
WIP: BareSlice: Extending Arm CCA to Support Bare-Metal

Confidential Virtual Machines

Yuxin Hu

Vanderbilt University

yuxin.hu@vanderbilt.edu

Fengwei Zhang

Southern University of Science and

Technology

zhangfw@sustech.edu.cn

Kevin Leach

Vanderbilt University

kevin.leach@vanderbilt.edu

Abstract

The Arm architecture is becoming popular in cloud computing

due to its efficiency, low power consumption, and rich ecosystem,

making it highly suitable for data centers. For example, Nvidia

introduced the Grace CPU, a 144-core Arm architecture proces-

sor, to serve as the foundation for next-generation data centers.

However, as cloud infrastructures grow, the use of complex hyper-

visors to manage tenant environments introduces security concerns.

In 2021, Arm released the Confidential Computing Architecture

(CCA), which provides secure execution environments for confiden-

tial VMs and removes the hypervisor from the Trusted Computing

Base. Despite CCA’s improvements, confidential VMs still face se-

curity and performance challenges due to the shared nature of

physical resources. While bare-metal cloud services offer a promis-

ing solution by allocating directly-accessible physical resources to

each tenant, the substantial costs of dedicating hardware to each

tenant has limited its widespread adoption.

In this paper, we present BareSlice, a novel bare-metal cloud

system that supports multiple untrusted tenants on shared bare-

metal hardware. BareSlice assigns dedicated physical resources

to each tenant, which we call a slice, by leveraging the hardware

features of CCA to ensure robust isolation and create a secure com-

puting environment free from virtualization overhead. We analyze

the security of BareSlice to show its effectiveness against common

attacks. Additionally, our performance assessment illustrates that

BareSlice achieves bare-metal performance levels across several

real-world applications like Apache and Memcached. BareSlice

achieves a combination of enhanced security and high efficiency,

providing a compelling solution for modern confidential cloud com-

puting challenges.

1 Introduction

Virtualization serves as a cornerstone of today’s public cloud ser-

vices [40, 47]. Virtualization allows a single physical server to be

partitioned into multiple isolated Virtual Machines, offering flexible

and scalable environments for cloud customers. However, existing

cloud services face many security challenges [44, 50]. As additional

functionality is incorporated, the hypervisor software for manag-

ing VMs continues to increase in size and complexity, resulting in

a substantial increase to the exposed attack surface for potential

threats [13, 24].

To address these concerns, confidential VM architectures have

emerged. These architectures, including AMD Secure Encrypted

Virtualization [3], Intel Trust Domain eXtensions [28], and Arm

Confidential Computing Architecture (CCA) [15], provide secure ex-

ecution environments for guests that are opaque to untrusted privi-

leged software through new architectural extensions. Arm released

the CCA specification in 2021 [17], which is slated for widespread

deployment in the latest Arm v9 devices. Arm CCA extends Arm

TrustZone [16] by introducing two new Worlds (Realm and Root)

alongside two existing Worlds (Normal and Secure). The Realm

World provides secure computing environments, called Realm VMs,

for use as confidential VMs. These Realm VMs are isolated from

external privileged software, including OS’s and hypervisors. This

design ensures that, even if a specific Realm VM or the host OS

becomes compromised, the other aspects of the system remain in-

tact. The Root World executes the most privileged firmware, the

EL3 Monitor (EL3M), which monitors the switching between and

isolation of different Worlds. Additionally, Arm CCA integrates

support for remote attestation and memory encryption for Realm

VMs, further enhancing the security of the system.

However, security and performance concerns persist with confi-

dential VMs, including those built upon CCA. The sharing of a sin-

gle physical server across different users or customers may present

security risks, as malicious tenants could potentially obtain private

data by analyzing resource usage patterns to break isolation guar-

antees provided by confidential VM techniques [27, 34, 35, 46, 53].

Furthermore, virtualization (including Realm VMs) introduces a

non-negligible performance overhead [26, 37, 38]. To reduce this

overhead, cloud providers like Amazon [47] and Azure [40] typ-

ically use fixed allocations for CPU cores and memory in their

VMs [14, 39], focusing on simpler and more predictable resource

management. They also delegate I/O processing to dedicated hard-

ware for minimizing resource contention and oversubscription. This

strategy leads to many VMs having static resource allocations, with

the hypervisor mainly serving to partition resources for distribu-

tion [57].

Due to these limitations and the overhead associated with virtu-

alization, there is a growing interest in bare-metal cloud services.

These services allow users to rent dedicated physical servers, elimi-

nating concerns associated with resource sharing and virtualization

overhead. However, current bare-metal services lack scalability and

efficiency, and face a high cost for access [22].

In this paper, we present BareSlice, an approach that provides

multiple tenants with isolated confidential environments while

achieving bare-metal performance. BareSlice extends Arm CCA

to enable isolating hardware resources—which we call a slice—on
a shared physical host among multiple tenants without incurring

virtualization overhead. BareSlice uses the Realm Management

Extension (RME), a hardware primitive available in CCA, to isolate

each guest’s slice from other slices as well as untrusted privileged

software. Slices are granted exclusive access to resources, including

physical memory regions, CPU cores, and I/O devices. User code

within the slice is granted higher privilege, which allows execution

of a native hypervisor or guest OS inside a slice. Following CCA’s

1

Yuxin Hu, Fengwei Zhang, and Kevin Leach

design, a Granule Protection Table (GPT) partitions pages of mem-

ory into different Physical Address Spaces (PAS). When attempting

to access memory, the RME employs a Granule Protection Check

(GPC) to validate the security state of the CPU core against the

value stored in the GPT to determine whether the CPU core has the

appropriate privilege level to access the requested page. Illegal mem-

ory accesses (e.g., Normal World software accessing a page marked

in the GPT as Realm memory) are blocked and trigger exceptions.

BareSlice leverages this mechanism to seperate resources for each

slice, enabling strong hardware-enforced isolation between slices

to achieve a bare-metal multi-tenant (cloud) environment.

Implementing BareSlice presented us with several challeges:

(1) slice memory isolation, (2) slice core isolation, and (3) slice

execution control. We modify the EL3M firmware to address these

challenges, as discussed below.

First, while the GPT has been used to isolate memory belonging

to different Worlds, we had to augment this mechanism to support

isolating slices, all of which are part of Realm World. To achieve

this goal, we adapt the multi-GPT mechanism from prior work [56].

In this regime, we configure each slice with a unique GPT. Doing

so allows us to achieve three key desirable isolation properties: (a)

each slice cannot access memory belonging to any other slice, (b)

each slice cannot access memory belonging to any other World (e.g.,

a slice cannot access the host OS), and (c) no other World or Realm

can access memory belonging to each slice (e.g., the host OS cannot

access a slice’s memory).

Second, each slice is assigned physical CPU cores, which means

we must prevent malicious Inter-Processor Interrupts (IPIs) from

reaching invalid cores (e.g., if the host OS sends IPIs to a slice’s

core). To prevent unauthorized IPIs, we disable the forwarding of

IPIs in slice cores by setting appropriate control registers. For inter-

cepting illegal attempts to enable forwarding of IPIs, we configure

control registers as inaccessible in GPTs so that all illegal accesses

to these registers are blocked and reported to the EL3M. To support

intra-slice communication for slice cores, we implement an SMC

request for slice cores to send IPIs. In this SMC handler, the EL3M

temporarily enables IPI forwarding in the target cores to transfer

the IPI during a brief window.

These mechanisms provide a highly-isolated bare-metal envi-

ronment to support multiple tenants on a shared physical host

(e.g., cloud infrastructure). Slices only need to trust the underlying

firmware, removing the hypervisor from the TCB while defending

against a variety of sophisticated attacks from untrusted software.

We implemented a prototype on Arm Fixed Virtual Platform

(FVP) [4], which incorporates CCA support, to demonstrate the

security and performance attributes of our system. Our evalua-

tion encompasses both a security analysis and a performance as-

sessment. In the security analysis, we scrutinize common attack

techniques and describe the defense mechanisms we implemented

in BareSlice. Our analysis illustrates that BareSlice is resilient

against potential attacks originating from highly-privileged soft-

ware, such as the trusted OS or hypervisor.We evaluate the system’s

runtime performance against bare-metal Linux and KVM in real-

world applicatoins like Apache and Memcached. The results show

that BareSlice achieves comparable performance to bare-metal

Linux and substantially outperforms KVM.

We claim the following contributions in this paper:

RMM

R
ea

lm
 V

M

Host OS

App App

EL2

EL3

Monitor
 Hardware

RME

R
ea

lm
 V

M

R
ea

lm
 V

M

TA TA

Trusted OS

Hypervisor SPM

Normal WorldRealm World Secure World

Root World

EL1

EL0

GPT
EL3M

Figure 1: Arm CCA components. The Realm VM is initialized

by the host OS and transitioned to Realm World. Once in

RealmWorld, a RealmVMcannot be accessed by other Realm

VMs, Normal World, or Secure World.

• We present the design of BareSlice, the first system that en-

ables bare-metal confidential virtual machines called slices, al-
lowing high isolation among tenants and without any hardware

modifications on Arm CCA-enabled platforms.

• We develop a functional prototype based on Arm FVP to demon-

strate the security features for slices created with BareSlice

against a variety of sophisticated threats.

• We evaluate the performance of BareSlice on real hardware.

Our evaluation demonstrates bare-metal performance for sev-

eral indicative real-world applications.

2 Background

In this section, we introduce several basic concepts relevant for im-

plementing BareSlice. Specifically, we discuss (1) Arm TrustZone

and (2) the Arm Confidential Computing Architecture.

2.1 Arm TrustZone

Arm TrustZone establishes a dual-World system to implement a

Trusted Execution Environment: the Secure World for sensitive

operations, and the Normal World for routine computing activities.

This robust isolation guarantees that all activities and data in the

Secure World are fully protected from any unauthorized access or

interference originating from the Normal World—even if the entire

OS stack in Normal World becomes compromised, the SecureWorld

activities can continue executing faithfully.

However, TrustZone does not address more recent challenges

associated with confidential VMs, especially as Arm grows in prev-

elance as a target architecture in cloud computing scenarios. We

discuss the CCA specification below, which augments TrustZone

with additional capabilities that we leverage in this paper.

2.2 Arm Confidential Computing Architecture

In 2021, Arm released the CCA specification, designed to support

the creation of confidential VMs, termed Realm VMs. For our pur-
poses, the main contribution of CCA is the introduction of Realms,
which are secure execution environments that exist in parallel with

2

WIP: BareSlice: Extending Arm CCA to Support Bare-Metal Confidential Virtual Machines

Table 1: Arm’s GPC provides hardware-enforced page-level

access control across Security state denoted by Physical Ad-

dress Spaces (PAS)—A ✓ indicates that Security state can ac-

cess memory belonging to that PAS.

State

Normal

PAS

Secure

PAS

Realm

PAS

Root PAS

Normal ✓ × × ×
Secure ✓ ✓ × ×
Realm ✓ × ✓ ×
Root ✓ ✓ ✓ ✓

the conventional Normal World OS. These Realms offer a dedi-

cated environment for storing and executing sensitive data and

tasks while protecting against threats from privileged software

such as a trusted OS or hypervisor. In this subsection, we discuss

key elements of CCA, including Realm and Root Worlds, the Realm

Management Monitor, memory isolation using the EL3M firmware,

and device isolation using the System Memory Management Unit.

2.2.1 CCA Foundations. Arm CCA expands upon the TrustZone

architecture by adding two new security states: the Realm World
for hosting Realm VMs and the Root World to manage security

states and isolation through the EL3M firmware. The Realm World

isolates Realm VMs from Normal and Secure Worlds, with these

VMs being initialized by the host OS and hypervisor. Each Realm

VM transitions into the RealmWorld, achieving a distinct separation

from the untrusted OS and hypervisor. Despite this, CCA continues

to rely on traditional virtualization techniques for VM isolation and

management, incurring notable performance overhead. In response,

our design implements slices, or dedicated physical resources, on

the Arm architecture to eliminate virtualization overhead, allowing

each slice to operate independently in isolation, thus enhancing

both performance and security. We augment the hardware support

for Realm VMs to implement slices on the Arm architecture.

2.2.2 RealmManagement Monitor. A key component within Realm

World is the Realm Management Monitor (RMM), which functions

like a lightweight hypervisor. The RMM oversees the security-

critical operations of the Realm VMs, including the management

of Stage-2 page tables and the interaction with Normal World soft-

ware. For tasks that extend beyond its security scope, such as device

emulation, the RMM delegates these tasks back to the untrusted

hypervisor. Given the central role of the RMM in managing Realm

VMs, a compromised RMM poses a significant risk, potentially af-

fecting all slices. Our design counters this by excluding the RMM

from the TCB and implementing specific security measures to mit-

igate such risks, which are detailed in our Security Analysis in

Section 6.

2.2.3 EL3M firmware and memory isolation. The most privileged

firmware, EL3M, operates within the Root World. The EL3M is

tasked with managing transitions between different security states

and Worlds. Unlike TrustZone, which is partitioned only into Nor-

mal and Secure Worlds, the EL3M executes within Root memory,

which is inaccessible from software in the Secure, Normal, or Realm

Worlds. To conduct a regularmemory access across differentWorlds,

the EL3M uses the GPC to validate a CPU core’s access to a page of

memory against the GPT. The GPT defines access and permission by

security state for each page of memory. For example, pages marked

as Root PAS is exclusively accessible from the Root World security

state, while pages marked as Normal PAS are accessible from any

security state. Table 1 illustrates the security states that can access

each type of memory page during a GPC. Notably, Realm PAS are

only accessible from the Realm or Root security states, which means

that Realm VMs must trust the EL3M. Meanwhile, Secure PAS are

accessible both to the Secure and Root security states, allowing the

EL3M to manage Secure memory interactions.

The GPC plays a critical role by ensuring that each memory

access complies with the permissions outlined in the GPT and

aligns with the current security state of the CPU core making

the access. Unauthorized access attempts, such as Normal World

software reading Realm PAS, are intercepted by the GPC, triggering

Granule Protection Fault (GPF) exceptions. The GPF traps to EL3M,

which allows us to introspect and block such accesses.

2.2.4 Device isolation. The SMMU is integral to Arm’s architecture

for managing the interactions between DMA-capable peripherals

and the main system memory. It allows privileged software to

configure SMMU registers through Memory-Mapped I/O (MMIO),

which include settings for managing page tables and translation

configurations, thereby enforcing strict access controls.

CCA secures DMA transactions by integrating a GPC for relevant

addresses within the SMMU [6]. To safeguard this functionality,

CCA uses specific MMIO registers in the SMMU that are accessible

only from the RootWorld. These registers are crucial for configuring

the SMMU’s GPC functions, including establishing the base for the

SMMU GPT and managing the SMMU GPC settings.

3 Overview

In this section, we outline the objectives and architecture of

BareSlice, followed by a threat model.

3.1 Goals and Security Properties

BareSlice aims to extendArmCCA to support bare-metal confiden-

tial virtual machines, enabling the partitioning of a single physical

machine into multiple independent execution environments, which

we call slices. Through BareSlice, each slice is assigned direct and

isolated access to hardware resources, including CPU cores, mem-

ory, and I/O devices. Unlike traditional virtualization, BareSlice

provides bare-metal performance levels and provides slices with

elevated privileges (up to EL2). This setup allows tenants to run

either a full OS stack or a native hypervisor within their own slice,

while relying solely on the trustworthiness of the underlying EL3M

firmware and hardware, and safeguarding against potential vulner-

abilities in privileged software like hypervisors or a trusted OS. To

realize these objectives, BareSlice enforces several key security

properties, inspired by previous work [57]:

• Property 1: Ensuring that once a slice is established, its al-

located resources remain fixed and exclusive so that they are

inaccessible by other slices.

• Property 2: Guaranteeing that the resources designated for

a slice are inaccessible by external software, and that a slice

cannot access resources beyond its allocated boundaries.

3

Yuxin Hu, Fengwei Zhang, and Kevin Leach

Slice Isolation

Host OS

Hypervisor

Normal World

EL3M

App

Root World

Realm World

Trusted Untrusted

RMM

R
ea

lm

V
M

R
ea

lm

V
M

APP

Guest

OS /

Hyper

visor

Slice

APPAPP

Slice 1

Slice Management

Slice 2

Slice 1

GPT

App

Slice 2

GPT

Host

GPT

SMMU

GPT

Guest

OS /

Hyper

visor

Guest

OS /

Hyper

visor

Figure 2: Architectural overview of BareSlice, illustrating

the initialization of a slice in the Normal World and its sub-

sequent transfer to the Realm World. Note that the Secure

World is omitted for simplicity. Our custom EL3M firmware

facilitates slice management and is the TCB for BareSlice.

• Property 3: Restricting each slice from dispatching IPIs to

cores outside that slice’s control, while allowing intra-slice IPI

communication.

• Property 4: Facilitating the dynamic creation and termination

of slices with minimal disruption while the underlying system

runs.

This paper presents BareSlice to support these security prop-

erties, which allows us to create and manage secure, efficient, and

flexible computing environments, including bare-metal cloud oper-

ations.

3.2 Architecture Overview

Figure 2 illustrates BareSlice’s architecture. Our approach allows

creating and managing slices, which are fixed and exclusive hard-

ware resources consisting of CPU cores, regions of memory, and I/O

devices for each tenant in a cloud computing environment. Initially,

slice resources are allocated and initialized by the host OS, similar

to Realm VMs. Once operational, these slices are transitioned into

the Realm World, effectively segregating the slice from any access

from untrusted software, including the host OS, hypervisor, trusted

OS, Secure Partition Manager (SPM), and Realm Management Mon-

itor (RMM). We implement custom changes to the EL3M to provide

facilities for managing and isolating each slice and its associated

resources. Specifically, we use the EL3M to create a unique GPT

for each slice to delineate the pages of memory that belong to a

slice and ensure that slice cannot access other Realms and slices

(and vice versa). In our CCA-based design, these GPTs are securely

stored in the Root World, which can only be accessed by the EL3M.

This capability allows the EL3M to safeguard memory regions of

each slice from untrusted software and to manage unauthorized

DMA accesses via the SMMU GPT.

Placing slices within the Realm World (rather than Normal or

SecureWorlds) provides several security properties. First, the Realm

World cannot be accessed by the Normal World, forming a robust

barrier against common attacks from the host OS or hypervisor.

Moreover, BareSlice leverages per-slice GPTs to maintain a strict

separation between slices and other RealmWorld entities, including

Realm VMs and the RMM. Second, Arm supports encrypting Realm

memorywith a unique encryption key using theMemory Protection

Engine, providing a high degree of slice confidentiality without

additional engineering effort. Third, all transitions between Worlds

are controlled by the EL3M in Arm, which we can use as a trusted

intermediary that captures and introspects attempts to jump from

Normal or Secure Worlds into any slice.

Our design ensures that each slice is isolated with its own dedi-

cated environment while being conveniently managed by the EL3M.

This mitigates risks associated with shared resources and external

software interactions while providing a high degree of resource

utilization in cloud computing workloads.

3.3 Threat Model

We consider a scenario in which a malicious attacker intends to

compromise confidentiality or integrity by extracting or modifying

sensitive data. We assume the attacker might have gained control

over software or data contained within the Normal, Secure, or

Realm Worlds, including the host OS, hypervisor, trusted OS, SPM,

Realm VMs, or RMM. An attacker might try to infiltrate the system

through compromised software, a malicious slice, or by gaining

control over devices to create malicious DMA requests.

The integrity and security of slices in our system depend on

both the EL3M and the underlying hardware. We assume that the

EL3M code is securely validated and can be loaded through secure

boot technology, and it assumes that the hardware can be trusted.

We assume that the guest code contained within a slice does not

deliberately attempt to expose its own sensitive data. Following

similar research [52, 56], we assume that Denial-of-Service (DoS)

attacks are not in scope for this work. Note that side-channels

attacks are not fully addressed in this work. However, BareSlice

can incorporate existing methodologies [25, 31, 42, 48] that can

mitigate side-channel attacks to bolster its defenses against such

vulnerabilities. Although not the focus of this paper, physical threats

like Rowhammer [41], fault injection [19, 23], cold boot [55], or bus

snooping [32] could potentially reveal slice data. However, these

risks can be curtailed through the use of the Memory Protection

Engine, such as providing each slice with a unique encryption key

to secure its memory. This layered security approach ensures that

BareSlice maintains a robust defense against a variety of attack

vectors, safeguarding the system’s integrity and the confidentiality

of its data.

4 Design

BareSlice introduces the notion of slices using Arm CCA—isolated

execution environments consisting of cores, memory regions, and

I/O devices. These resources are exclusively allocated to each slice

during its lifetime, ensuring they remain inaccessible to other slices

or software applications. Moreover, we implement strict access

control to prevent any slice from interacting with resources beyond

its designated allocation. User code within the slice is allowed to

execute in a high privilege (up to EL2), supporting the execution

of a native hypervisor or guest OS. In the section, we discuss the

design of slice isolation and management in BareSlice.

4

WIP: BareSlice: Extending Arm CCA to Support Bare-Metal Confidential Virtual Machines

Normal RAM

Host GPT

Slice 1 GPT

Slice 2 GPT

Slice 1

PAS
Normal PAS

Slice 1

GPT

Secure

PAS

Realm

PAS

Slice 2

GPT

Root

 PAS

Host

GPT

Secure RAM Realm RAM Root RAM

Slice 1

PAS
Normal PAS

Slice 1

GPT

Secure

PAS

Realm

PAS

Slice 2

GPT

Root

 PAS

Host

GPT

Slice 1

PAS
Normal PAS

Slice 1

GPT

Secure

PAS

Realm

PAS

Slice 2

GPT

Root

 PAS

Host

GPT

Main MemoryLow High

Slice 2

PAS

Slice 2

PAS

Slice 2

PAS

Figure 3: Illustration of Multi-GPT memory isolation in

BareSlice. Each slice receives its ownGPT inwhich allmain

memory is marked as Root PAS except for the region ofmem-

ory allocated for that slice.

4.1 Slice Isolation

We leverage CCA hardware features to grant each slice direct, iso-

lated, bare-metal access to resources, thereby eliminating the need

for virtualization. We discuss our approach to isolating slices in

this subsection.

To achieve memory isolation among slices, we develop custom

EL3M firmware. In CCA, the hardware conducts a GPC during an

attempted memory access. The GPC consults the GPT to determine

whether the requested memory address is accessible by the CPU

core’s current security state. The GPT indicates which security

state is allowed to access each PAS contained therein. In BareSlice,

unauthorized memory accesses lead to a GPF exception that traps

to the EL3M, which can block the memory access from completion.

The GPC is controlled by the hardware’s design, and precludes

software from disabling the GPC or modifying the GPT.

Just like Realm VMs, BareSlice positions its slices within the

Realm World, making them accessible exclusively through either

the Realm World security state or the Root World security state.

This arrangement guarantees that the slices are inherently isolated

from both the Normal and Secure Worlds. To further enhance this

separation, we employ a variety of slice isolation mechanisms,

designed to ensure each slice remains distinct and protected from

any other software within the RealmWorld as well as other slices. In

the following sections, we describe these slice isolation mechanisms

in detail.

4.1.1 Memory. In the Arm architecture, whenever a memory ac-

cess occurs, the GPC uses the GPT to determine whether that access

is allowed. Therefore, the GPT plays a crucial role in separating

Worlds. However, in BareSlice, we must isolate slices in addition

to Worlds. To address this challenge, we adapt the multi-GPT mech-

anism [56], which allows reconfiguring CPU cores with different

GPTs by assigning specific values to each core’s GPTBR_EL3 regis-
ter. We take this a step further by assigning a unique GPT to each

slice. This allows us to achieve high isolation among slices without

undermining any existing properties of the GPC mechanism.

In our system, each slice is allocated dedicated physical cores

and a unique GPT. To maintain memory access controls, the GPT

associated with each slice sets up allocated memory regions as

Realm PAS, while other areas are labeled as Root PAS. As a result,

the memory dedicated to each slice is shielded from access by

other slices, even though they all operate within RealmWorld. This

strategy ensures each slice’s memory regions are isolated against

unauthorized access.

Root PAS is accessible solely by the EL3M, which operates in the

highest privilege RootWorld security state. The EL3M is responsible

for the creation and management of these GPTs, ensuring they

are securely stored within the Root PAS. Additionally, the EL3M

controls the GPTBR_EL3 register, which contains the base address of

the specific GPT allocated to each core. When creating a new slice,

the EL3M allocates memory to contain a new GPT in Root PAS.

Then, when the slice executes on the assigned core, the GPTBR_EL3
register is updated to contain that slice’s GPT. This ensures that only

the cores designated for a particular slice can access its respective

slice memory regions.

Note that the multi-GPT mechanism maintains compatibility

with the CCA design. We retain the host GPT, responsible for check-

ing memory access for software entities beyond slices, including

the host OS, hypervisor, trusted OS, SPM, Realm VMs, and RMM.

As shown in Figure 3, within the host GPT, all memory regions

pertaining to slices are configured as Root PAS, accessible solely by

the EL3M. Although slices operate within the Realm World, slice

cores cannot access the Realm memory regions outside the slice,

which are configured as Root PAS in the slice GPTs. Conversely,

Realm VMs and the RMM cannot access the slice memory regions,

as these memory regions are configured as Root PAS in the host

GPT. The EL3M ensures the correct configuration of the target GPT

for each slice, switching to the corresponding slice GPT during

slice execution. BareSlice enforces strict memory isolation among

slices, preserving each slice’s data integrity and preventing interfer-

ence, while maintaining the security guarantees of the underlying

system architecture.

4.1.2 TLB/Cache. According to the Arm CCA design, GPT entries

can be cached in the Translation Lookaside Buffer (TLB). Since

BareSlice uses GPTs to control memory accessibility for each core,

outdated GPT information cached in the TLB could potentially

compromise the memory isolation between slices—for example,

malicious software might exploit stale TLB entries to access sen-

sitive data from a victim slice. The EL3M must update GPTs to

maintain memory isolation when creating and destroying slices.

To ensure these GPT modifications are effectively applied to target

cores, the EL3M invalidates all cached GPT information in TLBs

across all cores after GPT modifications using TLB maintenance

instructions (e.g., TLBI PAALLOS). This forces CPUs to read the

most up-to-date GPT data, ensuring that any modifications to the

GPT cannot be bypassed with stale content from the TLB.

Additionally, information within the GPT can be shared across

cores through the data cache, posing a potential risk. To address

this, BareSlice disables GPT fetch sharing through the custom

EL3M firmware. Specifically, the EL3M sets the SH bit to be 0b00 in
the GPC control register GPCCR_EL3, rendering GPT non-sharable,

which mitigates this potential side-channel attack. Note that the

GPCCR_EL3 register cannot be modified outside the EL3M, prevent-

ing slices or software from enabling GPT fetch sharing.

4.1.3 Interrupts. To ensure the isolation of cores, BareSlice pro-

hibits cores within a slice sending IPIs to cores outside the slice.

This is achieved by the EL3M writing to the GICR_ICENABLER reg-

isters, thereby disabling the forwarding of all Software Generated

5

Yuxin Hu, Fengwei Zhang, and Kevin Leach

Interrupts (used for inter-processor communication in Arm archi-

tecture) within slices. Additionally we prevent untrusted software

from enabling these IPIs by updating the memory-mapped regions

for the GIC redistributor registers as Root PAS in their GPTs. If a

slice were to attempt enabling or sending an IPI by accessing these

memory-mapped registers, it would raise a GPF and trap to our

EL3M firmware. By preventing IPIs, BareSlice mitigates security

threats that exploit inter-processor communication, which could

lead to resource exhaustion, instability, or data exposure [45].

To enable IPIs for intra-slice communication, BareSlice intro-

duces a custom SMC request with a minor modification to the slice

OS. The EL3M checks that both the sending and receiving cores

are within the same slice before proceeding. Once confirmed, the

EL3M briefly activates the IPI on the target cores by updating the

GICR_ISENABLER register and transferring the IPI. This temporary

activation, however, creates a potential transient vulnerability, as

it could be exploited by attackers to send unauthorized IPIs that

disrupt the execution of the target cores.

To counter this risk, the EL3M first clears all pending IPIs be-

fore enabling them, and then only activates the specific type of IPI

required by the request on the target cores. This approach dramati-

cally reduces the likelihood of unauthorized IPI attacks during slice

operations. Even if an attacker manages to send an IPI of the same

type just after its activation and while the IPI is being transmit-

ted, the potential damage is minimal—memory isolation between

slices remains intact, and the slice OS could identify and ignore any

unauthorized IPIs.

Nonetheless, when multiple cores within a slice request sending

IPIs via an SMC request, there is a temporary activation window

that could be exploited. However, single-core slices are continually

protected against malicious IPIs.

4.1.4 I/O Devices. In BareSlice, devices are allocated to slices

based on core assignment, while shared devices require additional

mechanisms for access control. Shared devices typically interact

with the system through MMIO and Shared Peripheral Interrupts

(SPIs), such as UART. To ensure each slice accesses only its desig-

nated MMIO regions and SPIs, device details are provided to the

EL3M during slice creation. The EL3M records this information to

prevent any conflicts in device access permissions across slices.

EL3M configures slice GPTs to control which MMIO memory

regions are accessible to each slice, ensuring that any unauthorized

MMIO access triggers a GPF. SPI routing is managed by setting

the affinity in the GIC distributor (GICD), with the GICD memory

marked as Root PAS in all GPTs so that only the EL3M can modify

SPI affinities. Any attempt by the host or a slice to access GICD

memory is trapped to the EL3M, which verifies the access request,

including the address, type of operation (read or write), and data

involved. For critical changes, such as updating SPI affinity or active

status, the EL3M validates the request and performs the modifica-

tion only if it pertains to an SPI assigned to the requesting slice;

otherwise, the request is denied, and an error message is returned.

This approach preserves the integrity of SPI attributes, preventing

unauthorized changes by other slices or the host.

In BareSlice, each device is typically assigned to a single slice

or host, similar to the allocation of cores or memory. However,

some devices may be limited in availability and therefore require

sharing between slices through virtualization. To virtualize a de-

vice for multiple slices, its MMIO memory page can be configured

as Root PAS, ensuring that all accesses are trapped to the EL3M.

Within the GPF handler, the EL3M emulates MMIO memory access,

enabling shared device usage across slices. The design can be ex-

tended to support more advanced devices, such as those using DMA.

For DMA-capable devices, our design can incorporate Realm Man-

agement Extensions Device Assignment (RME-DA), which assigns

devices to Realm VMs with controlled memory access via DMA and

includes device attestation for enhanced security. Since RME-DA is

currently unavailable, methods from prior work [49, 52], designed

for Realm VMs, could be integrated to to enable slices to securely

access DMA-capable devices. These methods use SMMU GPT and

page tables to provide the necessary isolation and controlled access.

4.2 Slice Management

This subsection discusses the lifecycle of slices maintained by

BareSlice: allocating and managing resources for each slice, start-

ing a new slice, and terminating an existing slice.

4.2.1 Resource management. Resource management in our system

mirrors the principles applied in Realm VMs. The host OS is tasked

with allocating resources to each slice, subsequently transferring

the slice into the Realm World for isolation from both Normal

and Secure World software. Each slice is allocated fixed resources,

ensuring no sharing between slices or with other software, and is

further isolated using the multi-GPT mechanism.

The host OS allocates unused resources to a slice, and loads a

guest OS binary and a Device Tree (DT) file into the slice’s memory.

This DT file outlines the resources available to the slice, such as core

addresses, memory regions, and device details. Additionally, the

host OS sends SMC requests to the EL3M, providing information

about resources, the OS entry point, and the address of the DT for

the slice.

The EL3M verifies the legitimacy of the requested memory re-

gions by checking the host GPT, ensuring they are classified as

Normal PAS, indicating they can be assigned to the slice and are

not shared with or currently occupied by other slices. Upon passing

this check, the EL3M updates the allocated memory regions both on

the host GPT and the slice GPT. In the host GPT, the allocated mem-

ory regions are updated to Root PAS; in the slice GPT, the allocated

memory regions are updated to Realm PAS. This ensures that the

slice cannot access external resources, nor can external privileged

software access the slice’s memory. If slice memory regions are

accessed by other slices or software, the GPC fails and triggers a

GPF exception, halting the unauthorized access and reporting it to

the EL3M.

4.2.2 Starting a slice. The process of starting a slice begins with a

user submitting a request to the host OS through ioctl interfaces.

Figure 4 illustrates the boot flow for a slice with a single core.

Upon receiving this request, the host OS allocates currently-unused

resources to the slice and proceeds to load the guest OS binary and

the DT file into the designated memory regions for the slice.

Following the allocation and setup, the host OS initiates the core

assigned to the slice. The slice cores then transition to the EL3M,

which is responsible for validating the slice creation request. The

6

WIP: BareSlice: Extending Arm CCA to Support Bare-Metal Confidential Virtual Machines

Slice Isolation

Host OS Core

Slice Initialization

Slice Core

1

2

3

Other Cores

Guest OS Boot

Slice Destruction
5

Listen for Request6

Normal Mode Realm Mode Root Mode

Send Slice Creation

Request

Core Reset

Slice Execution

Core Reset

 Send Slice Termination

Request 4

Figure 4: Lifecycle of a slice. In Step 1, the Host OS allocates

unused CPU cores to be used by the new slice. Then, in Step

2, our EL3M firmware initializes the new slice (e.g., by cre-

ating a new GPT and loading an OS image). In Step 3, the

slice’s assigned cores boot the guest OS. The slice executes in

isolation until a slice termination request is received in Step

4. Then, in Step 5, the EL3M firmware destroys the slice. In

parallel, Step 6 shows that the system can continue to service

requests for slice creation and destruction.

EL3M ensures that the resources allocated do not overlap with

those of other slices and belong to the Normal PAS in the host

GPT. Upon validation, the EL3M initializes metadata specific to the

slice, encompassing core IDs, memory regions, available devices,

the guest OS entry point, the DT address, and the new GPT base

address.

A critical step in the initialization phase involves updating the

GPTBR_EL3 register for each of the slice cores. This directs the cores

to target the newly-created slice’s GPT to establish a secure and

isolated execution environment. This measure guarantees that only

the designated slice and the EL3M can access the slice’s resources.

Next, the slice’s cores must be reset by the EL3M. This process

is informed by the core IDs supplied as part of the slice creation

parameters. Throughout the execution phase, the slice benefits from

bare-metal access to its allocated resources, enabling the guest code

within the slice to operate at a high privilege level (up to EL2).

4.2.3 Terminating a slice. When the tasks within a slice are com-

pleted, or if the host OS needs to reclaim the resources, the slice

may need to be terminated. To manage this, upon receiving such a

request, the EL3M updates the slice’s GPT, changing the memory

regions of the slice to Root PAS. Since the slice GPT is stored in

the Root World—where it can be modified by the EL3M but not by

the slices—this modification is secure and unalterable by the slice.

Following the GPT modification, the EL3M invalidates the cached

GPT information in the TLBs, inducing a GPF in the targeted slice

and halting its execution.

After the slice has been deactivated, the EL3M proceeds with

the destruction phase, erasing all data related to the slice. This

comprehensive cleanup process involves clearing memory regions,

metadata, context, the slice GPT, and all associated cache and TLB

entries, ensuring that the host OS cannot access the content left

by the destroyed slice. Once this phase is complete, the EL3M up-

dates the status of the slice’s memory regions in the host GPT to

Normal PAS, effectively transferring control back to the host OS

and rendering the resources ready for reallocation.

5 Implementation

We developed the prototype using the Arm FVP Base RevC-

2xAEMvA, an official software simulator for CCA testing. Using

the FVP, we validated the security measures of BareSlice as out-

lined in Section 4, including memory isolation, IPI isolation, and

device isolation. We modified the official Arm firmware (Trusted

Firmware-A v2.8 [10]) to implement our changes to the EL3M.

Slice initialization mirrors that of Realm VMs, involving resource

allocation and loading the guest OS binary by the host OS. For both

the host and guest OS, we opted for Linux kernel v5.3.We developed

a kernel module to act as an interface during slice initialization,

designating physically contiguous memory regions to slices.

Each slice is assigned a unique UART, with the GPTs updated to

ensure that only the corresponding slice can access it. Each slice

also uses a ramdisk as its disk for storage. Other devices in limited

quantity on FVP (e.g., one Ethernet device) could be exclusively

accessible to a slice in our prototype. However, for experimental

expediency, we allow these devices to be configured by both the

host OS and slices. While RME-DA support is currently unavailable

in hardware, our prototype implementation can support I/O with

complex DMA devices by allocating each slice a Normal World

region for DMA.

After resource allocation, the host OS loads the Linux binary

and DT file for each slice. The host OS then activates slice-assigned

cores, which request slice creation and isolation via the EL3M. The

EL3M ensures resource ownership verification, ensuring memory is

configured as Normal PAS and cores are not shared. Memory isola-

tion uses multi-GPT, with GPTs in Root World regions inaccessible

to untrusted software. We modified GPT initialization to ensure

efficient page-level isolation, enabling the GPF bit in SCR_EL3 to

trap illegal memory accesses.

As discussed in Section 4.1, the EL3M handles IPIs and SPIs, con-

figuring registers and designating memory-mapped regions as Root

PAS. We partitioned GIC redistributor regions for different slices,

ensuring isolation. The GIC distributor memory is designated as

Root World Memory to ensure proper isolation and prevent unau-

thorized access. We modified the slice Linux kernel to implement

a custom SMC request for IPIs, enabling multi-core functionality

within slices. The slice Linux issues an SMC to the EL3M to acti-

vate the IPI on the target core, which is deactivated once the core

receives it.

7

Yuxin Hu, Fengwei Zhang, and Kevin Leach

6 Security Evaluation

This section evaluates the security architecture of BareSlice, with

a focus on the TCB and the system’s resilience against potential

attacks. We explore the various defense mechanisms embedded

within BareSlice designed to protect against these threats.

6.1 Trusted Computing Base

The TCB of BareSlice comprises the EL3M, which is located within

the Root World. Using the cloc [5] tool, we analyzed the codebase

size pertinent to BareSlice. We build upon the Trusted Firmware-A

v2.8, which consists of approximately 383 KLoC. Our additional

customizations comprise 1.4 KLoC to support the prototype of

BareSlice.

6.2 Security Analysis

BareSlice is designed to secure slice operations from a range of

attack types identified in our threat model, which assumes potential

compromises by attackers via software, devices, malicious slices, or

Realm VMs. Below, we highlight BareSlice’s defensive capabilities

against each attack scenario.

6.2.1 Attack with Normal or Secure World Software. Attackers may

exploit software in the Normal or Secure Worlds to access sensitive

slice data. BareSlice counters this by isolating slices in the Realm

World after initialization (§4.1), shielding them from compromised

software, such as hypervisors or trusted OS. The GPC monitors

physical memory accesses, blocking illegal memory mappings and

MMU disable attempts, reporting violations to the EL3M via GPF

exceptions.

Malicious IPIs sent by compromised privileged software to dis-

rupt slice execution are mitigated by the EL3M, which disables IPI

forwarding during slice operation by configuring GIC redistributor

registers (§4.1.3). Unauthorized access attempts to these registers

are intercepted by the EL3M.

6.2.2 Attack with Realm VMs or RMM. Compromised Realm VMs

or RMM may target slices in the Realm World. To counter this,

BareSlice enforces two-way isolation using multiple GPTs (§4.1.1).

Slice GPTs mark Realm VM and RMM memory as Root PAS, while

host GPTs reciprocally mark slice memory as Root PAS, ensuring

mutual isolation. Unauthorized access attempts are intercepted by

the EL3M and reported via GPF exceptions.

6.2.3 Attack with Malicious Slices. BareSlice mitigates malicious

slice threats by assigning each slice a unique GPT (§4.1.1), desig-

nating its memory as Realm PAS and unauthorized regions as Root

PAS. This ensures exclusive memory access for each slice, with

unauthorized attempts blocked by the GPC and reported to the

EL3M.

6.2.4 Attack with Devices. Attackers may use devices to launch

malicious DMA requests. BareSlice configures the SMMU GPT

to restrict device-accessible memory regions. Unauthorized DMA

requests targeting slice memory are blocked by the SMMUGPC and

reported to the EL3M. Future integration of device attestation mech-

anisms, such as PCIe’s TEE Device Interface Security Protocol [43],

can further enhance security by ensuring only uncompromised

devices are assigned to slices.

Table 2: Applications for performance evaluation of

BareSlice.

Name Description

AES [2] AES data encryption.

OTP [1] HMAC-based One-Time Password generation.

Apache [7] Apache v2.4.57 with ApacheBench v2.3 to measure requests

per second (100 concurrency).

Memcached [8] Memcached v1.6.18 with mcperf v0.1.1 to measure transac-

tions per second (10 connections).

Nginx [9] Nginx v1.22.1 with ApacheBench v2.3 to measure requests

per second (100 concurrency).

FileIO SysBench v1.0.20 FileIO test (4 threads, 1GB, random read-

/write).

6.2.5 Attack with Side-Channels. Attackers could exploit side-

channel attacks via stale GPT data cached in the TLB or shared

cache. BareSlice mitigates this by invalidating cached GPT data in

TLBs after any GPT modification or slice lifecycle change, ensuring

strict isolation. Additionally, dedicated physical cores and static

memory allocations for slices mitigate many cache side-channel

threats.

7 Performance Evaluation

We evaluate BareSlice’s performance by analyzing real-world ap-

plication overheads and GPT overhead. These metrics offer a com-

prehensive view of the system’s efficiency.

7.1 Experimental Setup

Although the FVP Base RevC-2xAEMvA platform supports Arm

CCA features, it lacks the ability to provide cycle-accurate perfor-

mance measurements. To obtain runtime performance results, we

conduct our experiments on the Neoverse N1 System Development

Platform (N1SDP), which includes two dual-core 2.6 GHz Neoverse

N1 CPUs and 6 GB of RAM. Since the N1SDP does not support

CCA-specific features such as the GPT, we follow best practices

from previous studies [49, 56]. We replaced access to GPT-related

registers with access to idle EL3 registers and kept all GPTs in

memory. Note that we use the N1SDP to simulate performance

overhead rather than implementing slice execution. Given that the

N1SDP lacks support for Realm World and CCA hardware features,

we simulate Slice Linux execution within the Normal World by

incorporating artificial overhead for testing purposes, such as IPIs

and GIC register access. Additionally, since BareSlice relies on

memory access traps triggered by the GPC, which is not available

on the N1SDP, we introduce a custom SMC to notify the EL3M of

GIC register access. Each experiment is conducted 10 times and we

report the average. Due to the lack of hardware features specific to

Arm CCA on the N1SDP, the performance metrics presented here

may differ from those on actual CCA-enabled hardware once such

hardware becomes available in the future. The Host Linux and the

Slice Linux are both set up with 2 CPU cores and direct access to a

network device, with 6 GB of RAM allocated to the Host Linux and 1

GB to the Slice Linux. Apart from the differences in RAM allocation

and the artificial overhead introduced for experimental purposes,

the Slice Linux shares the same configuration as the Host Linux.

The Vanilla VM is configured using QEMU with 2 vCPUs, 1 GB of

8

WIP: BareSlice: Extending Arm CCA to Support Bare-Metal Confidential Virtual Machines

AES OTP Apache Memcached Nginx FileIO
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

O
ve

rh
ea

d
(T

im
es

) Host Linux
Slice Linux
Vanilla VM

Figure 5: Performance overhead in real-world applications.

BareSlice achieves bare-metal performance while main-

taining slice isolation.

RAM, and uses virtio-net for network forwarding and virtio-blk for

block device emulation.

7.2 Real-world Application Overheads

We tested BareSlice on six use cases detailed in Table 2, covering

encryption, memory, and I/O-intensive tasks.

Figure 5 shows performance results on Host Linux, Slice Linux,

and Vanilla VM, using Host Linux as the baseline. Generally, use

cases in Slice Linux exhibit identical performance to Host Linux,

attributed to bare-metal access with minimal overhead from IPI

transfers and GIC register handling.

In contrast, Vanilla VM evaluations show varying levels of over-

head. For tasks like OTP and AES, which are computation-intensive

and mostly in user space, the overhead was moderate. However,

Apache, Memcached, Nginx, and FileIO on Vanilla VM showed sig-

nificant degradation, with overheads up to 1.4 times that of Host

Linux. Conversely, network-bound tasks in Slice Linux show mini-

mal overhead, as slices provide bare-metal resource access, allowing

applications to perform similarly to non-virtualized Linux.

Note that Vanilla VM overhead with real CCA hardware may

be lower due to support for direct virtual interrupt injection and

device passthrough, reducing exits and associated overhead. Despite

optimizations, workloads still suffer from virtualization overhead.

A study [51] reported that up to 30% of CPU time was consumed

by virtualization overhead in memory-intensive workloads.

Since no current hardware platform fully supports CCA, we did

not directly measure Realm VM performance. However, based on

its design, we expect higher overhead compared to Vanilla VM due

to RMM involvement. A study [37] shows Realm VM adds up to

18% overhead for I/O-intensive workloads.

8 Discussion

Memory Encryption. In our design, we assume that slices derive

security benefits from memory encryption, leveraging the same

approach as Realm VMs—each slice could be assigned a distinct key

for memory encryption. However, at present, there is no publicly

accessible hardware supporting CCA features (including memory

encryption) and the FVP simulator does not support the Memory

Protection Engine component required for encrypting memory in

the Realm World. Thus, our prototype does not support memory

encryption for slices. We anticipate that enabling the Memory Pro-

tection Engine would enhance the security of slices without posing

conflicts with the design of BareSlice. The introduction of mem-

ory encryption could potentially impact the performance overhead

of slice execution (depending on how the Memory Protection En-

gine is implemented), requiring a reassessment of the performance

overhead.

DMAMemory Protection. Since RME-DA is currently unavail-

able, to support DMA-capable devices, we could configure the DMA

memory of each slice as Normal PAS in the SMMU GPT to enable

DMA access. However, this introduces a potential vulnerability, as

a malicious device could modify the contents of the DMA memory

belonging to other slices. To mitigate this risk, we could use en-

cryption to secure DMA memory. Devices that support encryption

would write encrypted data to memory, and the slice could verify

the data to ensure it originated from the correct device. Additionally,

for each slice’s DMA memory, the Host and other slices’ GPT can

set the DMA memory as Root PAS to protect it from CPU access,

preventing CPU-based attacks from directly tampering with the

DMA memory.

9 Related Work

Arm CCA Based Systems. Shelter [56] creates userspace enclaves

at EL0 using the multi-GPT mechanism but is vulnerable to Iago

attacks [20] due to reliance on an untrusted OS for system calls.

In contrast, BareSlice runs a Linux environment in independent

slices, mitigating such risks. Shelter also incurs a performance over-

head of up to 15%, whereas BareSlice eliminates shared resources

between slices, significantly enhancing performance to near bare-

metal levels.

As CCA hardware is unavailable, efforts like Samsung Islet [12],

virtCCA [54], and Huawei QEMU CCA [11] emulate its features.

Notable advancements include GPU TEEs such as CAGE [52] and

ACAI [49], which use GPC for memory protection, and Devlore [18],

which allows Realm VMs to access integrated devices. These con-

tribute to our secure computing framework.

Secure Hypervisor. Twinvisor [33] uses secure EL2 features to

run secure hypervisors and VMs in the Secure World. DuVisor [21]

and DeHype [30] aim to reduce the hypervisor’s attack surface by

moving most functionality to user mode. HypSec [36] achieves this

by splitting the hypervisor into a corevisor and untrusted hyper-

visor. NoHype [29] proposes eliminating the hypervisor entirely.

In contrast, BareSlice excludes the hypervisor from the TCB, en-

suring slices only trust firmware and hardware, reducing attack

surfaces.

10 Conclusion

In this paper, we present BareSlice, a novel system that extends the

capabilities of Arm CCA by integrating bare-metal support for con-

fidential VMs. Our design leverages the RME hardware to provide

robust isolation for slices with a minimal TCB. Through proto-

type implementation, we have developed and assessed BareSlice,

demonstrating the security of slices against diverse attacks while

achieving bare-metal performance on real-world applications. Our

work can support hypervisor execution and improves the state-of-

the-art in delivering bare-metal performance in isolated computing

environments.

9

Yuxin Hu, Fengwei Zhang, and Kevin Leach

References

[1] DigisparkHOTP. https://github.com/Akasurde/DigisparkHOTP, 2016.

[2] AES algorithm implementation. https://github.com/dhuertas/AES, 2020.

[3] AMD Secure Encrypted Virtualization (SEV). https://developer.amd.com/sev/,

2021.

[4] Arm fixed virtual platforms. https://developer.arm.com/tools-and-software/

simulation-models/fixed-virtual-platforms., 2021.

[5] cloc: Count lines of code. https://github.com/AlDanial/cloc, 2021.

[6] The Realm Management Extension (RME), for SMMUv3. https://developer.arm.

com/documentation/ihi0094/latest/, 2021.

[7] Apache http server. https://www.apache.org/, 2022.

[8] Memcached. https://github.com/memcached/memcached, 2022.

[9] Nginx. https://github.com/nginx/nginx, 2022.

[10] Trusted-Firmware-A. https://git.trustedfirmware.org/TF-A/trusted-firmware-

a.git/, 2022.

[11] Huawei_CCA_QEMU. https://github.com/Huawei/Huawei_CCA_QEMU, 2023.

[12] Samsung Islet. https://github.com/islet-project/islet.git, 2024.

[13] Zunaid Aalam, Vinod Kumar, and Surendra Gour. A review paper on hypervisor

and virtual machine security. In Journal of Physics: Conference Series, volume

1950, page 012027. IOP Publishing, 2021.

[14] Amazon Web Services. The Security Design of the AWS Nitro Sys-

tem. https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-

nitro-system/security-design-of-aws-nitro-system.html, 2024.

[15] ARM. Arm Confidential Compute Architecture. https://www.arm.com/

architecture/security-features/arm-confidential-compute-architecture, 2021.

[16] ARM. Arm TrustZone Technology. https://developer.arm.com/ip-products/

security-ip/trustzone, 2021.

[17] ARM. Deep dive into the Arm Confidential Compute Architecture.

https://static.linaro.org/connect/armcca/presentations/CCATechEvent-

210623-CGT-2.pdf, 2021.

[18] Andrin Bertschi, Supraja Sridhara, Friederike Groschupp, Mark Kuhne, Benedict

Schlüter, Clément Thorens, Nicolas Dutly, Srdjan Capkun, and Shweta Shinde.

Devlore: Extending arm cca to integrated devices a journey beyond memory to

interrupt isolation. arXiv preprint arXiv:2408.05835, 2024.
[19] Robert Buhren, Hans-Niklas Jacob, Thilo Krachenfels, and Jean-Pierre Seifert.

One glitch to rule them all: Fault injection attacks against amd’s secure encrypted

virtualization. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, pages 2875–2889, 2021.

[20] Stephen Checkoway and Hovav Shacham. Iago attacks: Why the system call api

is a bad untrusted rpc interface. 2013.

[21] Jiahao Chen, Dingji Li, Zeyu Mi, Yuxuan Liu, Binyu Zang, Haibing Guan, and

Haibo Chen. Security and performance in the delegated user-level virtualization.

In 17th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 23), pages 209–226, 2023.

[22] Yiquan Chen, Jiexiong Xu, Chengkun Wei, Yijing Wang, Xin Yuan, Yangming

Zhang, Xulin Yu, Yi Chen, Zeke Wang, Shuibing He, et al. Bm-store: A trans-

parent and high-performance local storage architecture for bare-metal clouds

enabling large-scale deployment. In 2023 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pages 1031–1044. IEEE, 2023.

[23] Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean, David Oswald, and

Flavio D. Garcia. Voltpillager: Hardware-based fault injection attacks against

intel sgx enclaves using the svid voltage scaling interface. In 30th USENIX Security
Symposium (USENIX Security), 2021.

[24] Christoffer Dall, Shih-Wei Li, and Jason Nieh. Optimizing the design and imple-

mentation of the linux {ARM} hypervisor. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17), pages 221–233, 2017.

[25] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of microar-

chitectural timing attacks and countermeasures on contemporary hardware.

2018.

[26] Davood Ghatrehsamani, Chavit Denninnart, Josef Bacik, and Mohsen

Amini Salehi. The art of cpu-pinning: Evaluating and improving the perfor-

mance of virtualization and containerization platforms. In Proceedings of the
49th International conference on parallel processing, pages 1–11, 2020.

[27] Felicitas Hetzelt and Robert Buhren. Security analysis of encrypted virtual

machines. ACM SIGPLAN Notices, 52(7):129–142, 2017.
[28] Intel Corporation. Intel trust domain extensions, 2014.

[29] Eric Keller, Jakub Szefer, Jennifer Rexford, and Ruby B Lee. Nohype: virtualized

cloud infrastructure without the virtualization. In Proceedings of the 37th annual
international symposium on Computer architecture, 2010.

[30] Taehoon Kim, Kwangwon Koh, Changdae Kim, Eunji Pak, Yeonjeong Jeong, and

Sang-Hoon Kim. Dehype: Retrofitting hypervisors for a resource-disaggregated

environment. In 2023 IEEE International Conference on Cluster Computing (CLUS-
TER), pages 37–48. IEEE Computer Society, 2023.

[31] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas, and

Joel Emer. Dawg: A defense against cache timing attacks in speculative exe-

cution processors. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2018.

[32] Dayeol Lee, Dongha Jung, Ian T. Fang, Chia che Tsai, and Raluca Ada Popa.

An off-chip attack on hardware enclaves via the memory bus. In 29th USENIX
Security Symposium (USENIX Security), 2020.

[33] Dingji Li, Zeyu Mi, Yubin Xia, Binyu Zang, Haibo Chen, and Haibing Guan.

Twinvisor: Hardware-isolated confidential virtual machines for arm. In Proceed-
ings of the ACM SIGOPS 28th Symposium on Operating Systems Principles (SOSP),
2021.

[34] Mengyuan Li, Luca Wilke, Jan Wichelmann, Thomas Eisenbarth, Radu Teodor-

escu, and Yinqian Zhang. A systematic look at ciphertext side channels on amd

sev-snp. In 2022 IEEE Symposium on Security and Privacy (SP), pages 337–351.
IEEE, 2022.

[35] Mengyuan Li, Yinqian Zhang, Zhiqiang Lin, and Yan Solihin. Exploiting unpro-

tected {I/O} operations in {AMD’s} secure encrypted virtualization. In 28th
USENIX Security Symposium (USENIX Security 19), pages 1257–1272, 2019.

[36] Shih-Wei Li, John S Koh, and Jason Nieh. Protecting cloud virtual machines

from hypervisor and host operating system exploits. In 28th USENIX Security
Symposium (USENIX Security 19), pages 1357–1374, 2019.

[37] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu, Jason Nieh, Yousuf Sait,

and Gareth Stockwell. Design and verification of the arm confidential compute

architecture. In 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2022.

[38] Zheng Li, Maria Kihl, Qinghua Lu, and Jens A Andersson. Performance overhead

comparison between hypervisor and container based virtualization. In 2017 IEEE
31st International Conference on advanced information networking and applications
(AINA), pages 955–962. IEEE, 2017.

[39] Microsoft. Managing Hyper-V hypervisor scheduler types: The core

scheduler. https://docs.microsoft.com/windows-server/virtualization/hyper-

v/manage/manage-hyper-v-scheduler-types#the-core-scheduler, 2023.

[40] Microsoft. Microsoft Azure. https://docs.microsoft.com/en-us/azure/virtual-

machines/acu, 2024.

[41] Onur Mutlu and Jeremie S Kim. Rowhammer: A retrospective. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 39(8):1555–1571,
2019.

[42] Meni Orenbach, Andrew Baumann, and Mark Silberstein. Autarky: Closing

controlled channels with self-paging enclaves. In Proceedings of the Fifteenth
European Conference on Computer Systems (EuroSys), 2020.

[43] PCI-SIG. TEE Device Interface Security Protocol. https://pcisig.com/tee-device-

interface-security-protocol-tdisp, 2022.

[44] Michael Pearce, Sherali Zeadally, and Ray Hunt. Virtualization: Issues, security

threats, and solutions. ACM Computing Surveys (CSUR), 45(2):1–39, 2013.
[45] Hany Ragab, AndreaMambretti, Anil Kurmus, and CristianoGiuffrida. Ghostrace:

Exploiting and mitigating speculative race conditions. In USENIX Security, 2024.
[46] Benedict Schlüter, Supraja Sridhara, Mark Kuhne, Andrin Bertschi, and Shweta

Shinde. Heckler: Breaking confidential vms with malicious interrupts. In USENIX
Security, 2024.

[47] Amazon Web Services. Amazon EC2. https://aws.amazon.com/ec2/, 2024.

[48] Ming-Wei Shih, Sangho Lee, Taesoo Kim, andMarcus Peinado. T-sgx: Eradicating

controlled-channel attacks against enclave programs. In NDSS, 2017.
[49] Supraja Sridhara, Andrin Bertschi, Benedict Schlüter, Mark Kuhne, Fabio Aliberti,

and Shweta Shinde. Acai: Protecting accelerator execution with arm confidential

computing architecture. In USENIX Security, 2024.
[50] Darshan Tank, Akshai Aggarwal, and Nirbhay Chaubey. Virtualization vulnera-

bilities, security issues, and solutions: a critical study and comparison. Interna-
tional Journal of Information Technology, pages 1–16, 2019.

[51] Boris Teabe, Peterson Yuhala, Alain Tchana, Fabien Hermenier, Daniel Hagimont,

and Gilles Muller. (no) compromis: Paging virtualization is not a fatality. In

Proceedings of the 17th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, pages 43–56, 2021.

[52] ChenxuWang, Fengwei Zhang, Yunjie Deng, Kevin Leach, Jiannong Cao, Zhenyu

Ning, Shoumeng Yan, and Zhengyu He. Cage: Complementing arm cca with gpu

extensions. In Proceedings of the 31st Annual Network and Distributed System
Security Symposium, 2024.

[53] Wubing Wang, Mengyuan Li, Yinqian Zhang, and Zhiqiang Lin. Pwrleak: Ex-

ploiting power reporting interface for side-channel attacks on amd sev. In

International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 46–66. Springer, 2023.

[54] Xiangyi Xu,WenhaoWang, YongzhengWu, ZhennanMin, Zixuan Pang, and Yier

Jin. virtcca: Virtualized arm confidential compute architecture with trustzone.

arXiv preprint arXiv:2306.11011, 2023.
[55] Salessawi Ferede Yitbarek, Misiker Tadesse Aga, Reetuparna Das, and Todd

Austin. Cold boot attacks are still hot: Security analysis of memory scramblers in

modern processors. In 2017 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2017.

[56] Yiming Zhang, Yuxin Hu, Zhenyu Ning, Fengwei Zhang, Xiapu Luo, Haoyang

Huang, Shoumeng Yan, and Zhengyu He. Shelter: Extending arm cca with

isolation in user space. In 32nd USENIX Security Symposium (USENIX Security’23),
2023.

10

https://github.com/Akasurde/DigisparkHOTP
https://github.com/dhuertas/AES
https://developer.amd.com/sev/
https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms.
https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms.
https://github.com/AlDanial/cloc
https://developer.arm.com/documentation/ihi0094/latest/
https://developer.arm.com/documentation/ihi0094/latest/
https://www.apache.org/
https://github.com/memcached/memcached
https://github.com/nginx/nginx
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/
https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/
https://github.com/Huawei/Huawei_CCA_QEMU
https://github.com/islet-project/islet.git
https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.html
https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.html
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://static.linaro.org/connect/armcca/presentations/CCATechEvent-210623-CGT-2.pdf
https://static.linaro.org/connect/armcca/presentations/CCATechEvent-210623-CGT-2.pdf
https://docs.microsoft.com/windows-server/virtualization/hyper-v/manage/manage-hyper-v-scheduler-types#the-core-scheduler
https://docs.microsoft.com/windows-server/virtualization/hyper-v/manage/manage-hyper-v-scheduler-types#the-core-scheduler
https://docs.microsoft.com/en-us/azure/virtual-machines/acu
https://docs.microsoft.com/en-us/azure/virtual-machines/acu
https://pcisig.com/tee-device-interface-security-protocol-tdisp
https://pcisig.com/tee-device-interface-security-protocol-tdisp
https://aws.amazon.com/ec2/

WIP: BareSlice: Extending Arm CCA to Support Bare-Metal Confidential Virtual Machines

[57] Ziqiao Zhou, Yizhou Shan, Weidong Cui, Xinyang Ge, Marcus Peinado, and

Andrew Baumann. Core slicing: closing the gap between leaky confidential vms

and baremetal cloud. In Proceedings of the 17th Symposium on Operating System
Design and Implementation (OSDI), 2023.

11

	Abstract
	1 Introduction
	2 Background
	2.1 Arm TrustZone
	2.2 Arm Confidential Computing Architecture

	3 Overview
	3.1 Goals and Security Properties
	3.2 Architecture Overview
	3.3 Threat Model

	4 Design
	4.1 Slice Isolation
	4.2 Slice Management

	5 Implementation
	6 Security Evaluation
	6.1 Trusted Computing Base
	6.2 Security Analysis

	7 Performance Evaluation
	7.1 Experimental Setup
	7.2 Real-world Application Overheads

	8 Discussion
	9 Related Work
	10 Conclusion
	References

