
K-ASTRO: Structure-Aware Adaptation of LLMs for Code
Vulnerability Detection

Anonymous Author(s)

ABSTRACT
Large Language Models (LLMs) are transforming software engi-
neering tasks, including code vulnerability detection—a critical
area of software security. However, existing methods often rely
on resource-intensive models or graph-based techniques, limiting
their accessibility and practicality. This paper introduces K-ASTRO,
a lightweight Transformer model that combines semantic embed-
dings from LLMs with structural features of Abstract Syntax Trees
(ASTs) to improve both efficiency and accuracy in code vulnerabil-
ity detection. Our approach introduces an AST-based augmentation
technique inspired by mutation testing, a structure-aware attention
mechanism that incorporates augmented AST features, and a joint
adaptation pipeline to unify code semantics and syntax. Experi-
mental results on three large-scale datasets—BigVul, DiverseVul,
and PrimeVul—demonstrate state-of-the-art performance while en-
abling rapid inference on CPUs with minimal training time. By
offering a scalable, interpretable, and efficient solution, K-ASTRO
bridges the gap between LLM advancements and practical soft-
ware vulnerability detection, providing open-sourced tools to foster
further research.

ACM Reference Format:
Anonymous Author(s). 2025. K-ASTRO: Structure-Aware Adaptation of
LLMs for Code Vulnerability Detection . In Companion Proceedings of the
33rd ACM Symposium on the Foundations of Software Engineering (FSE ’25),
June 23–27, 2025, Trondheim, Norway. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Large Language Models (LLMs) have demonstrated remarkable ca-
pabilities in tasks such as question answering, code generation, and
text summarization [18, 43, 44]. Built upon the Transformer archi-
tecture [32], LLMs leverage large datasets to solve domain-specific
problems with unprecedented efficiency, making them increasingly
integral in software engineering. Among the various applications
of LLMs, code vulnerability detection holds particular significance,
where the goal is to determine whether a given piece of code is
vulnerable to security threats. Early and reliable detection of vul-
nerabilities minimizes the risk of exploitation and reduces the cost
of addressing these issues later in the software lifecycle.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2025 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Effectively leveraging LLMs for vulnerability detection presents
two key challenges. First, pre-training or fine-tuning Transformer-
based LLMs is computationally demanding, often requiring exten-
sive GPU resources unavailable to many practitioners [45]. Second,
capturing the intricate nuances of software vulnerabilities in stan-
dalone code functions remains a significant hurdle. For example,
it is challenging to infer whether inputs to a function have been
sanitized prior to their use. While pretrained models [9, 13, 31, 36]
with hundreds of millions to billions of parameters offer state-
of-the-art baselines, they remain resource-intensive and under-
perform on nuanced tasks like vulnerability detection when used
off-the-shelf [5, 7, 11, 29]. Notably, GitHub employs LLMs with Cod-
eQL [12], combining generative models with static code analysis to
identify vulnerabilities at scale, but this setup requires significant
infrastructure investments.

In this paper, we introduce K-ASTRO, a novel and lightweight
Transformer-basedmodel that combines semantic embeddings from
LLMs with structural features derived from Abstract Syntax Trees
(ASTs) to enhance code vulnerability detection. Our approach ad-
dresses the challenges of efficiency and nuance by introducing three
key innovations: (i) Diversity-Introducing AST Augmentation,
which enhances feature diversity through an AST-based mutation
method inspired by mutation testing; (ii) Structure-Aware At-
tention Bias, a novel mechanism that incorporates augmented
AST features into the Transformer block, guiding the model’s atten-
tion to structural relationships; and (iii) Joint LLM Adaptation, a
training pipeline that unifies structural and semantic information
for improved prediction accuracy. These innovations bridge the
gap between off-the-shelf LLM capabilities and the domain-specific
requirements of code vulnerability analysis. Our contributions are
as follows:

• We propose K-ASTRO, a lightweight, single-layer, encoder-
only Transformer that unifies code syntax (via AST features)
and semantics (via LLM embeddings), significantly improv-
ing both binary vulnerability prediction and CWE classifica-
tion.

• Weevaluate K-ASTROon three large-scale, real-world datasets:
BigVul, DiverseVul, and PrimeVul. These datasets cover hun-
dreds of open-source projects. K-ASTRO achieves state-of-
the-art performance with minimal computational require-
ments.

• We conduct an ablation study to validate K-ASTRO’s de-
sign, comparing it with simpler models that classify code
embeddings without leveraging AST structure.

• To foster further research, we open-source all code, datasets,
and tools, including scripts for data preprocessing, LLM API
interactions, model training, evaluation, and embedding gen-
eration.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Anonymous Author(s)

The remainder of this paper is organized as follows: Section 2
outlines the problem formulation and background. Section 3 de-
scribes the datasets and architectural details of K-ASTRO. Section 4
presents experimental results, guided by four research questions.
Section 5 discusses related work in LLM-based vulnerability detec-
tion. Finally, Section 6 summarizes our findings and highlights the
limitations of our approach.

2 PROBLEM STATEMENT
In this section, we introduce the problem of vulnerability detec-
tion, motivate our approach with an example of vulnerable code,
and describe the Abstract Syntax Tree (AST) representation that
underpins our design.

2.1 Vulnerability Detection
Detecting vulnerabilities in real-world software is a challenging
task, particularly given the sheer scale of modern codebases—often
comprising millions of lines of code contributed by multiple devel-
opers. Despite rigorous testing [2], vulnerabilities persist due to
their dispersed nature and the potential for fixes to inadvertently
introduce new issues. Common automated approaches, such as
static analysis [47], fuzzing [48], and software testing [39], often
suffer from high rates of false positives and negatives.

Vulnerability detection can be categorized into two complemen-
tary tasks: (i) vulnerability prediction, which determines whether
a piece of code is vulnerable, and (ii) CWE classification, which
identifies how the code is vulnerable by mapping it to a Common
Weakness Enumeration (CWE). CWE identifiers provide an abstract
description of vulnerability types, while specific instances of vulner-
abilities are documented as Common Vulnerabilities and Exposures
(CVEs). Our approach addresses both tasks by leveraging the struc-
tural and semantic information encapsulated in Abstract Syntax
Trees (ASTs).

2.2 Motivating Example
Code vulnerabilities often arise from issues such as buffer over-
flows or improper memory management. Consider the example
in Listing 1, which lacks null termination in its arrays and uses
an insecure call to strcpy(). This omission risks injecting unex-
pected data, making the code vulnerable. For binary vulnerability
prediction, this function would be labeled as 1 (vulnerable), and
for CWE classification, it would be assigned CWE-170, “Improper
Null Termination” 1. Our methodology uses the AST of the source
code to effectively represent and analyze such vulnerabilities, as
described further in Section 2.3.

2.3 Abstract Syntax Tree Representation
The Abstract Syntax Tree (AST) is a hierarchical representation
of a program’s structure, where each node corresponds to a con-
struct in the source code. ASTs are generated during the parsing
phase of compilation and encode both syntactic and semantic re-
lationships, such as variable declarations, control flow, and data
dependencies. Internal nodes represent operators, while leaf nodes

1https://cwe.mitre.org/data/definitions/170.html

1 #include <stdio.h>
2 #include <string.h>
3 #include <unistd.h>
4 #define MAXLEN 1024
5

6 int main() {
7 char *inputbuf;
8 char pathbuf[MAXLEN];
9 read(0, inputbuf , MAXLEN);
10 strcpy(pathbuf , inputbuf);
11 return 0;
12 }

Listing 1: Example Vulnerable Function. Vulnerable C code
that lacks null termination, resulting in a risky strcpy() call.

Figure 1: Example AST. AST representation of lines 6, 7, and
9 of Listing 1, parsed with Clang 14.0 and visualized with
Graphviz.

represent operands, and edges capture relationships such as loop
conditions and variable assignments.

This structured representation is widely used in machine learn-
ing models for tasks like code classification [34, 35, 46]. In our
approach, we enhance the standard AST by introducing augmented
variants. Specifically, we replace selected nodes with subtrees from
other functions sharing the same vulnerability label, rooted at
matching node types (Section 3.1). Figure 1 shows part of the AST
derived from Listing 1. This augmentation improves the model’s
ability to generalize across diverse code samples while maintaining
the structural context essential for accurate vulnerability detection.

3 APPROACH: K-ASTRO
We address the related tasks of vulnerability prediction (binary
classification) and CWE classification from source code. Given a
standalone source code function 𝑓 ∈ F in C/C++, the goal is to
reliably predict either the presence of a vulnerability or the cor-
responding Common Weakness Enumeration (CWE) exhibited in
the function, without leveraging surrounding code context such as
function callers or repository-level information.

To achieve this, we propose K-ASTRO, a lightweight yet powerful
framework that addresses the limitations of existing approaches
by combining structural and semantic information effectively. The

https://cwe.mitre.org/data/definitions/170.html

K-ASTRO: Structure-Aware Adaptation of LLMs for Code Vulnerability Detection
Conference’17, July 2017, Washington, DC, USA

framework integrates three core components that work in tandem
to improve vulnerability detection accuracy:

First, Diversity-Introducing AST Augmentation enriches
the structural representation of code by introducing controlled
variations in the Abstract Syntax Tree (AST). This step ensures
that the model is exposed to a diverse range of structural patterns
during training, making it more robust to real-world scenarios
where vulnerable patterns may vary significantly. By enhancing
structural diversity, this component helps the model generalize
better to unseen data.

Second, Structure-Aware Attention Bias leverages these aug-
mented ASTs to encode structural patterns directly into the Trans-
former’s attention mechanism. This step injects a deeper under-
standing of code structure into the model by highlighting the rela-
tionships and interactions between nodes in the AST. The integra-
tion of co-occurrence patterns allows the attention mechanism to
focus on the most relevant structural features, reducing noise and
improving the model’s ability to identify vulnerabilities.

Finally, Joint LLM Adaptation brings everything together
by combining the semantic information captured by pre-trained
LLM embeddings with the structural insights derived from the aug-
mented ASTs. This joint representation bridges the gap between
the high-level semantic understanding of code and the low-level
structural details, ensuring that the model benefits from both per-
spectives. Together, these components enable K-ASTRO to provide
accurate and efficient vulnerability predictions.

3.1 Diversity-Introducing AST Augmentation
The first step in K-ASTRO is to address the inherent sparsity and
diversity of vulnerability patterns in real-world codebases. Vul-
nerable code fragments often constitute a small fraction of large
repositories, making it difficult for models to generalize effectively.
To mitigate this issue, we introduce a novel AST augmentation
technique inspired by mutation testing.

AST Generation and Subtree Extraction: For a given source
code function 𝑓 , the AST 𝑇 (𝑓) is parsed using Clang. Subtrees
are extracted recursively via depth-first search and stored in a
catalog CAST, organized by CWE classes 𝑐 . This catalog serves as a
repository of structural patterns for augmentation.

Augmentation via Subtree Replacement: To augment the
AST, we randomly select a node 𝑣 in 𝑇 (𝑓) and replace the subtree
rooted at 𝑣 with another subtree 𝑠′ from CAST (𝑐), ensuring that
the root types match. This process generates a structurally diverse
augmented AST 𝑇aug (𝑓), which is formally expressed as:

𝑇aug (𝑓) = Aaug (𝑇 (𝑓), CAST) .

This augmentation introduces controlled variations that enhance
the model’s ability to learn robust representations of vulnerability
patterns. While the augmented ASTs may not preserve the exact
semantics of the original code, they provide a rich structural fea-
ture set that complements the model’s learning process. Figure 3
illustrates the augmentation pipeline.

3.2 Structure-Aware Attention Bias
Building on the augmented ASTs, the second component of K-
ASTRO focuses on integrating structural context into the model’s

attention mechanism. While traditional attention mechanisms treat
all input tokens equally, our structure-aware attention bias priori-
tizes important structural relationships derived from the ASTs.

Co-Occurrence Matrix Construction: For each AST 𝑇 (𝑓),
we compute a co-occurrence matrix 𝑀 that captures adjacency
relationships between node types:

𝑀𝑖 𝑗 = frequency(𝑡𝑖 → 𝑡 𝑗), ∀𝑡𝑖 , 𝑡 𝑗 ∈ 𝑇 (𝑓) .
Logarithmic Binning and Bias Computation: To prevent the

model from overfitting to specific patterns, we apply logarithmic
binning to the co-occurrence values:

𝐵𝑖 𝑗 = ⌈log10 (𝑀𝑖 𝑗 + 1)⌉ .
Bias Integration into Attention: For 𝐾 AST variants (one

original and 𝐾 − 1 augmented), we compute a separate bias matrix
𝐵𝑘 for each variant and combine them to form the final bias matrix:

𝐵max,𝑖 𝑗 = max(𝐵1𝑖 𝑗 , 𝐵
2
𝑖 𝑗 , . . . , 𝐵

𝐾
𝑖 𝑗) .

The final attention map is computed by adding this bias to the
original attention map 𝐴:

𝐴′ = 𝐴 + 𝐵max .

This structure-aware bias ensures that the attention mechanism
focuses on the most relevant structural features, improving the
model’s ability to identify vulnerabilities. Figure 4 provides an
overview of this mechanism.

3.3 Joint LLM Adaptation
The final component of K-ASTRO unifies the structural and se-
mantic embeddings into a joint representation, ensuring that the
model benefits from both detailed structural insights and high-level
semantic understanding. By combining these complementary per-
spectives, K-ASTRO delivers robust and efficient predictions for
both binary vulnerability detection and CWE classification.

The semantic embedding 𝑇 is derived from a pre-trained LLM
and encodes the high-level contextual meaning of the source code.
It represents the function as a dense vector in R𝑑 , capturing linguis-
tic and semantic nuances. In contrast, the structural embedding 𝐴′,
generated through the structure-aware attention mechanism, en-
codes hierarchical relationships and structural interactions within
the AST. These two embeddings reflect different but equally im-
portant aspects of the source code, making their combination a
powerful tool for vulnerability detection.

To integrate these embeddings, we concatenate𝑇 and𝐴′ to form
a unified representation:

Input to Classifier: [𝐴′;𝑇] .
This joint representation ensures that the model can simultaneously
leverage high-level semantic context and low-level structural details.
The combined embedding is passed through a ResNet-styled MLP
classifier, where the concatenated vector undergoes transformation
through learnable parameters:

𝐿 = 𝜎 (𝑊 · [𝐴′;𝑇] + 𝑏),
where𝑊 is the weight matrix, 𝑏 is the bias term, and 𝜎 is an ac-
tivation function such as ReLU. This architecture ensures stable
gradient flow during training and provides sufficient capacity for
learning complex patterns inherent in vulnerabilities.

Conference’17, July 2017, Washington, DC, USA Anonymous Author(s)

LLM
Encoding

AST
Parsing

 Transformer Block

Augmentation

...
Code Embedding

Augmented ASTs

MLP
Prediction

AST

...

...

 Attention Heads

Source Code

def MagicBox(plain_rock):

 step1 = wash(plain_rock)

 step2 = paint(step1)

 step3 = decorate(step2)

 return package(step3)

Figure 2: Overview of K-ASTRO. The framework processes source code into semantic embeddings via LLMs and structural em-
beddings via AST augmentation. Augmented ASTs provide structural insights through a structure-aware attention mechanism,
which is combined with LLM embeddings for final vulnerability prediction using a single lightweight Transformer block.

Augmented
Vulnerable Code

Sub-ASTs

Secure Code Augmentation
Library

Parse

AST Extract

Augment

Store

Figure 3: AST Augmentation Pipeline. The process in-
volves AST generation, subtree extraction, and augmenta-
tion through node replacement to create structurally diverse
representations for vulnerability detection.

By unifying the semantic and structural embeddings, K-ASTRO
addresses both the broad contextual variability in codebases and
the localized, nuanced patterns of vulnerabilities. This approach
not only improves prediction accuracy but also maintains computa-
tional efficiency. The joint adaptation mechanism allows K-ASTRO
to scale effectively to large datasets while remaining lightweight
enough for practical deployment, demonstrating its utility in real-
world software engineering scenarios.

4 EXPERIMENTS
In this section, we describe the datasets considered in our experi-
ments and the data preparation process. The following four research
questions (RQs) guide our investigation:

(1) RQ1: Other LLMs vs. K-ASTRO How well does K-ASTRO
perform in comparison to prompting common off-the-shelf
LLMs for vulnerability prediction and CWE classification,
and in comparison to recent larger models fine-tuned on
code?

(2) RQ2: CWE-Specific Performance What trends exist in
the performance of K-ASTRO for specific CWE classes?

(3) RQ3: Model Efficiency Here we assess the training over-
head of K-ASTRO by considering the number of parameters
in the model, training time, and inference throughput on
different datasets.

(4) RQ4: Ablation StudyWe compare K-ASTRO to 3 simpler
models trained on the same CWE classification for C/C++
source code to justify the proposed K-ASTRO model.

4.1 Datasets and Data Summary
We focus on binary vulnerability classification and multi-class CWE
classification of C/C++ source code functions, utilizing three large-
scale datasets: BigVul [8], DiverseVul [4], and PrimeVul [6]. Table 1
provides a summary of the datasets, including train, validation,
and test split sizes, as well as the distribution of vulnerable and
non-vulnerable samples and the number of unique CWE classes.

Table 1: Summary of datasets used in this study.

Dataset Train Val Test Vuln Not Vuln CWEs

BigVul [8] 148,067 32,045 31,978 170,613 41,477 36
DiverseVul [4] 206,962 24,615 24,813 207,632 48,758 49
PrimeVul [6] 183,673 25,211 25,706 83,191 151,399 4

The datasets are selected to ensure diverse sources and high-
quality labeling:

• BigVul is derived from CVE database crawls, featuring func-
tions from 91 CWEs with an emphasis on code prior to
bug-fixing commits.

• DiverseVul introduces a larger variety of CWEs with a more
recent collection strategy, focusing on eliminating heuristic
biases from commit messages.

• PrimeVul enhances dataset quality through rigorous de-
duplication and chronological data splitting, addressing data
leakage issues inherent in prior datasets.

K-ASTRO: Structure-Aware Adaptation of LLMs for Code Vulnerability Detection
Conference’17, July 2017, Washington, DC, USA

9

5

7
8

4

Example Vulnerable Code (CWE-362)

17

ERROR

ReturnParserOutput

Int If
2

3 4

5 6

Assigment

8Idenfitier

VarDecl

Augmented Adjacency

2
3

6

1

9

5

7
8

4

2
3

6

1

Original Sparse Attention Augmented Sparse Attention

Original Adjacency

ERROR

Idenfitier

returnParserOutput

Int If

1

2 3 4

5 6

Figure 4: Structure-Aware Attention Mechanism. The mech-
anism incorporates co-occurrence matrices from ASTs into
the Transformer’s attention map, enhancing its structural
understanding.

4.2 Data Preparation
To ensure consistency and compatibility across the datasets used
in this study, we followed a structured data preparation pipeline,
which is outlined below.

Pre-Processing.We converted each dataset into Parquet files
while preserving train, validation, and test splits. To enable consis-
tent tracking, a unique identifier (UUID) was added to each func-
tion. Invalid CWE entries, such as empty strings or lists, were
mapped to a "No CWE" class, and rows containing multiple CWEs
were discarded. Source code comments were removed using the
CodeTF ApexCodeUtility [3]. Token counts for each function were
calculated using the tiktoken2 library, ensuring compatibility with
embedding models.

2https://pypi.org/project/tiktoken/

Embedding Collection. We utilized OpenAI’s text-embedding-
ada-0023 and text-embedding-3-small4 models to generate 1536-
dimensional embeddings for each function. Functions exceeding
the token limit of 8191 were excluded. This process produced ap-
proximately 600,000 embeddings across all splits, which were used
as input representations for classification.

AST Collection and Augmentation. Abstract Syntax Trees
(ASTs) for each function were extracted using Clang version 14.0
and stored in JSON format. Subtrees were recursively collected and
categorized by CWE label and root node type. For augmentation,
we randomly replaced AST nodes with subtrees that matched the
function’s original CWE label. This procedure generated 𝐾 = 4
augmented samples per function, enriching the training data.

AdjacencyMatrixGeneration.After generating the augmented
ASTs, we vectorize each AST by producing an adjacency matrix
based on the node types present in the AST. We cap the maximum
number of node types at 64 and observed 50 node types in practice
from Clang. The dimensionality of this matrix directly affects the
architectural parameters of the K-ASTRO model (Section 3). Each
of these augmented matrices is incorporated into K-ASTRO using
sparse attention mechanisms, as detailed in Section 3.2.

4.3 Implementation and Training Details
To train and evaluate K-ASTRO, we designed an efficient imple-
mentation strategy, ensuring reproducibility and scalability across
datasets and experiments.

Model Architecture. K-ASTRO integrates an MLP and a Trans-
former layer in its joint adaptation module. The MLP has a hidden
dimension of 512 and 3 layers, while the Transformer is a single-
layer encoder with a hidden size of 64. These dimensions balance
expressiveness and computational efficiency, enabling effective
modeling of source code features and structural representations.

Training Configuration. The model was trained using the
Adam optimizer [20], with a batch size of 32 and a learning rate of
1e−3. A total of 25 epochs were conducted, comprising 5 runs of 5
epochs each with distinct random seeds to ensure robust evaluation.
To incorporate augmented AST adjacency matrices, we set 𝐾 = 4,
which balances the diversity of syntactic patterns introduced during
training with computational efficiency.

Hardware and Efficiency. Training was performed on a single
NVIDIA RTX A6000 GPU with 48GB of VRAM, while inference
was tested on both GPU and Intel(R) Xeon(R) Gold 6330N CPUs.
Training time ranged from 1 to 3 hours per experiment depending
on dataset size, while inference over test sets, containing 24,000 to
32,000 samples, took approximately 10–30 seconds per dataset.

Scalability. Despite its small size of 1 million trainable parame-
ters, K-ASTRO demonstrated competitive performance with mini-
mal computational resources. The model’s ability to train and infer
efficiently makes it suitable for practical applications in resource-
constrained environments.

4.4 Prompted LLM Performance
To evaluate the feasibility of using general-purpose LLMs for vul-
nerability classification tasks, we conducted experiments with three

3https://platform.openai.com/docs/guides/embeddings
4https://platform.openai.com/docs/api-reference/embeddings

https://pypi.org/project/tiktoken/
https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/api-reference/embeddings

Conference’17, July 2017, Washington, DC, USA Anonymous Author(s)

Figure 5: Visualization of Augmented ASTs. Adjacencymatrices generated during the AST augmentation process, where subtrees
from functions with corresponding vulnerability labels replace selected nodes in the original ASTs. The original matrix (left
column) and 𝐾 = 8 augmented matrices (right columns) depict node connectivity in the resulting ASTs. We consider a total of
𝑛 = 50 node kinds, as observed in the datasets using Clang. These structures are incorporated into K-ASTRO via sparse attention
to enhance vulnerability prediction performance (Section 3.2). We set 𝐾 = 4 in our experiments to balance feature diversity and
experimentation speed.

Table 2: Performance Comparison: Prompted LLMs vs. K-
ASTRO Metrics for CWE classification and binary vulnera-
bility prediction.

Dataset Metric GPT-3.5 GPT-4o K-ASTRO

BigVul
F1 7.19 9.83 76.31
Precision 8.76 10.51 76.92
Recall 19.56 18.70 76.47

BigVul-bin
F1 7.38 9.39 47.19
Precision 6.05 5.25 59.17
Recall 9.44 44.26 39.24

popular models: GPT-3.5, GPT-4o, and Claude 3 Haiku. These evalu-
ations focus on assessing their performance on CWE classification
and binary vulnerability prediction, comparing them against the
specialized model, K-ASTRO.

Evaluation Setup. We used programmatic APIs to query these
models for predictions, using the BigVul dataset’s test set as input.
For each sample, we requested outputs in JSON format: is_vuln
(binary label indicating vulnerability), cwe_label (CWE class pre-
diction), and reasoning (a brief explanation in up to 100 words).
Chain-of-thought prompting techniques [38] were adopted to refine
the prompt, incorporating explicit format instructions, a synopsis of
vulnerabilities, and examples of CWE categories. Due to malformed
JSON outputs from Claude (∼72% of responses), we report complete
results only for GPT-3.5 and GPT-4o.

Key Findings. K-ASTRO significantly outperforms GPT-3.5 and
GPT-4o across all metrics. On BigVul, K-ASTRO achieves a weighted
F1 score of 76.31 compared to 7.19 (GPT-3.5) and 9.83 (GPT-4o).
Similarly, for binary vulnerability classification (BigVul-bin), K-
ASTRO achieves an F1 of 47.19, surpassing the performance of
GPT-3.5 (7.38) and GPT-4o (9.39). These results underscore the
limitations of generic LLMs in vulnerability classification tasks.

Limitations of LLMs.While the LLMs provide reasoning for
their predictions, their inability to handle complex CWE-specific
classifications highlights the necessity for specialized models like
K-ASTRO. Detailed reasoning analysis for LLM predictions remains
an avenue for future exploration.

Table 3: K-ASTRO Model Performance. Weighted metrics
across datasets. BigVul: 36 classes, BigVul-bin: 2 classes, Di-
verseVul: 49 classes, PrimeVul: 4 classes. PrimeVul’s test set
contains only ≈3% vulnerable functions, hence binary results
are omitted.

Dataset F1 Precision Recall Accuracy

BigVul [8] 76.31 76.92 76.47 76.47
BigVul-bin 47.19 59.17 39.24 97.28
DiverseVul [4] 69.12 69.64 69.14 69.14
PrimeVul [6] 92.33 90.99 93.78 93.78

4.5 RQ1: Other LLMs vs. K-ASTRO
Objective. This research question evaluates how K-ASTRO per-
forms in comparison to state-of-the-art LLMs (e.g., GPT-3.5 and
GPT-4o) on CWE classification and binary vulnerability prediction
tasks across multiple datasets.

Model Variants. K-ASTRO was tested with two configuration
options:

• with-mask: Enforces masking in the learned attention ma-
trix, ensuring the model focuses on connected nodes in aug-
mented ASTs. After experimentation, we fixed with-mask
to True.

• embedding-type: Two embedding models were evaluated,
OpenAI’s 5 (“small”) and 6 (“ada”). The “small” embedding
model demonstrated superior performance and was selected
for all experiments.

Findings. K-ASTRO consistently outperforms GPT-3.5 and GPT-
4o on all datasets (Table 3). For instance:

• On BigVul, GPT-3.5 achieves a weighted F1 of 7.19 for CWE
classification, andGPT-4o scores 9.83, while K-ASTRO achieves
76.31.

• On BigVul-bin, K-ASTRO achieves a weighted F1 of 47.19
compared to 7.38 (GPT-3.5) and 9.39 (GPT-4o).

Comparison with Larger Models. Despite having only 1M
parameters, K-ASTRO achieves competitive results compared to
significantly larger models like GraphCodeBERT [14] (125M), Poly-
Coder [40] (2.7B), and T5 [37] (220M), none of which exceed 50%

5text-embedding-3-small
6text-embedding-ada-002

K-ASTRO: Structure-Aware Adaptation of LLMs for Code Vulnerability Detection
Conference’17, July 2017, Washington, DC, USA

F1 on the DiverseVul dataset. This suggests that specialized small
models can outperform general-purpose large models for domain-
specific tasks.

4.6 RQ2: CWE-Specific Performance
The results from K-ASTRO inference on the test sets of BigVul and
DiverseVul provide a comprehensive evaluation of its ability to han-
dle diverse CWE classes. To assess its performance, we conducted
experiments focusing on class-specific metrics, including Precision,
Recall, and F1 scores, averaged across individual classes for each
dataset.

Experimental Setup. For this evaluation, K-ASTRO was tasked
with classifying functions based on their associated CWE labels
in the BigVul and DiverseVul test sets. These datasets include a
mix of specific CWEs and broader categories, offering a diverse
challenge. By analyzing the class-wise metrics, we aimed to identify
the strengths and weaknesses of the model across different types
of CWEs.

Performance Consistency on BigVul. On BigVul, K-ASTRO
exhibits consistent performance across the 36 CWE classes, achiev-
ing an average F1 score of approximately 0.8. The model performs
particularly well on CWE-269: "Improper Privilege Management"
and CWE-704: "Incorrect Type Conversion or Cast," achieving F1
scores above 0.9. These results highlight the model’s capability
to identify specific and well-defined vulnerabilities. However, the
model struggles with broader categories like CWE-388: "7PK - Er-
rors," which aggregate multiple specific CWEs, making classifica-
tion inherently more challenging. This discrepancy is likely due to
the lack of granularity in such categories, which can obscure the
patterns needed for accurate classification.

Variability in DiverseVul Results. In contrast, results on Di-
verseVul exhibit greater variability across its 49 CWE classes. CWE-
212: "Improper Removal of Sensitive Information Before Storage or
Transfer" achieves an almost perfect F1 score, demonstrating the
model’s ability to handle specific and clearly defined vulnerabilities.
Other strong performers include CWE-191: "Integer Underflow"
and CWE-613: "Insufficient Session Expiration." However, some
classes, such as CWE-122: "Heap-based Buffer Overflow" and CWE-
19: "Data Processing Errors," exhibit lower F1 scores, highlighting
areas where the model’s performance is limited. Notably, many of
these underperforming classes are categorized as general groupings,
which further complicates classification.

4.7 RQ3: Model Efficiency
We assess K-ASTRO’s efficiency by evaluating its inference perfor-
mance across different datasets using GPU and CPU setups. Despite
its lightweight architecture, K-ASTRO demonstrates excellent scala-
bility and speed, making it well-suited for processing large datasets.

K-ASTRO is a compact Transformer model tailored for binary
vulnerability prediction and CWE classification. It includes a single
encoder layer with multi-head attention that integrates 𝐾 aug-
mented AST interaction matrices. With approximately 1 million
trainable parameters, K-ASTRO occupies only ≈4MB of disk space
when trained, showcasing remarkable storage efficiency.

In our experiments, K-ASTRO was trained for 5 rounds of 5
epochs, each with distinct random seeds for reproducibility. Train-
ing completes within 1-3 hours, depending on dataset size, and
inference takes just seconds per full pass. This lightweight design
ensures minimal overhead while maintaining high performance.

Table 4 summarizes the evaluation metrics across datasets. On
the GPU, K-ASTRO achieves an impressive throughput of 5,434
samples per second for BigVul-bin, while on the CPU, it processes
up to 12,989 samples per second for the same dataset. Across all
datasets, throughput consistently exceeds 1,500 samples per second
on both GPU and CPU setups.

Compact and Efficient Design. These results highlight K-
ASTRO’s suitability for practical deployment in resource-constrained
environments. Its compact size and rapid inference capabilities
make it an ideal choice for real-world applications requiring effi-
cient and accurate vulnerability detection.

5 RELATEDWORK
This section reviews previous studies in three primary areas: ML-
driven vulnerability detection, the application of LLMs in security,
and strategies for LLM adaptation to specific tasks.

5.1 ML-Driven Vulnerability Detection
Machine learning approaches have become increasingly desirable
for vulnerability detection as they require less manual effort com-
pared to pattern-based techniques like FlawFinder [10] and ITS4
[33]. Early ML-based methods, such as VulDeePecker [23], utilized
Bi-LSTMs with word2vec encodings of code gadgets, demonstrating
significant improvements over traditional rule-based systems.

Abstract syntax tree (AST)-based methods have also gained trac-
tion. [24] explored AST serialization combined with Bi-LSTMs for
function-level vulnerability detection. Building on these, [26] em-
ployed neural sub-tree encodings to capture fine-grained syntactic
features, while [41] extended these approaches for generalized vul-
nerability extrapolation using AST-based representations.

Recently, transformer-based models have dominated vulnerabil-
ity detection tasks. [30] demonstrated that fine-tuned models like
CodeBERT [9] and GraphCodeBERT [14] significantly outperform
Bi-LSTMs. Further, [19] emphasized learning from syntax-based
execution paths to enhance detection performance. Despite these
advances, existing methods often fall short in leveraging augmented
AST structures to address generalization and interpretability, a gap
addressed by K-ASTRO.

5.2 LLMs in Computer Security
Large Language Models (LLMs) have seen growing use in security
applications, including vulnerability repair [1, 28], CWE mapping
[25], and policy analysis [27]. Despite their promise, off-the-shelf
LLMs like GPT-3.5 and GPT-4o have shown limited success in vul-
nerability detection [5, 11].

Recent frameworks have sought to improve LLM-driven detec-
tion through tailored strategies. For instance, [42] introduced deep-
learning-augmented prompting frameworks, while [26] utilized
vulnerability-preserving data augmentation to enrich training data.
However, challenges remain in adapting these general-purpose

Conference’17, July 2017, Washington, DC, USA Anonymous Author(s)

Table 4: K-ASTRO Inference Efficiency. Inference throughput and evaluation time for different datasets on GPU and CPU. The
trained model is compact (≈4MB) and achieves competitive inference speeds, processing thousands of samples per second.

Dataset # Samples Eval Time GPU (s) Eval Time CPU (s) GPU Throughput (samples/s) CPU Throughput (samples/s)

BigVul 31,894 20.52 20.64 1,554 1,545
BigVul-bin 31,953 5.88 2.46 5,434 12,989
DiverseVul 24,601 14.65 17.07 1,679 1,441
PrimeVul 24,990 15.03 15.91 1,662 1,570

models for domain-specific tasks. Our work addresses this by inte-
grating AST-based structural insights with lightweight fine-tuning
techniques, enabling robust performance even with limited compu-
tational resources.

5.3 LLM Adaptation
LLM adaptation focuses on resource-efficient strategies for task-
specific fine-tuning. Techniques like prompt tuning [21] and prefix
tuning [22] enable parameter-efficient updates by optimizing input
embeddings. Similarly, LoRA [16] employs low-rank approxima-
tions to reduce the number of trainable parameters.

Adapter-based methods, such as [15] and [17], introduce small
auxiliary modules between transformer layers to achieve efficient
fine-tuning. These methods have been widely adopted for various
NLP and security tasks. In contrast, our approach avoids auxiliary
modules, opting instead for a single lightweight transformer block
with multi-head attention to integrate AST-derived biases into the
final prediction.

By combining text embeddings with augmented AST structures,
K-ASTRO achieves strong performance on vulnerability detection
tasks while maintaining computational efficiency. This unique adap-
tation mechanism sets our approach apart from existing parameter-
efficient methods and bridges the gap between LLM generalization
and domain-specific performance.

6 CONCLUSION
We present K-ASTRO, a lightweight Transformer model tailored
for few-shot vulnerability detection in C/C++ source code. By in-
tegrating AST-based data augmentation and sparse attention with
text embeddings, K-ASTRO harmonizes structural and semantic
features to enhance vulnerability detection and CWE classification.
Unlike off-the-shelf LLMs, which struggle with this task due to bi-
ases towards non-vulnerable code, K-ASTRO leverages its compact
architecture to achieve competitive performance with state-of-the-
art models while maintaining efficiency and simplicity.

With ≈1M parameters occupying only 4MB on disk, K-ASTRO
trains within hours and performs rapid inference on CPUs, en-
abling secure, local processing of sensitive code without reliance
on resource-intensive GPU servers. Our results demonstrate that
K-ASTRO matches or exceeds the performance of larger industrial
LLMs, underscoring the value of combining structural and semantic
insights for vulnerability detection. To encourage further research,
we release all software artifacts to the community.

6.1 Limitations
K-ASTRO focuses exclusively on C/C++ source code, chosen for its
prevalence, available data, and the complexity of vulnerabilities in
these languages. While the approach is conceptually applicable to
other programming languages, dataset limitations and embedding
constraints shaped our experiments. Specifically, our input length
is limited by the token capacity of embedding models, resulting
in the omission of a small subset of functions. Moreover, we do
not explore variations in embedding dimensionality or broader
dataset refinements, which could provide opportunities for future
work. Despite these constraints, K-ASTRO demonstrates robust
performance and offers a promising foundation for lightweight
vulnerability prediction.

REFERENCES
[1] Baleegh Ahmad, Shailja Thakur, Benjamin Tan, Ramesh Karri, and Hammond

Pearce. 2023. Fixing Hardware Security Bugs with Large Language Models. arXiv
preprint arXiv:2302.01215 (2023). https://arxiv.org/pdf/2302.01215.pdf

[2] Paul Ammann and Jeff Offutt. 2016. Introduction to software testing. Cambridge
University Press.

[3] Nghi D. Q. Bui, Henry Le, Yue Wang, Akhilesh Deepak Gotmare, Junnan Li, and
Steven Hoi. 2023. CodeTF: A Transformer-based Library for CodeLLM and Code
Intelligence. arXiv:2209.09019 [cs.CV]

[4] Yizheng Chen, Zhoujie Ding, Lamya Alowain, Xinyun Chen, and David Wagner.
2023. DiverseVul: A New Vulnerable Source Code Dataset for Deep Learning
Based Vulnerability Detection. arXiv preprint arXiv:2304.00409 (2023). https:
//arxiv.org/pdf/2304.00409.pdf

[5] Anton Cheshkov, Pavel Zadorozhny, and Rodion Levichev. 2023. Evaluation of
ChatGPT Model for Vulnerability Detection. arXiv preprint arXiv:2304.07232
(2023). https://arxiv.org/pdf/2304.07232.pdf

[6] Yangruibo Ding, Yanjun Fu, Omniyyah Ibrahim, Chawin Sitawarin, Xinyun
Chen, Basel Alomair, David Wagner, Baishakhi Ray, and Yizheng Chen. 2024.
Vulnerability Detection with Code Language Models: How Far Are We?
arXiv:2403.18624 [cs.SE] https://arxiv.org/abs/2403.18624

[7] Yangruibo Ding, Ben Steenhoek, Kexin Pei, Gail Kaiser, Wei Le, and Baishakhi Ray.
2023. TRACED: Execution-aware Pre-training for Source Code. arXiv preprint
arXiv:2306.07487 (2023). https://arxiv.org/pdf/2306.07487.pdf

[8] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N. Nguyen. 2020. A C/C++ Code
Vulnerability Dataset with Code Changes and CVE Summaries. In Proceedings of
the 17th International Conference on Mining Software Repositories (Seoul, Republic
of Korea) (MSR ’20). Association for Computing Machinery, New York, NY, USA,
508–512. https://doi.org/10.1145/3379597.3387501

[9] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Findings of the
Association for Computational Linguistics: EMNLP 2020, Trevor Cohn, Yulan He,
and Yang Liu (Eds.). Association for Computational Linguistics, Online, 1536–
1547. https://doi.org/10.18653/v1/2020.findings-emnlp.139

[10] Oliver Ferschke, Iryna Gurevych, and Marc Rittberger. 2012. FlawFinder: A
Modular System for Predicting Quality Flaws in Wikipedia.. In CLEF (Online
Working Notes/Labs/Workshop). 1–10.

[11] Chakkrit (Kla) Fu, Michael Tantithamthavorn, Van Nguyen, and Trung Le. 2023.
ChatGPT for Vulnerability Detection, Classification, and Repair: How Far Are
We? arXiv preprint arXiv:2310.09810 (2023). https://arxiv.org/pdf/2310.09810.pdf

[12] Tiferet Gazit. 2024. Fixing security vulnerabilities with AI. https://github.blog/
2024-02-14-fixing-security-vulnerabilities-with-ai/

[13] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. 2022.
UniXcoder: Unified Cross-Modal Pre-training for Code Representation. In Pro-
ceedings of the 60th AnnualMeeting of the Association for Computational Linguistics

https://arxiv.org/pdf/2302.01215.pdf
https://arxiv.org/abs/2209.09019
https://arxiv.org/pdf/2304.00409.pdf
https://arxiv.org/pdf/2304.00409.pdf
https://arxiv.org/pdf/2304.07232.pdf
https://arxiv.org/abs/2403.18624
https://arxiv.org/abs/2403.18624
https://arxiv.org/pdf/2306.07487.pdf
https://doi.org/10.1145/3379597.3387501
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://arxiv.org/pdf/2310.09810.pdf
https://github.blog/2024-02-14-fixing-security-vulnerabilities-with-ai/
https://github.blog/2024-02-14-fixing-security-vulnerabilities-with-ai/

K-ASTRO: Structure-Aware Adaptation of LLMs for Code Vulnerability Detection
Conference’17, July 2017, Washington, DC, USA

(Volume 1: Long Papers), Smaranda Muresan, Preslav Nakov, and Aline Villavicen-
cio (Eds.). Association for Computational Linguistics, Dublin, Ireland, 7212–7225.
https://doi.org/10.18653/v1/2022.acl-long.499

[14] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang, and
Ming Zhou. 2021. GraphCodeBERT: Pre-training Code Representations with
Data Flow. arXiv:2009.08366 [cs.SE] https://arxiv.org/abs/2009.08366

[15] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin
de Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-Efficient Transfer Learning for NLP. In Proceedings of the 36th Interna-
tional Conference on Machine Learning (ICML). http://proceedings.mlr.press/v97/
houlsby19a/houlsby19a.pdf

[16] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of Large
Language Models. In Proceedings of the International Conference on Learning
Representations. https://openreview.net/forum?id=nZeVKeeFYf9

[17] Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing
Xu, Soujanya Poria, and Roy Ka-Wei Lee. 2023. LLM-Adapters: An Adapter Family
for Parameter-Efficient Fine-Tuning of Large Language Models. arXiv preprint
arXiv:2304.01933 (2023). https://arxiv.org/pdf/2304.01933.pdf

[18] Ehsan Kamalloo, Nouha Dziri, Charles Clarke, and Davood Rafiei. 2023. Evaluat-
ing Open-Domain Question Answering in the Era of Large Language Models. In
Proceedings of the 61st Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), Anna Rogers, Jordan Boyd-Graber, and Naoaki
Okazaki (Eds.). Association for Computational Linguistics, Toronto, Canada,
5591–5606. https://doi.org/10.18653/v1/2023.acl-long.307

[19] Dongwoo Kim and Jaewoo Choi. 2022. Enhancing Vulnerability Detection by
Learning from Syntax-Based Execution Paths of Code. In Proc. of ICSE.

[20] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014). https://arxiv.org/pdf/1412.6980.pdf

[21] Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The Power of Scale
for Parameter-Efficient Prompt Tuning. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, Marie-Francine Moens,
Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (Eds.). Association for
Computational Linguistics, Online and Punta Cana, Dominican Republic, 3045–
3059. https://doi.org/10.18653/v1/2021.emnlp-main.243

[22] Xiang Lisa Li and Percy Liang. 2021. Prefix-Tuning: Optimizing Continuous
Prompts for Generation. In Proceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), Chengqing Zong, Fei Xia,
Wenjie Li, and Roberto Navigli (Eds.). Association for Computational Linguistics,
Online, 4582–4597. https://doi.org/10.18653/v1/2021.acl-long.353

[23] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun
Deng, and Yuyi Zhong. 2018. VulDeePecker: A Deep Learning-Based System
for Vulnerability Detection. In Proceedings 2018 Network and Distributed System
Security Symposium (NDSS 2018). Internet Society. https://doi.org/10.14722/ndss.
2018.23158

[24] Guanjun Lin, Jun Zhang, Wei Luo, Lei Pan, and Yang Xiang. 2017. Vulnerability
Discovery with Function Representation Learning from Unlabeled Projects. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security (Dallas, Texas, USA) (CCS ’17). Association for Computing Machinery,
New York, NY, USA, 2539–2541. https://doi.org/10.1145/3133956.3138840

[25] Xin Liu, Yuan Tan, Zhenghang Xiao, Jianwei Zhuge, and Rui Zhou. 2023. Not
The End of Story: An Evaluation of ChatGPT-Driven Vulnerability Description
Mappings. In Findings of the Association for Computational Linguistics: ACL 2023,
Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (Eds.). Association for
Computational Linguistics, Toronto, Canada, 3724–3731. https://doi.org/10.
18653/v1/2023.findings-acl.229

[26] Anil Mishra and Supriya Gupta. 2023. Enhancing Code Vulnerability Detection
via Vulnerability-Preserving Data Augmentation. In Proc. of ICML.

[27] Sudipta Paria, Aritra Dasgupta, and Swarup Bhunia. 2023. DIVAS: An LLM-based
End-to-End Framework for SoC Security Analysis and Policy-based Protection.
arXiv preprint arXiv:2308.06932 (2023). https://arxiv.org/pdf/2308.06932.pdf

[28] Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, and Bren-
dan Dolan-Gavitt. 2023. Examining Zero-Shot Vulnerability Repair with Large
Language Models. In Proceedings of the 2023 IEEE Symposium on Security and
Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA, 2339–2356. https:
//doi.org/10.1109/SP46215.2023.10179420

[29] Moumita Das Purba, Arpita Ghosh, Benjamin J. Radford, and Bill Chu. 2023.
Software Vulnerability Detection using Large Language Models. In 2023 IEEE 34th
International Symposium on Software Reliability Engineering Workshops (ISSREW).
112–119. https://doi.org/10.1109/ISSREW60843.2023.00058

[30] Chandra Thapa, Seung Ick Jang, Muhammad Ejaz Ahmed, Seyit Camtepe, Josef
Pieprzyk, and Surya Nepal. 2022. Transformer-Based Language Models for Soft-
ware Vulnerability Detection. In Proceedings of the 38th Annual Computer Security
Applications Conference (<conf-loc>, <city>Austin</city>, <state>TX</state>,

<country>USA</country>, </conf-loc>) (ACSAC ’22). Association for Comput-
ing Machinery, New York, NY, USA, 481–496. https://doi.org/10.1145/3564625.
3567985

[31] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. LlaMA: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023). https://arxiv.org/pdf/2302.13971.pdf

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[33] John Viega, J.T. Bloch, Yoshi Kohno, and Gary McGraw. 2000. ITS4: a static
vulnerability scanner for C and C++ code. In Proceedings 16th Annual Computer
Security Applications Conference (ACSAC’00). 257–267. https://doi.org/10.1109/
ACSAC.2000.898880

[34] Kesu Wang, Meng Yan, He Zhang, and Haibo Hu. 2022. Unified abstract syntax
tree representation learning for cross-language program classification. In Proceed-
ings of the 30th IEEE/ACM International Conference on Program Comprehension
(Virtual Event) (ICPC ’22). Association for Computing Machinery, New York, NY,
USA, 390–400. https://doi.org/10.1145/3524610.3527915

[35] Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. 2020. Detecting Code Clones
with Graph Neural Network and Flow-Augmented Abstract Syntax Tree. In 2020
IEEE 27th International Conference on Software Analysis, Evolution and Reengi-
neering (SANER). 261–271. https://doi.org/10.1109/SANER48275.2020.9054857

[36] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. 2021. CodeT5:
Identifier-aware unified pre-trained encoder-decoder models for code understand-
ing and generation. In Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing (EMNLP). https://aclanthology.org/2021.emnlp-
main.685.pdf

[37] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C. H. Hoi. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Under-
standing and Generation. arXiv:2109.00859 [cs.CL] https://arxiv.org/abs/2109.
00859

[38] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei
Xia, Ed Chi, Quoc Le, and Denny Zhou. 2023. Chain-of-Thought Prompting
Elicits Reasoning in Large Language Models. arXiv:2201.11903 [cs.CL] https:
//arxiv.org/abs/2201.11903

[39] YanWu, Jingyi Su, David D. Moran, and Chris D. Near. 2023. Automated Software
Testing Starting from Static Analysis: Current State of the Art. arXiv preprint
arXiv:2301.06215 (2023). https://arxiv.org/ftp/arxiv/papers/2301/2301.06215.pdf

[40] Frank F. Xu, Uri Alon, Graham Neubig, and Vincent J. Hellendoorn. 2022. A Sys-
tematic Evaluation of Large Language Models of Code. arXiv:2202.13169 [cs.PL]
https://arxiv.org/abs/2202.13169

[41] Fabian Yamaguchi, Markus Lottmann, and Konrad Rieck. 2012. Generalized
vulnerability extrapolation using abstract syntax trees. In Proceedings of the
28th Annual Computer Security Applications Conference (Orlando, Florida, USA)
(ACSAC ’12). Association for ComputingMachinery, New York, NY, USA, 359–368.
https://doi.org/10.1145/2420950.2421003

[42] Kaizhi Yu and Yixuan Chen. 2023. DLAP: A Deep Learning Augmented Prompting
Framework for Vulnerability Detection. In Proc. of NeurIPS.

[43] Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu, Bingchao Wu, Bei Guan,
Wang Yongji, and Jian-Guang Lou. 2023. Large Language Models Meet NL2Code:
A Survey. In Proceedings of the 61st Annual Meeting of the Association for Compu-
tational Linguistics (ACL), Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki
(Eds.). https://doi.org/10.18653/v1/2023.acl-long.411

[44] Haopeng Zhang, Xiao Liu, and Jiawei Zhang. 2023. Extractive Summarization
via ChatGPT for Faithful Summary Generation. In Findings of the Association for
Computational Linguistics: EMNLP 2023, Houda Bouamor, Juan Pino, and Kalika
Bali (Eds.). Association for Computational Linguistics, Singapore, 3270–3278.
https://aclanthology.org/2023.findings-emnlp.214

[45] Jieyu Zhang, Ranjay Krishna, Ahmed H Awadallah, and Chi Wang. 2023. EcoAs-
sistant: Using LLM Assistant More Affordably and Accurately. arXiv preprint
arXiv:2310.03046 (2023). https://arxiv.org/pdf/2310.03046.pdf

[46] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. 2019. A Novel Neural Source Code Representation Based on Abstract Syntax
Tree. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). 783–794. https://doi.org/10.1109/ICSE.2019.00086

[47] Jiang Zheng, Laurie Williams, Nachiappan Nagappan, Will Snipes, John P Hude-
pohl, and Mladen A Vouk. 2006. On the value of static analysis for fault detection
in software. IEEE transactions on software engineering 32, 4 (2006), 240–253.
https://collaboration.csc.ncsu.edu/laurie/Papers/TSE-0197-0705-2.pdf

[48] Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. 2022. Fuzzing:
a survey for roadmap. ACM Computing Surveys (CSUR) 54, 11s (2022), 1–36.
https://dl.acm.org/doi/abs/10.1145/3512345

https://doi.org/10.18653/v1/2022.acl-long.499
https://arxiv.org/abs/2009.08366
https://arxiv.org/abs/2009.08366
http://proceedings.mlr.press/v97/houlsby19a/houlsby19a.pdf
http://proceedings.mlr.press/v97/houlsby19a/houlsby19a.pdf
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/pdf/2304.01933.pdf
https://doi.org/10.18653/v1/2023.acl-long.307
https://arxiv.org/pdf/1412.6980.pdf
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.14722/ndss.2018.23158
https://doi.org/10.14722/ndss.2018.23158
https://doi.org/10.1145/3133956.3138840
https://doi.org/10.18653/v1/2023.findings-acl.229
https://doi.org/10.18653/v1/2023.findings-acl.229
https://arxiv.org/pdf/2308.06932.pdf
https://doi.org/10.1109/SP46215.2023.10179420
https://doi.org/10.1109/SP46215.2023.10179420
https://doi.org/10.1109/ISSREW60843.2023.00058
https://doi.org/10.1145/3564625.3567985
https://doi.org/10.1145/3564625.3567985
https://arxiv.org/pdf/2302.13971.pdf
https://doi.org/10.1109/ACSAC.2000.898880
https://doi.org/10.1109/ACSAC.2000.898880
https://doi.org/10.1145/3524610.3527915
https://doi.org/10.1109/SANER48275.2020.9054857
https://aclanthology.org/2021.emnlp-main.685.pdf
https://aclanthology.org/2021.emnlp-main.685.pdf
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/ftp/arxiv/papers/2301/2301.06215.pdf
https://arxiv.org/abs/2202.13169
https://arxiv.org/abs/2202.13169
https://doi.org/10.1145/2420950.2421003
https://doi.org/10.18653/v1/2023.acl-long.411
https://aclanthology.org/2023.findings-emnlp.214
https://arxiv.org/pdf/2310.03046.pdf
https://doi.org/10.1109/ICSE.2019.00086
https://collaboration.csc.ncsu.edu/laurie/Papers/TSE-0197-0705-2.pdf
https://dl.acm.org/doi/abs/10.1145/3512345

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Vulnerability Detection
	2.2 Motivating Example
	2.3 Abstract Syntax Tree Representation

	3 Approach: K-ASTRO
	3.1 Diversity-Introducing AST Augmentation
	3.2 Structure-Aware Attention Bias
	3.3 Joint LLM Adaptation

	4 Experiments
	4.1 Datasets and Data Summary
	4.2 Data Preparation
	4.3 Implementation and Training Details
	4.4 Prompted LLM Performance
	4.5 RQ1: Other LLMs vs. K-ASTRO
	4.6 RQ2: CWE-Specific Performance
	4.7 RQ3: Model Efficiency

	5 Related Work
	5.1 ML-Driven Vulnerability Detection
	5.2 LLMs in Computer Security
	5.3 LLM Adaptation

	6 Conclusion
	6.1 Limitations

	References

