
Verified Collaboration:
How Lean is Transforming Mathematics, Programming, and AI

May 12, 2025

Leo de Moura
Senior Principal Applied Scientist, AWS
Chief Architect, Lean FRO

Breaking the Cycle of Uncertainty: Math, Software, and AI You Can Trust

Math, software, and AI often rely on manual review or partial testing.

An error in a theorem or critical software system can have massive consequences.

Progress dies where fear of mistakes lives.

Breaking the Cycle of Uncertainty: Math, Software, and AI You Can Trust

Math, software, and AI often rely on manual review or partial testing.

An error in a theorem or critical software system can have massive consequences.

Progress dies where fear of mistakes lives.

Lean: machine-checkable proofs eliminate guesswork and create trust.

If every step is formally verified, we unlock unprecedented confidence and collaboration.

Lean is an open-source programming language and proof assistant that is transforming how we
approach mathematics, software verification, and AI.

The Lean project, started in 2013, aimed at merging interactive and automated theorem proving.

Lean provides machine-checkable proofs.

Lean addresses the “trust bottleneck”.

Lean opens up new possibilities for collaboration.

A small example

A small example
Mathlib is the Lean Mathematical library

A small example

Definition of an odd number

Our first theorem

Theorem statement, i.e., the claim being made

Our first theorem

A proof

Our first theorem

An incorrect proof

Theorem proving in Lean is an interactive game

The “game board”

“You have written my favorite computer game”, Kevin Buzzard

Theorem proving in Lean is an interactive game

A “game move”, aka “tactic”

Theorem proving in Lean is an interactive game

The “game move” simp, the simplifier, is one of the most popular moves in our game

Theorem proving in Lean is an interactive game

The “game move” use is the standard way of proving statements about existentials

Theorem proving in Lean is an interactive game

We complete this level using linarith, the linear arithmetic, move

Theorem proving in Lean is an interactive and addictive game

“You can do 14 hours a day in it and not get tired and feel kind of high the whole day.

You’re constantly getting positive reinforcement”, Amelia Livingston

Mathlib

The Lean Mathematical Library supports a wide range of projects.

It is an open-source collaborative project with over 500 contributors and 1.8M LoC.

“I’m investing time now so that somebody in the future can have that amazing experience”,

Heather Macbeth

Mathematics Software AI

Mathematics

Preamble: the Perfectoid Spaces Project

Kevin Buzzard, Patrick Massot, Johan Commelin

Goal: Demonstrate that we can define complex mathematical objects in Lean.

They translated Peter Scholze's definition into a form a computer can understand.

It not only achieved its goals but also demonstrated to the math community that

formal objects can be visualized and inspected with computer assistance.

Math is now data that can be processed, transformed, and inspected in various ways.

Preamble: the Perfectoid Spaces Project (cont.)
Kevin Buzzard, Patrick Massot, Johan Commelin

The Challenge

In November of 2020, Peter Scholze posits the Liquid Tensor Experiment (LTE) challenge.

“I spent much of 2019 obsessed with the proof of this theorem, almost getting crazy over

it. In the end, we were able to get an argument pinned down on paper, but I think nobody else

has dared to look at the details of this, and so I still have some small lingering doubts”,

Peter Scholze

The First Victory

Johan Commelin led a team with several members of the Lean community and announced the

formalization of the crucial intermediate lemma that Scholze was unsure about, with only

minor corrections, in May 2021.

“[T]his was precisely the kind of oversight I was worried about when I asked for the formal

verification. [...] The proof walks a fine line, so if some argument needs constants that are

quite a bit different from what I claimed, it might have collapsed”, Peter Scholze

Achieving the Unthinkable
The full challenge was completed in July 2022.

The team not only verified the proof but also simplified it.
Moreover, they did this without fully understanding the entire proof.

Johan, the project lead, reported that he could only see two steps ahead. Lean was a guide.

“The Lean Proof Assistant was really that: an assistant in navigating through the thick jungle

that this proof is. Really, one key problem I had when I was trying to find this proof was that I

was essentially unable to keep all the objects in my RAM, and I think the same problem occurs

when trying to read the proof”, Peter Scholze

Only the Beginning
Independence of the Continuum Hypothesis, Han and van Doorn, 2021

Sphere Eversion, Massot, Nash, and van Doorn, 2020-2022

Fermat’s Last Theorem for regular primes, Brasca et al., 2021-2023

Unit Fractions, Bloom and Mehta, 2022

Consistency of Quine's New Foundations, Wilshaw and Dillies, 2022-2024

Polynomial Freiman-Ruzsa Conjecture (PFR), Tao and Dillies, 2023

Prime Number Theorem And Beyond, Kontorovich and Tao, 2024-ongoing

Carleson Project, van Doorn, 2024-ongoing

The Equational Theories Project, Tao, 2024

Fermat’s Last Theorem (FLT), Buzzard, 2024-ongoing, community estimates it will take +1M LoC

Automating Quantum Algebra
Here is a concrete example from quantum algebra. It comes from a classification result involving quantum
SO(3) categories. Specifically, the condition that certain relations among trivalent graphs imply a constraint
on the parameters d, t, and c:

From: “Categories generated by a trivalent vertex”, Morrison, Peters, and Snyder

Automating Quantum Algebra

This is not a toy: it encodes a real algebraic constraint derived from relations among diagrams in a pivotal
tensor category.

Lean can handle this kind of reasoning automatically, in milliseconds.

Automating Quantum Algebra
We can explore new mathematical and physical structures, from topological quantum fields theories to
fusion categories.

Lean is helping researchers reason reliably about complex symbolic systems that were previously handled
only by hand or with unverified computer algebra.

grind +ring is just another move in our interactive game.

Should we trust Lean?

Lean has a small trusted proof checker.

Do I need to trust the checker?

No, you can export your proof, and use external checkers. There are checkers implemented in
C/C++, Rust, Lean, etc.

You can implement your own checker.

What did we learn?

Machine-checkable proofs enable a new level of collaboration in mathematics.

The power of the community.

We don’t need to trust our automation/moves.

It is not just about proving but also understanding complex objects and proofs, getting new

insights, and navigating through the “thick jungles” that are beyond our cognitive abilities.

What did we learn?

Another unexpected benefit of formal mathematics: auto refactoring and generalization.

Software

Lean in Software Verification
Lean is a programming language, and is used in many software verification projects.

You can write code and reason about it simultaneously.

You can prove that your code has the properties you expect.

“Testing can show the presence of bugs, but not their absence”, E. Dijkstra

Cedar
https://www.cedarpolicy.com/

https://github.com/cedar-policy/cedar-spec

https://www.cedarpolicy.com/
https://github.com/cedar-policy/cedar-spec

Cedar

Takeaway: “We’ve found Lean to be a great tool for verified software development. You get a full-
featured programming language, fast proof checker and runtime, and a familiar way to build both
models and proofs”

Cedar

To learn more about Cedar:
https://aws.amazon.com/blogs/opensource/lean-into-verified-software-development/

https://aws.amazon.com/blogs/opensource/lean-into-verified-software-development/

Differential Privacy
A mathematical framework that ensures the privacy of individuals in a dataset by adding
controlled random noise to the data.

Discrete sampling algorithms, like the Discrete Gaussian Sampler, are used to add carefully
calibrated noise to data.

What may go wrong if a buggy sampler is used?

Privacy Violations: leakage of sensitive information

Incorrect Results: distorted analysis results

SampCert
A project led by Jean-Baptiste Tristan at AWS.

An open-source Lean library of formally verified differential privacy primitives.

Tristan's implementation is not only verified, but it is also twice as fast as the previous one.

He managed to implement aggressive optimizations because Lean served as a guide, ensuring
that no bugs were introduced.

SampCert would not exist without Mathlib
SampCert is software, but its verification relies heavily on Mathlib.

The verification of code addressing practical problems in data privacy depends on the
formalization of mathematical concepts, from Fourier analysis to number theory and topology.

Verifying Cryptography with Aeneas at Microsoft
They verify (and fix/improve) the Rust code as written by software engineers

Code is evolving (new optimizations for specific hardware): They must adapt to rewrites

Maintained by
proof engineers

Prove properties about

Pure, functional
model

AeneasMaintained by
software
engineers Automatically

generated

Code regenerated and
proofs replayed in CI

Extensible (custom automation)
Libraries (Mathlib)

KLR: a language and elaborators for machine learning kernels

Define a common representation for kernel functions with a precise formal semantics along with
translations from common kernel languages to the KLR core language.

KLR is also open source.

KLR: a language and elaborators for machine learning kernels

KLR uses bit-vectors, fixed integers, etc.

bv_decide: another powerful move

A verified bit-blaster by Henrik Boving, Josh Clune, Siddharth Bhat, and Alex Keizer

Uses LRAT proof producing SAT solvers: Cadical

“Blasting” popcount with bv_decide

“Blasting” popcount with bv_decide

grind in Software Verification

What did we learn?
Machine-checkable proofs enable you to code without fear.

Powerful proof automation.

Industrial projects: Verified compilers, policy languages, cryptographic libraries, etc.

Many more at the Lean Project Registry: https://reservoir.lean-lang.org/

https://reservoir.lean-lang.org/

AI

Lean Enables Verified AI for Mathematics and Code

LLMs are powerful tools, but they are prone to hallucinations.

In Math, a small mistake can invalidate the whole proof.

Imagine manually checking an AI-generated proof with the size and complexity of FLT.

The informal proof is over 200 pages.

Buzzard estimates a formal proof will require more than 1M LoC on top of Mathlib.

Machine-checkable proofs are the antidote to hallucinations.

AI Proof Assistants

Several groups are developing AI that suggests the next move(s) in Lean’s interactive proof game.

LeanDojo is an open-source project from Caltech, and everything (model, datasets, code) is open.

OpenAI and Meta AI have also developed AI assistants for Lean.

https://leandojo.org/
https://openai.com/index/formal-math/
https://ai.meta.com/blog/ai-math-theorem-proving/

What did we learn?
Machine-checkable proofs enable AI that does not hallucinate.

LLMs are getting better and better at explaining Lean code.

In an era of big data and LLMs, machine-checkable proofs ensure trust in results.

AI systems that prove rather than guess.

Before we wrap up...

Lean Enables Decentralized Collaboration

Lean is Extensible

Users extend Lean using Lean itself.

Lean is implemented in Lean.

You can make it your own.

You can create your own moves.

Machine-Checkable Proofs

You don’t need to trust me to use my proofs.

You don’t need to trust my automation to use it.

Code without fear.

Lean is a game where we can implement your own moves

The linarith “move” was implemented by the Mathlib community in Lean!

Lean is a game where we can implement your own moves

The linarith “move” was implemented by the Mathlib community in Lean!

The bv_decide and grind “moves” are also implemented in Lean!

You can use Lean to introspect its internal data

The tool lean-training-data is implemented in Lean itself. It is a Lean package.

A similar approach can be used to automatically generate proof animations.

https://github.com/kim-em/lean-training-data

Lean FRO: Shaping the Future of Lean Development

The Lean Focused Research Organization (FRO) is a non-profit dedicated to Lean’s development.

Founded in August 2023, the organization has 19 members.

Its mission is to enhance critical areas: scalability, usability, documentation, and proof automation.

It must reach self-sustainability in August 2028 and become the Lean Foundation.

Philanthropic support is gratefully acknowledged from the Simons Foundation, the Alfred P. Sloan

Foundation, Richard Merkin, and Alex Gerko.

FROs accelerate scientific progress / Lean as a Catalyst

James Webb Telescope and CERN illustrate a common pattern in science: a need for projects that are bigger

than an academic lab can undertake, more coordinated than a loose consortium or themed department, and

not directly profitable enough to be a venture-backed startup or industrial R&D project.

https://www.convergentresearch.org/about-fros

https://www.convergentresearch.org/about-fros

Lean FRO: by numbers

19 releases and 4,047 pull requests merged in the main repository only since its launch in July 2023.

Public roadmaps: https://lean-fro.org/about/roadmap-y2/

Lean project was featured in multiple venues NY Times, Quanta, Scientific American, etc.

https://lean-fro.org/about/roadmap-y2/

Growth of Lean projects on GitHub

Lean FRO
launched

New installations of Lean Development Environment (2024 to present)

How can I contribute?

Help building Mathlib.

Want to engage with the vibrant Lean community? Join our Zulip channel.

Interested in ML kernels? Contribute to the KLR project.

Want to contribute to a large formalization project? Join the FLT formalization project.

Start your own open-source Lean project! Your package will be available on our registry Reservoir.

Start using Lean online: live.lean-lang.org

Support the Lean FRO: Funding, partnerships, or simply advocating the project.

http://github.com/leanprover-community/mathlib4
https://leanprover.zulipchat.com/
https://github.com/leanprover/KLR
https://github.com/ImperialCollegeLondon/FLT
https://reservoir.lean-lang.org/
http://live.lean-lang.org/

Conclusion

Lean is an efficient programming language and proof assistant.

The Mathlib community is changing how math is done.

It is not just about proving but also understanding complex objects and proofs, getting new insights, and

navigating through the “thick jungles” that are beyond our cognitive abilities.

Lean tracks details, so humans focus on big ideas.

Decentralized collaboration with Lean: Large teams can collectively tackle huge proofs without losing track.

The entire discipline thrives when no one has to “take it on faith.”

Software

Mathematics AI

L N

AE

Thank You

https://leanprover.zulipchat.com/
x: @leanprover
LinkedIn: Lean FRO
Mastodon: @leanprover@functional.cafe
#leanlang, #leanprover

https://www.lean-lang.org/

