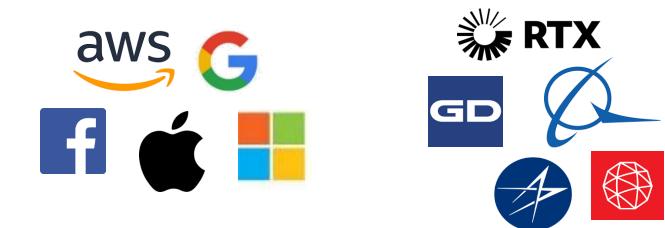
Towards Trustworthy Integration of Generative AI in the MBSE Development Lifecycle


<u>Amer Tahat</u>, Isaac Amundson, David Hardin, Darren Cofer 25th Annual High Confidence Software and Systems (HCSS 2025) May 14, 2025

DARPA PROVERS

Pipelined Reasoning of Verifiers Enabling Robust Systems

Develop automated, scalable **formal methods** tools that are integrated into *traditional* development pipelines

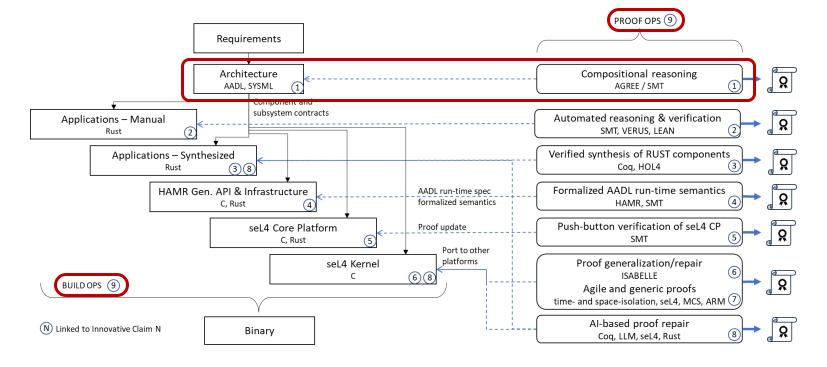
Enable *traditional* product engineers to incrementally produce and maintain **high-assurance** national security systems

Barriers to formal methods adoption

- Scalability to support real-world systems
- The UI targets formal-methods experts, creating a learning curve for others.
- Lack of commercially licensed / supported tools
- Formal methods skillset required
 - Property specification language

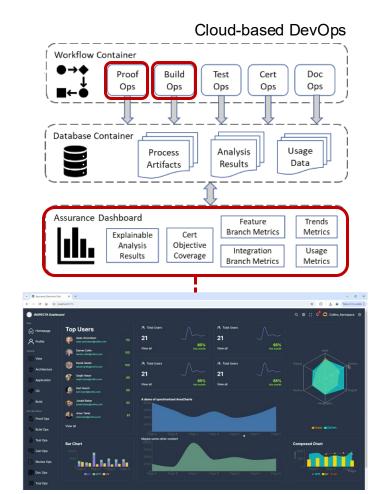
Explainable counterexamples

GenAl's Potential: Accelerates system development — but trust, correctness, and consistency must be non-negotiable.



Collins Aerospace

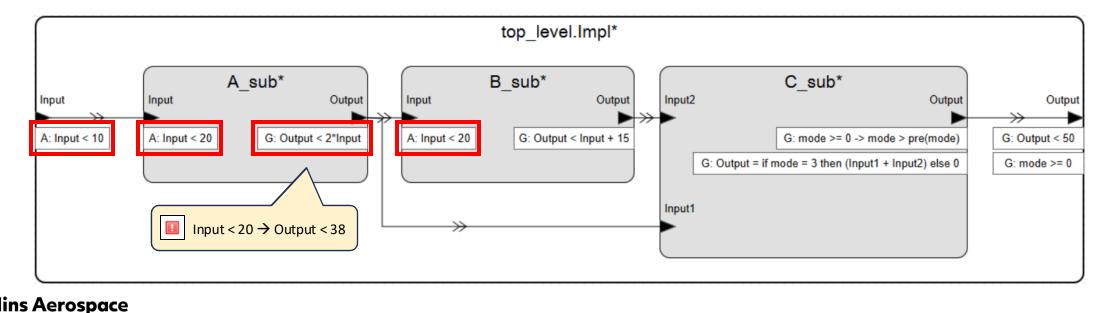
An RTX Business


INSPECTA

Industrial-Scale Proof Engineering for Critical Trustworthy Applications

Role of AGREE Copilot (AGREE-Dog):

 \rightarrow Creates a trust fabric for AI-accelerated **MBSE** engineering.



Compositional Reasoning with AGREE

Assume Guarantee Reasoning Environment

- Assume-Guarantee annex for AADL architecture models
 - Assumptions describe the expectations that a component has on the environment
 - Guarantees describe bounds on the behavior of the component when assumptions are valid
- Compositional analysis to prove correctness of:
 - Component interfaces (component assumptions are satisfied by upstream guarantees)
 - Component implementations (component assumptions and subcomponent guarantees satisfy guarantees)

AGREE Counterexamples ounterexample Variables for the selected component implementati /ariable Nam Inputs [Target Speed.val] 1499/10 Property Result {Target Tire Pitch.val} -1/103/10 -1/10State Verification for Car.Car_Impl 1 Invalid, 29 Valid [G car 1] actual speed is less than constant target speed} true false true TOP.AXL..ASSUME.HIST} true true true TOP.CNTRL..ASSUME.HIST] true true true Contract Guarantees 1 Invalid, 2 Valid TOP.SM.,ASSUME.HIST true true true TOP. THROT. ASSUME HIST true true true Subcomponent Assumptions Valid (0s) const tar speed} true false true utputs: 1499/110 1499/121 14990/1331 [G_car_1] actual speed is less than constant target speed Invalid (0s) Actual Speed.val) Actual Tire Pitch.val} -1/101/5 -1/10State Signal.val} 0 [G_car_2] acceleration is limited Valid (0s) This component consistent THROT consistent 1 2 How can we improve AGREE usability by CNTRL consistent 451/10 0 -1/10 3/10 AXL consistent > 🗸 true true SM consistent making counterexamples more *actionable*? 1/5 -1/10 Component composition > 🗸 Verification for THROT > 🗸 1 2 Verification for CNTRL 1499/121 14990/1331 110 Verification for AXL true Verification for SM -1499/121 -14990/1331 17988/121 -1499/1331 Actionable: Determine and address the root 14990/121 -31479/1331 /11 -1499/121 -14990/1331 -1499/121-14990/133 cause of the counterexample more *quickly* 1 2 true Outputs: [SM.State Out.val]

(THROT.Actuator Input)

{THROT..ASSUME.HIST}

Inputs

State:

Outputs: {THROT.Actual.vall 0

1499/11

1499/110

true

1

-1499/121

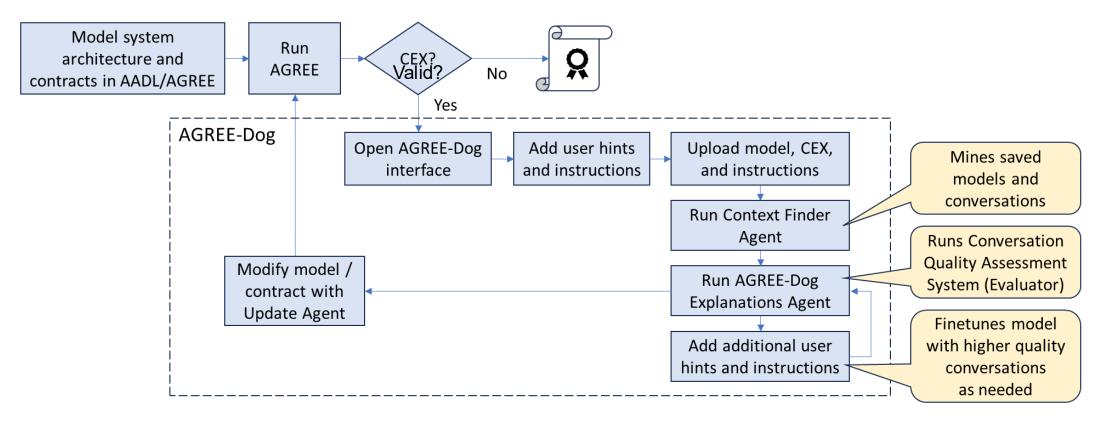
1499/121

true

2

true

-14990/1331


14990/1331

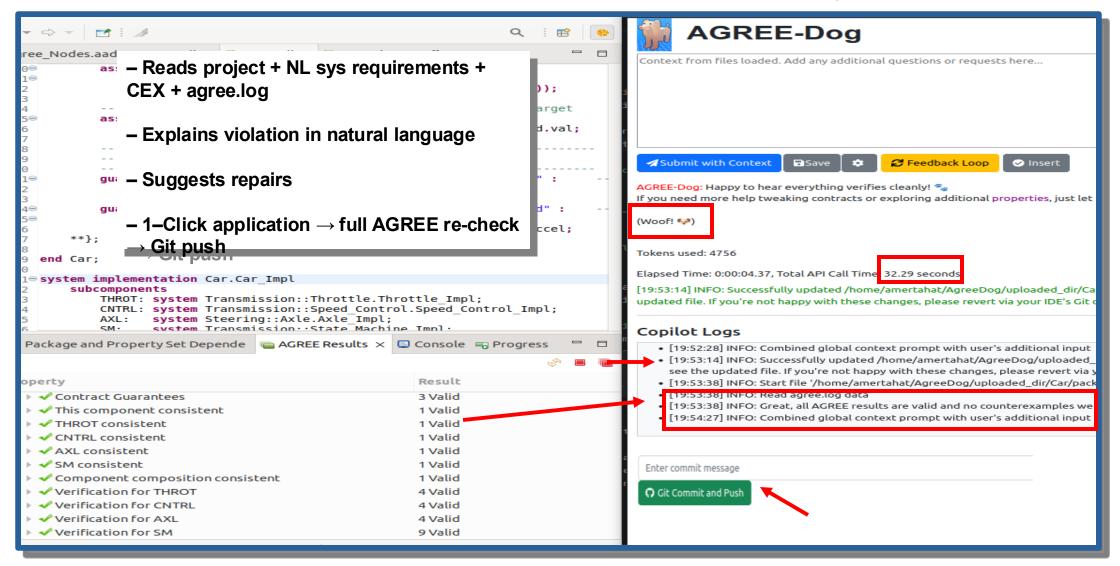
Before AgreeDog: costly and error-prone manual interpretation of counterexamples, requirements, logs, and models — sometimes taking **days or weeks** to complete repairs!

Toward Trusted Gen AI in the MBSE Lifecycle

- Early trials of AGREE-Dog—have reduced system-level repair cycles from days/weeks to minutes/seconds, delivering substantial time savings.
 Deward by CBT 4e, O2, and CBT 4.1 multimedal models.
- Powered by GPT-4o, O3, and GPT-4.1 multimodal models.

Toward Trusted Gen Al in the MBSE Lifecycle

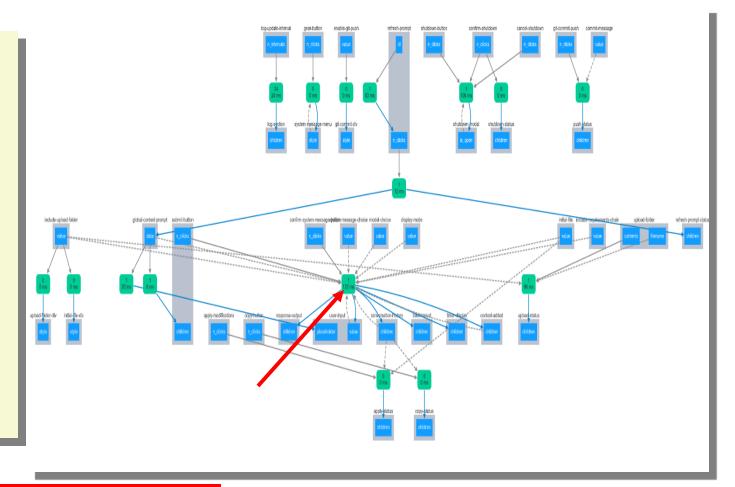
GREE-Dog	AGREE-Dog
Context from files loaded. Add any additional questions or requests here	OJKind SMTSolvers AI selector OAgreeDog System Message ✓ Confirm Selection
✓ Submit with Context Save Feedback Loop Insert	 OLoad additional contextOUse Osate2 OInclude import chainODon't include import chain GPT-O3 reasoning (128k tk) GPT-4.1 multi-modal (1 m tk) GPT-40 multi-modal (1 m tk)
Tokens used: 0 Elapsed Time: 00:00:00.00	 GPT-4 (8k tk) Full History O Last Response
Copilot Logs	 Enable Git push Disable Git push
 [20:31:46] INFO: Requirement file provided: ./sys_requirements.csv [20:31:46] INFO: Contents of sys_requirement.txt loaded successfully. [20:31:46] INFO: Starting the Dash server [20:31:51] INFO: Re-read AADL model file: /home/amertahat/AgreeDog/uploaded_dir/Car/packages/Car.aadl [20:31:51] INFO: Re-read requirements file: ./sys_requirements.csv [20:31:51] INFO: New counterexample detected: cex10807709049446947555.xls [20:31:51] INFO: New counterexample file detected: cex10807709049446947555.xls. Prompt updated with latest files. 	U Shutdown Server



AGREE-Dog: Counterexample Analysis and Resolution

	workspace - Car/pacl	ages/Car.aadl - OSATE2 – 🗆 🙁	🖬 🕼 Dash	× + 8
File	Edit Navigate Search Project Run OSATE BLESS Analyses Window		$\leftarrow \rightarrow C \bigcirc \otimes 0.0.0.0$):8050 ☆ ♡ ▲ 釣 ∞ ⑥ 〓
Ľ		- 1 2 3 9 0 1 4 9 2 2 2 2 2 2 2 2 4	ппольторотненног	
%	 	Q i 🖻 😒	THROT.Actual.val 11 1 THROT.Actuator_Inpu ###	0 9.09090909090909 t 110 -10 -9.09090909090909
*	 guarantee G_car_1 "actual speed is less const_tar_speed => (Act guarantee G_car_2 "acceleration is limit 	ual_Speed.val <= Target_Speed.val);	AGREE-Dog: The co the guarantee `G_car_	ounter-example provided by AGREE indicates that _1` ("actual speed is less than constant target ated. Let's analyze the counter-example step by
	end Car;		### Counter-example	
	 system implementation Car.Car_Impl subcomponents THROT: system Transmission::Throttle.Th CNTRL: system Transmission::Speed_Contr AXL: system Steering::Axle.Axle Impl; 	### Summary:		* And y 515 1, 10, 9.09090909090909 21, 0, 0
	SM: system Transmission::State_Machine. connections SpeedToThrot: port CNTRL.Actuator_Input Communication Properties::Timing =>	The key issue was the mismatch between the requir	ement for the top-	roperties:** :rue -> Target_Speed.val = pre(Target_Speed.val)` :_speed => (Actual_Speed.val <=
	AcSpeedToTop: port THROT.Actual -> Actu AcSpeedToCntrl: port THROT.Actual -> CM TgSpeedToCntrl: port Target Speed -> CM © TgPtichToAxl: port Target Tire_Pitch -> Communication Properties::Timing ->	level system's output (< 50) and the guarantee in the model (< 70).		
	 AcPtichToCar: port AXL.Actual_Tire_Dire Communication_Properties::Timing => SSToSM: port SM.State_Out -> State_Sign 	By aligning the guarantee in the top-level system w	th the	olds true because `11 <= 121`.
	<pre>end Car.Car_Impl; end Car; Stop-Here</pre>	requirement, we ensure consistency and eliminate t	he	10 and `Target_Speed.val` is 0. Here, the s violated because `10 > 0`. Detection
	💽 Problems 🔲 Properties 🖻 AADL Property Val 🛛 🏀 Classifier Informati 📨	counterexample.		ecause the `Target_Speed` is changing to 0 in the makes the guarantee `G_car_1` invalid as the allowed to catch up immediately to the new
	Property			
	Contract Guarantees Subcomponent Assumptions	1 Invalid, 2 Valid Valid (0s)	### Solution:	
	[] [G_car_1] actual speed is less than constant target speed	Invalid (0s)		e need to ensure that the `Target_Speed` remains
	[G_car_2] acceleration is limited	Valid (0s)	•	ion over which the `Actual_Speed` is being
		1 Valid 1 Valid	-	done by introducing a delay or ensuring that t
		nsert 28:13:1067	2	not change abruptly. We can modify the property

Toward Trusted Gen AI in the MBSE Lifecycle



AgreeDog System Call-Graph Complexity

Traditional Workflow: Tens of interdependent calls & manual back-and-forth

AGREE-Dog Approach:

- Collapses complex interactions into a single recommendation step
- Minimizes manual navigation of callgraphs and dependencies
- \rightarrow Dramatic reduction in user effort via push-button UI.

AGREE-Dog significantly automates 16 DevOp and ProofOp → drastic user effort reduction

Ongoing Experimental Evaluations:

- Test bed: We created 13 test scenarios for an autonomous-vehicle (Car) AADL model—each scenario comprising 400 LoC models, <100 LoC CEX, <100 LoC sys requirements, and agree Logs. Total ~10,000 LoC
- **× Fault Injection:** We injected faults into three key components (Top-level Control System, Steering, and Transmission) and ran a full **AGREE-Dog** repair "conversation" for each.

Key Impact & Scalability

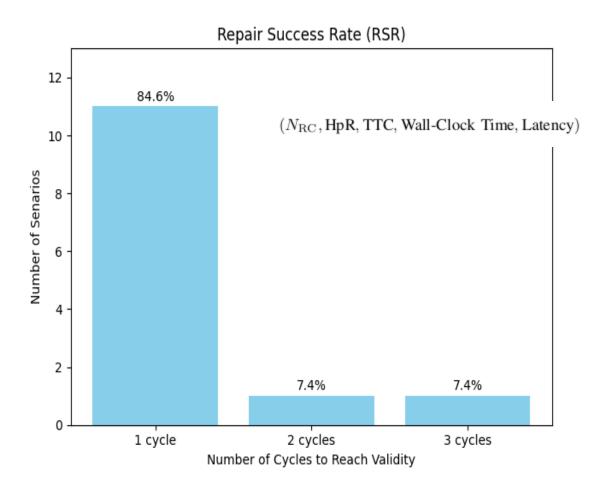


TABLE I: Structural Metrics Summary. Token values rounded to the nearest hundred.

Metric	Result		
System Validity	100%		
Repair Success Rate (Fig. 5)	11/13 (84.6%) in 1 cycle; 1/13 in 2 cycles; 1/13 in 3 cycles		
Human Input Ratio (HpR)	< 0.1% of total tokens		
AGREE-Dog Input	> 99.9% of total tokens		
Token Use (per test suite)	4.8k, 5.5k, 22k tokens		

TABLE II: Temporal Metrics Summary. Time values rounded to the nearest second.

Metric	Result
Wall-Clock Time (WCT)	Mean: 2:09 min; Median: 1:39 min
Latency (per cycle)	Mean: 22 s; Range: 4–33 s

 Key Observation: Human input dropped below 0.1% of the workflow—yet we still achieved 100% system-wide validity, demonstrating a dramatic reduction in manual effort.

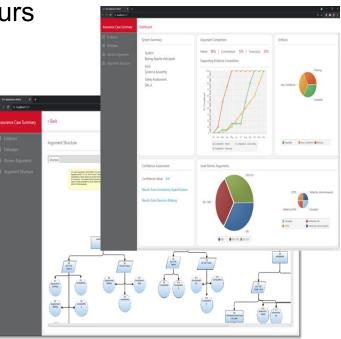
ins Aerospace

Challenges

- Contextual constraints
 - GenAl struggles with accurate AGREE model explanations due to limited context, causing hallucinations
 - AGREE-Dog Retrieval-Augmented Generation (RAG) System adjusts context dynamically, reducing hallucinations and improving explanation accuracy.
- Model repair
 - Repairs can generate multiple solutions, some of which violate system requirements
 - AGREE-Dog deploys Agree.log validity analysis and follows predefined requirements to ensure repairs respect system constraints. (MMU is useful)
- Evaluation
 - Manual evaluation limits scalability for large models
 - A Conversational Quality Assessment System (CQAS) automates performance tracking

Current Limitations

- Manual Solver Selection
 - Users must still choose between JKind, SMT solvers.
 - We are developing a multi-agent router that intelligently selects solvers based on context, performance, and explainability.
- Model repair
 - We are testing multiple-root causes for cex generation, across more complex systems.
 - The AGREE-Dog more automated navigation between system files.
 - Judge Worker orchestration: feasibility study.
- RL Integration In Progress
 - Repair adaptation via reinforcement learning is in early stage.
 - We are incorporating conversation history into our recommendation system and fine-tuning datasets.


Conclusions

• Summary

- AGREE-Dog: Push-Button System-Wide Formally Valid Repairs Explainable
- Traceable Rapid Human-in-the-Loop
- Validation cycles reduced from days/weeks to minutes/hours

• Up Next:

- Federated/Organizational agents & solver orchestration
- CQAS (evaluation metrics)
- SysMLv2 migration: Embed AGREE-Dog
 like Copilot into next-gen modeling environments
- Assurance patterns dashboard

Resources

AGREE-Dog Video Demo: https://www.youtube.com/watchv=2cKRm9fuifs **INSPECTA** project page: \succ https://loonwerks.com/projects/inspecta.html AGREE-Dog source code: <u>https://github.com/loonwerks/AgreeDog</u> > AGREE-Dog-Plugin source code: https://github.com/loonwerks/AgreeDog-plugin.git

Thank You!

This work was funded by DARPA contract FA8750-24-9-1000.

The views, opinions and/or findings expressed are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

