
Automated SysML v2 System
Model to Memory-Safe
Language Code Generation
with Integrated AI Assistance

DARPA PROVERS

David S. Hardin, Ph.D.
Applied Research & Technology

© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

• Collins Aerospace: Isaac Amundson, Junaid Babar, Darren Cofer,
Saqib Hasan, Karl Hoech, Amer Tahat

• Kansas State University: Jason Belt, John Hatcliff, Robby

• Aarhus University (Denmark): Stefan Hallerstede

Collaborators on this Presentation

2
© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

Develop automated, scalable formal methods tools that are
integrated into traditional development pipelines using “proof
engineering” techniques

Enable traditional product engineers to incrementally produce
and maintain high-assurance national security systems

DARPA PROVERS
Pipelined Reasoning of Verifiers Enabling Robust Systems

© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

3

So How Did We Get Here?

4

DARPA High Assurance Cyber Military Systems (HACMS)

3

 Loonwerks.com/projects/hacms

DEF CON 29

© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

• Assume-Guarantee annex for AADL architecture models
– Assumptions describe the expectations that a component has on the environment
– Guarantees describe bounds on the behavior of the component when assumptions are valid

• Compositional analysis to prove correctness of:
– Component interfaces (component assumptions are satisfied by upstream guarantees)
– Component implementations (component assumptions and subcomponent guarantees satisfy guarantees)

Compositional Reasoning for Model-Based Systems Engineering

5

Assume Guarantee REasoning Environment (AGREE)

© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

Input < 10 Output < 18Input < 20 Output < 38

Resolute
An Assurance Pattern Language and Evaluation Tool for Architecture Models

• The structure of the system architecture dictates the structure of the
assurance case

• Design patterns Assurance patterns
• Extension of AADL language

• Assurance case instantiated with elements from AADL model
• Specify logical rules for evaluating evidence

• Automated evaluation

goal memory_protection(p : process) <=

 ** “Process " p " memory is protected from alterations by other processes" **

 strategy "Argue over bound processes";
 property(p, OS) = "seL4" or
 forall (mem : memory) . bound(p, mem) =>
 forall (q : process) . bound(q, mem) => memory_safe_process(q))

AdvoCATE (NASA)

© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

6

Oops!

© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

7

• seL4 microkernel guarantees
partitioning of components and
communication, backed by
computer-checked proofs

• seL4 guarantees no infiltration,
exfiltration, eavesdropping,
interference, and provides fault
containment for untrusted code

• Ensures soundness of the MBSE
design process – components
can be analyzed separately and
composed safely

seL4

8

Formally Verified Microkernel

seL4 is…
• An operating

system microkernel
• A hypervisor
• Proved correct
• Provably secure
• Fast

© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

University of New South Wales
Proofcraft

• Objective: develop the necessary design, analysis and verification tools that
enable engineers to build cyber-resilient systems, including legacy elements

• BriefCASE

– Integrated model-based systems engineering tool suite based on AADL models
– Analyze architecture models for cyber vulnerabilities and generate cyber resiliency

requirements
– Transform system architecture models to satisfy cyber-resiliency requirements
– Synthesize high-assurance component implementations from formal specifications
– Generate software integration code directly from verified architecture models
– Build to a formally verified secure microkernel target (seL4)
– Assurance:

• Check model conformance to standards
• Verify system design and implementation using formal methods
• Document proof of correctness with an assurance case

DARPA Cyber Assured Systems Engineering (CASE)

9
© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

• Define rules in Resolute that
correspond to modeling
guidelines

• Group rules into rulesets
corresponding to
organizational process,
customer requirements,
certification guidelines, and
tool constraints

• Automatically check
compliance with modeling
guidelines in OSATE

Resolint

10

A linter tool for AADL models

Modeling Guidelines

© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

HAMR

11

High-Assurance Modeling and Rapid Engineering for Embedded Systems

Modeling, analysis, and
verification in AADL or
SysML v2 modeling
languages

Leverage analyses from AADL community

Component development
and verification in
multiple languages

• Slang (high integrity subset of Scala)
• C (utilizing memory-safe code generation)
• Rust (support on DARPA PROVERS)
• …

HAMR: infrastructure code generation and target platform build tool

© 2025 Collins Aerospace. | This document does not include any export controlled technical data. Tux logo: lewing@isc.tamu.edu

Deployments aligned with
MBSE model semantics
on multiple platforms

JV
M

 D
ep

lo
ym

en
t

Li
nu

x
D

ep
lo

ym
en

t

se
L4

 D
ep

lo
ym

en
t

verified microkernel

Kansas State University

Compositional Reasoning
(AGREE/GUMBO)

Correspondence
Proofs (HAMR)

Automated Reasoning
(Verus)

Theorem Proving
(Isabelle)

Verified Synthesis
(Rocq)

DARPA PROVERS: INSPECTA Team
Industrial-Scale Proof Engineering for Critical Trustworthy Applications

© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

12

DevOps

System Architecture
Modeling (SysML v2/AADL)

Application Component
Development (Rust)

Component API Synthesis
(HAMR)

Microkernel (seL4/
Microkit)

Application Component
Synthesis (Rust)

BUILDOPS PROOFOPS

Requirements

Binary

• Collins Aerospace, Team Lead
• Darren Cofer, PI

• Carnegie Mellon University
• Dornerworks
• Kansas State University

• with Aarhus University
• Proofcraft
• University of Kansas
• University of New South Wales

INSPECTA Team

13
© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

• Restricted Platform
– Collins Launched Effects (LE) Mission Computer
– Based on same computer hardware as the Open

Platform

TA1: Proof Engineering

TA2: Platform Development

Technical Areas

Proof Engineering:
Tool and process
Development

Platform Development:
Application and evaluation
on real use cases

Cloud-based DevOps

• Open Platform
– Developed and supported by DornerWorks
– Unrestricted UAV mission software, system model

with formal properties, multiple VMs, Rust software
components, seL4 kernel

© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

14

Binary

INSPECTA Proof Chain

15

System Architecture Model

AGREE/GUMBO Contract

Infrastructure Code

Component

Component Stub

Verus Contract

Rust Component
Code

Component Stub

Verus Contract

Rust Component
Code

AGREE/GUMBO Contract

Component

AP
I

seL4

(Verified) Compiler

Correspondence
Proofs

Component
Correctness

Proofs

Secure Kernel
Proofs

Compositional
Correctness

Proofs

Verified Code Gen
Proofs

Verified Synthesis

© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

With INSPECTA,
engineers are
able to generate
comprehensive
formal assurance
across the entire
development
stack without
requiring deep
formal methods
expertise

HAMR

• SysML v2 is the second major version of the Systems Modeling Language
• Standarized under the auspices of the Object Management Group

• Improved expressiveness relative to SysML v1
• Now similar in expressiveness to AADL

• Standard textual form in addition to the graphical form
• Promotes third party tool interaction

• Supported by major tool vendors: Siemens, The Mathworks, etc.
• Necessary for mass adoption by the Defense Industrial Base

SysML v2

16
© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

AADL to SysML v2 Transition Example

Manage Heat Source
Thread (Task)

AADL

SysMLv2 + AADL Library

https://github.com/loonwerks/INSPECTA-models/tree/main/isolette/sysml

© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

17

Kansas State University

• Inspired by AGREE and BLESS
• Aligns with MBSE run-time semantics
• Programming language independent
• Supports multiple quality assurance techniques
• Language Features:

– Data type invariants
– Port invariants (integration constraints)
– Event-based / Shared-data based inter-thread

communication
– Local state declarations with invariants
– Pre/Post conditions for thread code entry points
– Support for fixed width scalars (e.g., Float32)

GUMBO Contract Language

18

GUMBO contracts are specified in
AADL/SysML v2 threads

Component
interface

Component
contract

© 2025 Collins Aerospace. | This document does not include any export controlled technical data.
Kansas State University / Galois

LLMs for MBSE Contract Verification: Counterexample Analysis/Resolution

19

Analysis

Detection

• Counterexamples generated from
MBSE contract verification can be
difficult to analyze by non-experts

• We are utilizing LLMs to analyze these
counterexamples, and suggest repairs

• Any LLM hallucinations are rejected,
because assume/guarantee contract
analysis is performed by a
mathematically rigorous model checker

• We are also exploring use of LLMs for:
• Proof repair
• Documentation assistance
• Model updates
• Help writing formal properties

System Model LLM prompts

Contract counterexample

Repair

© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

• An emerging consensus amongst computer science
thought leaders is that memory-safe programming
language technology needs to be adopted more
broadly:

• “NSA recommends using a memory safe language
when possible.” (Nov. 2022)

• The White House has published a report
championing the adoption of memory safe
programming languages to enhance software
security. (Feb. 2024)

• Microsoft, Google, and Amazon have all announced
significant Rust initiatives.

• Memory-safe language requirements are beginning
to appear in U.S. Government contracting.

Memory-Safe Programming Languages

20
© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

• Memory-safe languages are not new
• For example, Collins successfully used Ada in major commercial and government

avionics products in the 1980s and 1990s
• Collins used SPARK effectively on high-assurance products for the intelligence

community in the 2000s

• Recent improvements in compiler technology have made memory safety very low cost
• Additionally, novel memory ownership models (e.g, in Rust) have allowed references

to be used safely
• Development organizations have tired of continual memory errors, causing a never-

ending parade of security vulnerabilities, despite the use of increasingly sophisticated
analysis tools

Why Memory-Safe Languages? Why now?

21
© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

• The INSPECTA team is focusing our memory-safe language research on
Rust

• Rust has several assurance advantages over C/C++, including:
• Improved type safety
• Vastly improved memory safety
• No arbitrary pointer arithmetic
• …in short, 80% of C/C++ security flaws are eliminated outright!

• Rust supports modern programming idioms such as a match primitive,
traits, immutability by default, etc.

• Basic Rust syntax is familiar to C/C++ developers, easing the transition

• The Rust compiler produces code which is competitive in speed to C/C++

The Rust Programming Language

22
© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

• Verus is an open source Rust code verification environment under
development by Carnegie Mellon University and numerous other researchers

• Verus has been utilized in a number of operating system, concurrent data
structure, and distributed algorithm verification efforts

• Verus utilizes Rust syntax to express precondition and postcondition
annotations, loop invariants, etc.

• Verus employs an SMT solver to attempt to prove postconditions, given the
preconditions

Verus: Rust Code Verification

23
© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

• HAMR now supports the generation of Rust source code from SysML v2 models
• For seL4, we use a new Rust userspace API developed by Nick Spinale
• The KSU/Aarhus team is translating GUMBO system model contracts to the

Verus Rust verification environment

• The University of Kansas is developing Rust code generation for their
attestation protocol specifications written in the Rocq theorem prover

• Dornerworks is writing open model application code in Rust

• CMU is enhancing Verus to support INSPECTA, reducing fragility in their SMT
backend, and creating a connection to the Lean theorem prover

Rust-Related Work on INSPECTA

24
© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

SysML v2 model with GUMBO contracts translated to
Rust/Verus by the KSU HAMR tool

25
© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

Carnegie Mellon University

• The INSPECTA team is making formal verification across the entire software
development stack accessible to non-formal methods experts through automated
analysis, DevOps integration, a ProofOps console, and improved user feedback

• Keys to achieving this goal include integration with the SysML v2 System Modeling
Language, and support for modern memory-safe languages, specifically Rust

• Much important INSPECTA Research was not mentioned in this talk, including:
– AGREE/GUMBO contract language harmonization (Collins / KSU)
– Verified Component Synthesis (KU)
– Lifecycle Attestation (KU / Collins)
– seL4 proof engineering (Proofcraft), Microkit, and Lions OS (UNSW)

• Check it out – code, papers, links:
– https://loonwerks.com/projects/inspecta.html

Conclusion

© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

26

Thank You!

27

This work was funded by DARPA contract FA8750-24-9-1000.
The views, opinions and/or findings expressed are those of the authors
and should not be interpreted as representing the official views or
policies of the Department of Defense or the U.S. Government.

© 2025 Collins Aerospace. | This document does not include any export controlled technical data.

Contact: david.hardin@collins.com

