions or
sensors of the ACD, the probability the attacker compromises the
target host approaches one faster. This means that the attacker can
get control of a host faster if a meta-attacker is in the network.

For instance, consider the actuator meta-attacker in Fig. 5b. The
meta-attacker increases the probability that the attacker compro-
mises the target host when the meta-attacker compromises the
Restore hg action when the attacker is trying to compromise host
1. This means that the attacker can control a host faster when the
meta-attacker compromises the ACD.
The meta-attacker changes the strategy with the time con-
straint: Both meta-attackers change their strategy depending on
the time constraint. For instance, the actuator meta-attacker prefers
to compromise the restart hj action when the time constraint
is less than 650 (see Fig. 5b). In the short term, the meta-attacker
prefers to compromise the action with the highest probability of
eliminating the adversary (see Appendix A). The meta-attacker takes
this high risk: if they manage to compromise host 1 with user ca-
pabilities, then getting root capabilities is easier due to the meta-
attacker. However, in the long term, the actuator meta-attacker
prefers to compromise the restore hg action when the vanilla at-
tacker is trying to compromise host 1 (state sg). In this way, the
vanilla attacker can try to compromise host 1 several times with-
out losing the foothold of host 0 (thanks to the meta-attacker’s help
in blocking the restore action).

HotSOS 25, April 1-3, 2025,

E — x1073 —— Baseline S'3.m
88315 === Ssm - S'm e
R -
g @ 1.0 P
- é ——————————————— U (53,m)
8 e -
§g0s5 L -
a S -
e |- L)
= 0 2000 4000 6000 8000 10000
Time step

(a) Sensor meta-attacker
E.—q x1073 —— Baseline --- ss,5) s4,sy
ER] 53,52 -=- s4,5) -== 57,56 N
8oy e ss . " 5
4‘5; 4,52 Se, 54 | ’\?@/,
Sg. s
Q9 peem= T
°s ==
SE (Baseline)
X80 : ‘ ‘ ‘
= 0 200 400 800 1000 1200

Time step

(b) Actuator meta-attacker

Figure 5: Probability the attacker compromises the target
host when there is a meta-attacker.

Answer RQ1: The meta-attacker can help the attacker compro-
mise a target host in the network, but the optimal meta-attack
will depend on the deadline (time horizon) the attacker has.

e RQ2: Can the meta-attacker follow a naive strategy to max-
imize the probability of compromising the target host, or do
they need to use a more intelligent strategy?

In the previous question, we wanted to understand if the meta-

attacker can help the attacker compromise the target host. How-
ever, some strategies may help to compromise the target host faster
than others. Thus, we want to study if the attacker needs to be
strategic or if they can follow a naive strategy.
Actuator meta-attacker: A naive actuator meta-attacker might
prioritize blocking the restart host 1 action, as blocking it gives
the attacker the highest probability of remaining in host 1 (see Ap-
pendix A). While this strategy may be useful in the short term, Fig.
5b shows that this strategy does not lead to the maximum probabil-
ity that the attacker compromises the target host in the long term.
Instead, as we explained before, the optimal meta-attacker prefers
to prioritize blocking the restore hg action when the vanilla at-
tacker is trying to compromise host 1 (state s¢).

To further understand if the meta-attacker can follow a naive
strategy, we simulate a slightly different actuator meta-attacker.
This new meta-attacker can deny the execution of only one action
whenever the ACD uses it. The meta-attacker now needs to decide
to compromise an action among Restore hg, Restart hg, and
Restart hj.Fig. 6a shows the optimal strategy this meta-attacker
should compromise when the time constraint is N = 2000. For
these simulations, we change the probability that the defensive ac-
tions are effective at each state. For instance, if the restart h; ac-
tion has probability 1, the defender always eliminates an attacker
with user capabilities from host 1.

A naive meta-attacker could select the action with the highest
probability of eliminating the attacker from a host. Fig. 6b presents

HotSOS 25, April 1-3, 2025,

Restart hg Restore hg None
o Restart h; e Multiple

oy 210159
oy 210159

025 ™
0.00 g8

()

Figure 6: a) Action the optimal actuator meta-attacker target
to maximize the probability of compromising host 1. b) The
optimal attack that does not follow the intuition of targeting
the action with the highest probability of eliminating the
attacker.

cases where an optimal meta-attacker should not follow the naive
strategy. In particular, when the attacker follows the non-naive
strategy, the optimal meta-attacker prioritizes two scenarios: com-

promiseRestart hgorRestore hgevenifthese actions have smaller

success probabilities than other actions. Despite their smaller prob-
abilities, these actions become important as the defender may use
them in several stages of the game.
Sensor meta-attacker: A naive meta-attacker might choose one
strategy randomly, assuming all actions have equal impact. How-
ever, Fig. 5a shows that the sensor meta-attacker should send false
alerts to the ACD only when the attacker is already in host 0 and
is trying to take control of host 1 (state s7’,) but not in any other
state (e.g., at the beginning of the game). ’

Answer RQ2: Both meta-attackers need to be strategic to maxi-
mize the probability of compromising the target host. In several
scenarios, a naive strategy does not lead to the highest proba-
bility of compromising the target host. In fact, certain strategies
have almost no effect on the network.

o RQ3. Are there cases where the vanilla attacker requires meta-
attacks in order to succeed (reach the target set)?

In the simulations from Fig. 5, the attacker can eventually com-
promise the target host even without a meta-attacker. We now
study scenarios where the vanilla attacker cannot compromise the
target host.

To study this scenario, we consider that the Restart h; action
can always eliminate the attacker with user capabilities from host
1. Mathematically, this means the defender always produces a tran-
sition from state s7 to s¢. In this scenario, the vanilla attacker would
not be able to compromise the target host, as the defender would
always eliminate the attacker from host 1 before they can escalate
to get root capabilities. However, the actuator meta-attacker could
disable the Restart hj action allowing the adversary to get con-
trol of the target host eventually. We then conclude that the meta-
attacker can allow the attacker to compromise the target host in
some scenarios. We omit this time plot for space constraints.

Luis Burbano, Hampei Sasahara, and Alvaro Cardenas

Answer RQ3: There exists scenarios where the meta-attacker be-
comes necessary for the vanilla attacker to succeed. In these sce-
narios, the adversary cannot compromise the target host without
a meta-attacker, but they can do it when there is a meta-attacker.

8 Discussion and Conclusions

Defensive Al agents may help improve the security posture of var-
ious networks, but they will also be the target of attacks. In this
paper, we formulate the steerability of these AI agents by attack-
ers, which can partially compromise the actions or the information
seen by these agents during test time.

Our formulation tries to understand the capabilities that meta-
attackers can gain by compromising certain parts of the ACD in-
frastructure. In some cases, the attacker may want to focus on com-
promising one action vs. another one in order to maximize the
probability of reaching its target. On the defensive side, we can
use this information for resource allocation to protect the network
from meta-attackers.

Additionally, we found that the meta-attackers change their strat-
egy depending on the time constraint. This suggests that defend-
ers protecting ACDs against meta-attackers need to change their
strategy depending on the network. If the ACD defends a network
of drones in a short mission, we need to defend against a meta-
attacker that focuses on compromising certain drones in the short
term. In contrast, the defensive strategy will be different if the ACD
protects an information technology (IT) network that is online for
a longer time.

References

[1] 2021. CybORG: A Gym for the Development of Autonomous Cyber Agents. arXiv.

[2] Andy Applebaum, Camron Dennler, Patrick Dwyer, Marina Moskowitz, Harold
Nguyen, Nicole Nichols, Nicole Park, Paul Rachwalski, Frank Rau, Adrian Web-
ster, et al. 2022. Bridging automated to autonomous cyber defense: Foundational
analysis of tabular q-learning. In Proceedings of the 15th ACM Workshop on Arti-
ficial Intelligence and Security. 149-159.

[3] Christel Baier and J P Katoen. 2008. Principles of model checking. MIT press.

[4] Elizabeth Bates, Vasilios Mavroudis, and Chris Hicks. 2023. Reward Shaping for
Happier Autonomous Cyber Security Agents. In Proceedings of the 16th ACM
Workshop on Artificial Intelligence and Security. 221-232.

[5] Robert G Campbell, Magdalini Eirinaki, and Younghee Park. 2023. A Curriculum
Framework for Autonomous Network Defense using Multi-agent Reinforcement
Learning. In 2023 Silicon Valley Cybersecurity Conference (SVCC). IEEE, 1-8.

[6] Edmund M Clarke, Thomas A Henzinger, Helmut Veith, Roderick Bloem, et al.
2018. Handbook of model checking. Vol. 10. Springer.

[7] Myles Foley, Mia Wang, Chris Hicks, Vasilios Mavroudis, et al. 2023. Inroads into
autonomous network defence using explained reinforcement learning. arXiv
preprint arXiv:2306.09318 (2023).

[8] Kim Hammar and Rolf Stadler. 2022. Intrusion prevention through optimal stop-
ping. IEEE Transactions on Network and Service Management 19, 3 (2022), 2333-
2348.

[9] YiHan, David Hubczenko, Paul Montague, Olivier De Vel, Tamas Abraham, Ben-
jamin IP Rubinstein, Christopher Leckie, Tansu Alpcan, and Sarah Erfani. 2020.
Adversarial reinforcement learning under partial observability in autonomous
computer network defence. In 2020 International Joint Conference on Neural Net-
works (IJCNN). IEEE, 1-8.

[10] Mitchell Kiely, David Bowman, Maxwell Standen, and Christopher Moir.
2023. On Autonomous Agents in a Cyber Defence Environment. preprint
arXiv:2309.07388 (2023).

[11] Alexander Kott, Paul Théron, Martin Drasar, Edlira Dushku, Benoit LeBlanc,
Paul Losiewicz, Alessandro Guarino, Luigi Mancini, Agostino Panico, Mauno
Pihelgas, et al. 2018. Autonomous intelligent cyber-defense agent (AICA) refer-
ence architecture. Release 2.0. arXiv preprint arXiv:1803.10664 (2018).

[12] Ahmad Ridley. 2018. Machine learning for autonomous cyber defense. The Next
Wave 22, 1 (2018), 7-14.

[13] Maria Rigaki, Ondrej Lukas, Carlos A Catania, and Sebastian Garcia. 2023. Out
of the cage: How stochastic parrots win in cyber security environments. arXiv
preprint arXiv:2308.12086 (2023).

Wi

o

: Steerability of Autonomous Cyber-Defense Agents by Meta-Attackers

[14

Maxwell Standen, Martin Lucas, David Bowman, Toby J Richer, Junae Kim, and
Damian Marriott. 2021. Cyborg: A gym for the development of autonomous
cyber agents. arXiv preprint arXiv:2108.09118 (2021).

Sanyam Vyas, John Hannay, Andrew Bolton, and Professor Pete Burnap. 2023.
Automated cyber defence: A review. arXiv preprint arXiv:2303.04926 (2023).

[16] Melody Wolk, Andy Applebaum, Camron Dennler, Patrick Dwyer, Marina
Moskowitz, Harold Nguyen, Nicole Nichols, Nicole Park, Paul Rachwalski, Frank
Rau, et al. 2022. Beyond cage: Investigating generalization of learned au-
tonomous network defense policies. arXiv preprint arXiv:2211.15557 (2022).
Kaiging Zhang, Zhuoran Yang, and Tamer Basar. 2021. Multi-agent reinforce-
ment learning: A selective overview of theories and algorithms. Handbook of
reinforcement learning and control (2021), 321-384.

[18] Zhengwei Zhu, Miaojie Chen, Chenyang Zhu, and Yanping Zhu. 2024. Effective
defense strategies in network security using improved double dueling deep Q-
network. Computers & Security 136 (2024), 103578.

[15

(17

A Defense and Attack transition probabilities
For each a(® € A(@) | the defense actions probabilities are:
T(sy sy, (a'?, restart hy)) = T (s}|s3 (a'?, restart hy))

=T (sy]s3, (@'Y, restart hy)) = 0.5

T(s2]s4, (¥, restore hg)) = T (s} |ss, (a'¥, restore hy))

=T(s} |56, (a'?, restore hy)) =0.3

HotSOS 25, April 1-3, 2025,

T(S6|S7, (a(a), restart host 1)) = 0.9

Next, we present the attacker’s actions transition probabilities.
Let us define the scan subnetwork 0 assngand scan subnetwork
1 as sny, the port scan host 0 as psp, and port scan host 1as
ps1. If the defender sleeps, we consider the probabilities for the
attacker’s actions:

T(s1s0, (sno, sleep)) = T(ss|s4, (sn1, sleep)) = 0.95
T(sz]s1, (pso, sleep)) = T(slss, (ps1, sleep)) = 0.95

Denote the exploit host @ as exp, exploit host 1 as exy,
and escalate host 1 ases; and escalate host 1 as esy. Then,

T (s3]s2, (exo, sleep)) = T(s4|s3, (es1, sleep)) = 0.006
T (s7]s6, (exy, sleep)) = T(sg|s7, (es1, sleep)) = 0.06
Finally, denote the exploit ACD as e_acd, then
T(s3,m|s3, (e_acd, sleep)) = T(sé’m|s§, (e_acd, sleep))
= T(s},Is%, (e_acd, sleep)) = 0.5

	Abstract
	1 Introduction
	2 Background
	3 Problem formulation
	3.1 Mathematical framework
	3.2 Baseline scenario
	3.3 Meta Attacker scenario

	4 Preliminaries
	4.1 MDP as a transition system
	4.2 Attacker objective formal definition
	4.3 Reachability in Markov Decision Process (MDP)

	5 New Algorithms to Quantify ACD Steerability
	5.1 Reachability in the baseline network
	5.2 Reachability with a meta-attacker

	6 Experimental Setup
	6.1 Scenario description
	6.2 Model of the Scenario

	7 Numerical Results
	8 Discussion and Conclusions
	References
	A Defense and Attack transition probabilities

