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Abstract—Many software applications incorporate open-source
third-party packages distributed by public package registries.
Guaranteeing authorship along this supply chain is a chal-
lenge. Package maintainers can guarantee package authorship
through software signing. However, it is unclear how common
this practice is, and whether the resulting signatures are
created properly. Prior work has provided raw data on registry
signing practices, but only measured single platforms, did not
consider quality, did not consider time, and did not assess
factors that may influence signing. We do not have up-to-date
measurements of signing practices nor do we know the quality
of existing signatures. Furthermore, we lack a comprehensive
understanding of factors that influence signing adoption.

This study addresses this gap. We provide measurements
across three kinds of package registries: traditional software
(Maven, PyPI), container images (DockerHub), and machine
learning models (Hugging Face). For each registry, we describe
the nature of the signed artifacts as well as the current quantity
and quality of signatures. Then, we examine longitudinal trends
in signing practices. Finally, we use a quasi-experiment to
estimate the effect that various factors had on software signing
practices. To summarize our findings: (1) mandating signature
adoption improves the quantity of signatures; (2) providing
dedicated tooling improves the quality of signing; (3) getting
started is the hard part — once a maintainer begins to sign,
they tend to continue doing so; and (4) although many supply
chain attacks are mitigable via signing, signing adoption is
primarily affected by registry policy rather than by public
knowledge of attacks, new engineering standards, etc. These
findings highlight the importance of software package registry
managers and signing infrastructure.

1. Introduction

Commercial and government software products incor-
porate open-source software packages [1], [2]. In a 2023
study of 1,703 commercial codebases across 17 sectors
of industry, Synopsys found that 96% used open-source
code, and 76% of the total application code was open-

source [3]. Open-source software packages depend on other
packages, creating software supply chains [4]. Malicious
actors have begun to attack software supply chains, injecting
malicious code into packages to gain access to downstream
systems [4]. These attacks have affected critical infrastruc-
ture and national security [5]–[8].

Many mitigations have been proposed for software sup-
ply chain attacks. Some approaches seek to increase confi-
dence in a package’s behavior, e.g., measuring use of best
practices [9], [10], independent validation [11], and for-
mal guarantees [12]; Other approaches target the package’s
provenance, e.g., Software Bill of Materials (SBOMs) [13],
[14] and “vendoring” trusted copies of dependencies [15].
The strongest guarantee of a package’s provenance is a
cryptographic signature by its maintainer. Prior work has
noted that many packages are unsigned [16], [17]. How-
ever, we lack up-to-date measurements of software signing
practices, and we do not know the general quality of existing
signatures. Furthermore, we lack a deeper understanding of
factors that affect adoption rates. This knowledge would
guide future efforts to incentivize software signing, so that
the provenance of software supply chains can be improved.

Our work provides this knowledge: we measure soft-
ware signing practices in four public software package
registries, and we use that data to infer factors that in-
fluence software signing. We selected four registries for a
quasi-experiment [18]:1 two with signing policies (Maven-
positive, PyPI-negative), one with dedicated tooling (Dock-
erHub), and one with no stance on signing (Hugging Face).
Under the assumption that maintainers behave similarly
across registries, comparing signing practices in these reg-
istries will shed light on the factors that influence soft-
ware signing. In addition to registry-dependent variables, we
consider three registry-independent factors: organizational
policy, dedicated signing tools, signing-related events such
as high-profile cyberattacks, and the startup effort of signing.

Here are the highlights of our results. Registry-specific

1. A quasi-experiment seeks cause-and-effect relationships between in-
dependent and dependent variables without subject randomization.
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signing policies have a large effect on signing frequency:
requiring signing yields near-perfect signing rates (Maven),
while decreasing its emphasis reduces signing (PyPI). Sign-
ing remains difficult — only the registry with dedicated
signing tools had perfect signature quality (DockerHub),
while the other three had signature quality rates of 68.5%
(Maven), 50.2% (PyPI), and 20.2% (Hugging Face). We
observed no effects from signing-related news, such as
high-profile cyberattacks and new engineering standards that
recommend software signing. Finally, the first signature is
the hardest: after a maintainer first signs a package, they are
likely to continue signing that package.

To summarize our contributions:
1) We present up-to-date measurements of software sign-

ing practices — quantity and quality — in four major
software package registries.

2) We use a quasi-experiment to estimate the effect of
several factors on software signing practices. Registry
policies correlates with quantity. Dedicated tooling cor-
relates with quality. Signing events do not correlate
with signing practices. Starting to sign correlates with
continued signing.

2. Background

§2.1 discusses software supply chains. §2.2 describes
software signing, generally and in our target registries.

2.1. Software Supply Chains

In modern software development, engineers commonly
integrate and compose existing units of functionality to cre-
ate novel applications [3]. Each unit of functionality is com-
monly distributed in the form of a software package [19]:
software in source code or binary representation, accompa-
nied by documentation, shared under a license, and distin-
guished by a version number. These units of functionality
may be available directly from version control platforms
(e.g., source code [20], [21] or lightweight GitHub Pack-
ages [22])), but are more commonly distributed through sep-
arate software package registries [23], [24]. These registries
serve both package maintainers (e.g., providing storage and
advertising) and package users (e.g., indexing packages for
search, and facilitating dependency management). These
facilities for software reuse result in webs of dependencies
comprising the software supply chain [25], [26].

Many empirical studies report the widespread use of
software packages and the complexity of the resulting sup-
ply chains. Synopsys’s 2023 Open Source Security and
Risk Analysis (OSSRA) Report examined 1,703 commercial
codebases across 17 industries [3], revealing that 96% of
these codebases incorporate third-party open-source soft-
ware components, averaging 595 distinct open-source de-
pendencies per project. Similarly, Kumar et al. reported that
over 90% of the top one million Alexa-ranked websites rely
on external dependencies [27], and Wang et al. found that
90% of highly popular Java projects on GitHub use third-
party packages [28].

Selecting and managing software dependencies is thus
an important software engineering practice [29], [30]. Soft-
ware engineers must decide which packages to use in
their projects, i.e., what to include in their application’s
software supply chain [31], [32]. Engineers consider many
aspects, encompassing functionality, robustness, maintain-
ability, compatibility, popularity, and security [19], [33]–
[35]. Specific to security, various tools and methodologies
have been proposed. These include in-toto [36], repro-
ducible builds [37], testing [38], [39], LastPyMile [35],
SBOMs [40], and BuildWatch [41]. Okafor et al. summa-
rized these approaches in terms of three security properties
for a project’s software supply chain: validity (packages are
what they claim to be), transparency (seeing the full chain),
and separation of concerns [26]. Validity is a prerequisite
property — if a individual package is invalid, transparency
and separation will be of limited use.

2.2. Promoting Validity via Software Signing

Software signing is the standard method for establishing
the validity of packages. Signing uses public key cryptogra-
phy to bind an identity (e.g., a package maintainer’s private
key) to an artifact (e.g., a version of a package) [42]. With
an artifact, a signature, and a public key, one can verify
whether the artifact was indeed produced by the maintainer.
Software signing is a development practice recommended by
industry [9], [43], [44] and government [45], [46] leaders.

2.2.1. Signing Process and Failure Modes. Most software
package registries require similar signing processes. Figure 1
illustrates this process, beginning with a maintainer and a
(possibly separate) signer. They publish a signed package
and separately the associated cryptographic material, so that
a user can assess the validity of the result.

In package registries, there are two typical identities of
the signer. In the maintainer-signer approach, the main-
tainer is also the signer (e.g., Maven). In the registry-
signer approach, the maintainer publishes a package and
the registry signs it (e.g., NPM). These approaches trade
usability against security. Managing signatures is harder for
maintainers, but the maintainer-signer approach gives the
user a stronger guarantee: the user can verify they have the
same package signed by the maintainer. The registry-signer
approach is easier for maintainers, but users cannot detect
malicious changes made during the package’s handling by
the package registry.

Figure 1 also depicts failure modes of the signing
process. These modes stem from several factors, includ-
ing the complexity of the signing process, the (non-)user-
friendliness of the signing infrastructure, and the need for
long-term management. We based these modes on the error
cases of GPG [47], but they are common to any software
signing process based on public key cryptography. They are:

1) Creation Failure: The Signer does not create keys or
signature files.

2) Bad Key: The Signer uses an invalid key, e.g., the
wrong key is used or it has become corrupted.
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Figure 1. Maintainers create software packages and signers create keys which are used to create a signature. Each of these artifacts are published to a
registry. Depending on ecosystem, the registries and the actors may or may not be separate. Users fetch these artifacts and can check signatures using
infrastructure-specific tooling. This creates a verified package. Red and orange numbers indicate the failure modes described in §2.2.1. Red numbers
indicate discernible failures. The orange numbers (modes 1, 4, and 8) are not distinguishable from one another by an external audit — when keys are
missing, we cannot determine whether they were never created (mode 1), were not published (mode 4), or were undiscoverable by us (mode 8).

3) Bad Signature: The resulting signature is incorrect or
unverifiable for non-malicious reasons, such as signing
the wrong artifact or using an unsupported algorithm
(e.g., use of an unknown algorithm).

4) Publishing Failure: The Signer does not publish the
cryptographic material — signature and public keys —
to locations accessible to the end user.

5) Key Revoked: The Signer revokes the key used to sign
the artifact, e.g., due to theft or a key rotation policy.

6) Key Expired: Some kinds of keys expire after a fixed
lifespan. Associated signatures are no longer valid.

7) Signature Expired: Some signatures also expire.
8) Discovery Failure: The user may fail to retrieve sig-

natures or keys. This case is distinct from Publishing
Failure: the material may be available, but the user does
not know where to look.

We omit from this list any failure modes associated with
cryptographic strength (e.g., short keys or broken ciphers),
since these concerns vary by context [48].

2.2.2. Signing Targets. We detail the three kinds of signing
used across the four registries considered in this work. These
registries largely follow the maintainer-signer style. The
registries support the signing of different artifacts.

Maven, PyPI—Packages: In Maven (Java) and PyPI
(Python), the signing target is the software package.

Hugging Face—Commits: In Hugging Face (machine
learning models), the signing target is the git commits that
underlie the package. Signed commits may be interleaved
with unsigned ones, reducing the security guarantee of a
package that combines both kinds of commits. Hugging
Face’s commit-based approach means that signatures only
ensure that the changes to package artifacts are authentic.

DockerHub—Packages (container images): In DockerHub
(Docker container images), the signing target is the package,

i.e., the container image. Maintainers sign the packages, but
unlike in Maven, PyPI, and Hugging Face, the cryptographic
materials are stored and managed by a registry service called
Notary that is run in conjunction with DockerHub. This
system provides a compromise between maintainer-signer
and registry-signer: the maintainer attests to publication of
the image, but the user must trust that the Notary service is
not compromised (loss of cryptographic materials).

3. Related Works

We discuss work on software signing challenges (§3.1)
and prior measurements of signing practices (§3.2).

3.1. Challenges of Software Signing

3.1.1. Signing by Novices. Like other cryptographic activi-
ties [49], [50], signing artifacts is difficult for people without
cryptographic expertise. The ongoing line of “Why Johnny
Can’t Encrypt” works, begun in 1999 [51], enumerates
confusion in the user interface [52], [53] and the user’s
understanding of the underlying public key model [54],
[55], and other usability issues [56]. Automation is not a
silver bullet — works by Fahl et al. [57] and Ruoti et
al. [58] both found no significant difference in usability
when comparing manual and automated encryption tools,
though Atwater et al. [59] did observe a user preference for
automated solutions.

3.1.2. Signing by Experts. Even when experts adopt sign-
ing, they have reported many challenges. Some concerns are
specific to particular signing tools, e.g., Pretty Good Privacy
(PGP) has been criticized for issues such as over-emphasis
on backward compatibility and metadata leaks [60], [61].
Other concerns relate to the broader problems of signing



over time, e.g., key management [62]–[64], key discov-
ery [65], [66], cipher agility [67], and signature distribu-
tion [68]. Software signing processes and supporting au-
tomation remain an active topic of research [64], [69], [70]

3.1.3. Our Contribution. Our work measures the adoption
of signing (quantity and quality) across multiple package
registries. Our data indicates the common failure modes of
software signing for the processes employed by the four
studied registries. Our data somewhat rebuke this literature,
showing the importance of factors beyond perceived usabil-
ity and individual preference.

3.2. Empirical Data on Software Signing Practices

Large-scale empirical measurements of software signing
practices in software package registries are rare. In 2016,
Kuppusamy et al. [16] reported that only ∼4% of PyPI
projects listed a signature. In 2023, Zahan et al. examined
signature propagation [9], reporting that only 0.1% (NPM)
and 0.5% (PyPI) of packages publish the signed releases
of their packages to the associated GitHub repositories. In
2023, Jiang et al. found a comparably low signing rate in
Hugging Face [19]. In 2023, Woodruff reported that signing
rates in PyPI were low, and that many signatures were of low
quality (e.g., unverifiable due to missing public keys) [17].

Our study complements existing research by aggregating
and comparing the prevalence of signing across various
software package registries, in contrast to previous studies
that primarily focus on single registries. We publish the first
measurements of signing in Maven and DockerHub, and
the first longitudinal measurements in Maven, DockerHub,
and Hugging Face. Our multi-registry approach allows us to
both observe and infer the causes of variation in signature
quantity and quality.

4. Signing Adoption Theory

Although software signing is recommended by engineer-
ing leaders (§2.2), prior work shows that signing remains
difficult (§3.1 and successful adoption is rare (§3.2). To pro-
mote the successful adoption of signing, we must understand
what factors influence maintainers in their signing decisions.
Even though using security techniques like signing is gener-
ally considered good practice [43], [44], maintainers do not
always follow best practices [71]. Prior work has focused
on the usability of signing techniques (§3), but we posit that
a maintainer’s incentives to sign are also important.

Behavioral economics examines how incentives influ-
ence human behavior [72]. Economists typically distinguish
between incentives that are intrinsic (internal) and extrinsic
(external) [73]. Incentives can change how individuals make
decisions, although the relationships are not always obvi-
ous [74], [75]. For example, Titmuss [76] found that paying
blood donors could reduce the number of donations due to a
perceived loss of altruism. In a similar way, we theorize that
incentives influence how maintainers adopt software signing.

No

Yes

Create No Signature

Yes

No

Correctly

Signing
Failure

Good
Signature

Maintainer

Signature Adoption

• Intrinsic
• Extrinsic

Incentives

Figure 2. Incentives influence how maintainers adopt software signing. The
maintainer decides weather or not to create a signature. If a maintainer
decides to create a signature, they can either follow the signing process
(i.e., Figure 1) correctly or not. Correctly following the signing process
results in a good signature but incorrectly following the process results in
a signing failure.

TABLE 1. KINDS OF INCENTIVES CONSIDERED. THE SECOND COLUMN
IS OUR HYPOTHESES: WHETHER THE INCENTIVE WAS PREDICTED TO

INCREASE (↑) OR DECREASE (↓) SIGNATURE ADOPTION (CF. §5). THE
THIRD COLUMN IS THE OBSERVED EFFECT (CF. §7).

Factor Expectation Observed Effect

Registry policies ↕ ↕ quantity
Dedicated tooling ↑ ↑ quality

Signing events ↑ None
High startup cost ↓ ↓ quantity

In Figure 2, we illustrate how incentives might apply
to signature adoption. We define a signing incentive as a
factor that influences signature adoption. Although intrinsic
incentives might contribute to signature adoption (e.g., altru-
ism), we focus on extrinsic incentives because they are more
easily observed. As summarized in Table 1, we examined
four kinds of external incentives that might influence a
maintainer’s signing practices. We formulated hypotheses
as to their effects, but behavioral economics suggests that
even the most obvious hypothesis must be tested.

To operationalize the concept of signing practices, we
define signature adoption as a maintainer’s decision to (1)
create a signature (quantity), and (2) to follow the signing
process correctly in doing so (quality). To secure software
supply chains, we want to identify incentives that sway the
behavior of the maintainer community, not just individuals.
Going forward, we thus call Signing Quantity the number
or proportion of signed artifacts present within a given
registry, and Signing Quality the condition of the signatures
which are present (i.e., how many of them are sound, and
how many display which of the failure modes indicated
in Figure 1). For example, suppose that 90% of a registry’s
artifacts are signed, but only 10% of these signatures have
available public keys. We would consider this registry as ex-
periencing high quantity, but low quality, signing adoption.

Given evidence to support the theorized relationship
between these factors and signature adoption (Figure 2), one
could predict the quantity and the quality of signatures in a
given environment, as well as the effect of an intervention
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affecting maintainers’ incentives.

5. Research Questions

We ask three questions across two themes:
Theme 1: Measuring Signing in Four Package Registries
Theme 1 will update the cybersecurity community’s under-
standing on the adoption of software signing.

• RQ1: What is the current quantity and quality of
signing in public registries?

• RQ2: How do signing practices change over time?

Theme 2: Signing Incentives
Theme 2 evaluates hypotheses about the effects that sev-
eral types of external incentives have on software signing
adoption.

• RQ3: How do signing incentives influence signature
adoption?

To evaluate RQ3, we test four hypotheses.

H1: Registry policies that explicitly encourage or dis-
courage software signing will have the corresponding
direct effect on signing quantity. This hypothesis is based
on our experience as software engineers, “reading the
manual” for the ecosystems in which we operate.

H2: Dedicated tooling to simplify signing will increase
signing adoption (quantity and quality). The basis for
this hypothesis is the prior work showing that signing is
difficult and that automation can be helpful §3.

H3: Cybersecurity events such as cyberattacks or the
publication of relevant government or industry standards
will increase signing adoption (quantity and quality).
The basis for this hypothesis is the hope that software
engineers learn from failures and uphold best practices,
per the ACM/IEEE code of ethics [77].

H4: The first signature is the hardest, i.e., after a package
is configured for signing adoption, it will continue to be
signed. Like H2, this hypothesis is based on prior work
showing that signing is difficult — but knowing that the
cost of learning to sign need be paid only once.

6. Methodology

This section describes our methods. In §6.1 we give our
experimental design. Following that design, our methodol-
ogy has five stages. As illustrated in Figure 3:

1) Select Registries(§6.2): Picking appropriate registries
for our study.

2) Collect Packages(§6.3): Methods used to collect a list
of packages from each registry.

3) Filter Packages(§6.4): Filter list of packages so that
remaining packages are adequately versioned.

4) Measure Signature Adoption(§6.5): Measuring the
quantity and quality of signatures for each registry.

5) Evaluate Adoption Factors(§6.6): Comparing signa-
ture adoption among registries and across time.

Select
Registries

Collect
Packages

Filter
Packages

Measure
Signatures

Evaluate
Adoption

Figure 3. First, we select package registries that represent a range of
software types and signing policies. Our selected registries include PyPI,
Maven Central, Docker Hub, and Hugging Face. Next, we collect a list of
packages for each platform. Then, we filter the list of packages to a sample
of packages for each platform. On the remaining packages, we measure the
quality and quantity of signatures. Finally, we use these measurements to
evaluate factors influencing adoption.

6.1. Experimental Design

We first describe the types of experiments needed to
answer our RQs (§6.1.1). Then we summarize quasi exper-
iments and why they work well for our study (§6.1.2).

6.1.1. Answering our RQs. To answer RQ1, we measure
the quantity and quality of signatures in the registries of
interest. To answer RQ2, we examine trends in signature
adoption and failure modes over time. The measurements
themselves are fairly straightforward, following prior work
on software signing quantity [9], [16], [19] and quality [17].
In §6.5 we define quality systematically, but our approach
resembled prior work.

RQ3 requires us to test the correlation between incen-
tives and signature adoption (quantity and quality). Our
goal is similar in spirit to the usability studies performed
by Whitten & Tygar [51], Sheng et al. [52], and Routi et
al. [55] — like them, we are interested in factors influencing
the adoption of signing. However, we are not interested in
the usability of individual signing tools, in which context
controlled experiments are feasible. Instead, we want to
understand the factors affecting signing practices across
package registries. A controlled experiment would randomly
assign maintainers to platforms with different registry fac-
tors, hold other variables constant, and measure the effect
for hypothesis tests. As this level of control is impractical,
we instead use a quasi experiment to answer RQ3.

6.1.2. Quasi Experiments. Quasi experiments 2 are a form
of experiment whereby (1) treatments (instances of indepen-

2. The terms quasi experiment and natural experiment are often used
interchangeably, but some researchers distinguish between the two. Treat-
ments applied in a natural experiment are not intended to influence the
outcome, whereas treatments in a quasi experiment are planned [78]. Since
some registry factors are intended to cause changes in signature adoption,
our study is a quasi experiment, not a natural experiment.



dent variables) are applied to subjects; and (2) outcomes (de-
pendent variables) are measured; but (3) the assignment of
treatments to subjects is not random [18], [78]. Instead, the
application of treatments is based on characteristics of the
subjects themselves [79]. This method is often used where
controlled experiment is infeasible, e.g., measuring impacts
of government policies on populations [78], [80], [81].
These studies produce the strongest results when treatments
occur independently of the subjects, or are exogenous [78],
[81].

A quasi experiment would allow us to test our hypothe-
ses by leveraging naturally occurring differences between
registries. If we can identify registries that vary along the
dimensions of interest, then comparing signing adoption in
these registries would allow us to infer cause-effect rela-
tionships from the incentives of interest. Furthermore, the
existence of multiple time periods and comparison groups
also strengthens the outcomes of this approach [81].

Our quasi experiment relies on a major assumption:

Assumption of Structural Similarity: Our quasi-
experiment assumes that there are no uncontrolled con-
founding factors. Such factors would differentially affect
software signing adoption between registries. In other
words, we assume that the registries are used by soft-
ware engineers in similar ways, without registry-specific
signing influences other than those considered.

We base this assumption in the cybersecurity and soft-
ware engineering research literature. For example, Zahan et
al. [14] compared NPM and PyPI and found comparable
behaviors across a range of security measures and prac-
tices, including security policies, vulnerabilities, dependency
update tools, maintenance procedures, signed-releases, and
potentially risky workflows. Bogar et al. [82] offered further
support for this assumption in a study of several software
ecosystems, writing that “Ecosystems tend to share many
values but differentiate themselves based on a few distinctive
values strongly related to their purpose and audience.”
While there is limited research on PTM registries, Jiang
et al.’s [19] reported that the PTM re-use workflow for
PTMs on Hugging Face to that of traditional software. This
suggests comparability between the PTM space and the
traditional software ecosystem space. These and other works
suggest a level of uniformity across registries with respect
to engineering practices.

With this assumption in mind, we conduct the quasi
experiment. In our study, registry factors are treatments,
maintainers are subjects, and signature adoption is the
outcome. As noted, applying random registry factors to
maintainers is impractical — this is effectively the same
as randomly assigning maintainers to different platforms.
Instead, characteristics of the maintainers (the registries they
naturally use) determine which registry factors they experi-
ence. Since maintainers’ registry selections are not known
to be influenced by signing infrastructure or policy, we can
also consider registry factors as exogenous treatments.

We illustrate our experimental design with two evalua-
tions, which we perform later in detail. Our four hypotheses
for RQ3 include incentives that are registry-specific (H1, H2)
and that are registry-independent (H3, H4). To assess the
effect of registry-specific incentives, we examine whether
the date of an associated event is correlated with a significant
change in signing adoption within only the pertinent registry.
For example, if a change in PyPI’s signing policy changes
the signing rates in PyPI, while rates in other registries
are undisturbed, then we would view this as support for
H1. Conversely, to assess the effect of registry-independent
incentives, we examine whether the date of an associated
effect is correlated with a significant change in signing
adoption in multiple registries. For example, if after a major
software supply chain attack we see changes in signing
adoption in PyPI and Maven, then we would view this as
support for H3.
Based on this design, we now proceed through the five
stages indicated in Figure 3.

6.2. Stage 1: Select Registries

In this section, we explain what makes a registry a good
candidate for this study (§6.2.1) and justify our use of PyPI,
Maven Central, Docker Hub, and Hugging Face (§6.2.2).

6.2.1. Selection Requirements. We searched for software
package registries which have natural variations in signing
incentives. We selected some registries that have expe-
rienced changes to their signing infrastructure and poli-
cies over time. We focused on package registries with
maintainer-signed signatures, as defined in §2, for two rea-
sons: 1) they place a greater burden on the maintainer and
thus the effect of incentives would be more observable; and
2) they provide a better guarantee of provenance than server-
signed signatures (i.e., the artifact hasn’t been modified
between the maintainer signing it and uploading it to a
registry). Finally, the selected registries should be popular
so that they are representative of publicly available software.

6.2.2. Selected Registries. Following these requirements,
we identified 4 registries for study: PyPI, Maven Central,
Docker Hub, and Hugging Face. Table 2 summarizes these
registries. They represent some of the most popular pro-
gramming languages [83] (Java, Python), the most popular
container technology [84] (Docker), and the most popular
ML model hub [23] (Hugging Face). Next we elaborate on
each selected registry. All data is as of April 2024.

TABLE 2. THE SELECTED PACKAGE REGISTRIES, THEIR ASSOCIATED
SOFTWARE TYPE, AND SIGNATURE TYPE.

Registry Name Software Type Signature Type
PyPI Python PGP (now deprecated)
Maven Central Java PGP
Docker Hub Containers DCT
Hugging Face ML Models Git Commit Signing



(1) PyPI: PyPI is the primary registry for the exchange
of software packages written in the Python programming
language. PyPI hosts more than 520,000 packages [85]. PyPI
allows maintainers to sign packages with PGP signatures.
The PyPI registry owners deemphasized the use of PGP
signatures on 22 Mar 2018 [86] and later deprecated them
on 23 May 2023 [87]. Pre-existing signatures remain, but
users cannot (easily) add new signatures.

(2) Maven Central: Maven Central (Maven) is the primary
registry for the exchange of software packages written in
the Java programming language. Maven hosts more than
499,000 packages [88]. Like PyPI, Maven allows maintain-
ers to sign packages with PGP signatures. Unlike PyPI, on
Maven, signatures have been mandatory since 2005 [89].

(3) Docker Hub: Docker Hub is the primary registry
for the exchange of virtualized container images in the
Docker format. Docker Hub hosts more than 1,000,000 con-
tainer images [88]. Docker Hub uses Docker Content Trust
(DCT) [90] to sign container images. As noted in §2, Docker
Hub has dedicated tooling for signing, integrated in the
Docker CLI. Sigstore’s Cosign also supports signing docker
images [91], but is not yet well integrated in Docker Hub. In
2019, Docker Hub began including more information about
image provenance (e.g., author, OS, digest, architecture) on
its web UI, but does not mandate signing like Maven does.

(4) Hugging Face: Hugging Face is the primary registry
for the exchange of neural network models [23]. Hugging
Face hosts more than 590,000 models [92]. Hugging Face
supports the signing of git commits [93]. Hugging Face has
no stated policy towards signing, and we are aware of no
signing events specific to Hugging Face.

6.3. Stage 2: Collect Packages

Next, our goal was to collect a list of the packages from
each of the selected registries, so that we could sample
from it and measure signing practices. For each registry,
we attempted to enumerate all packages available on the
platform. We used ecosyste.ms [88] as an index for the
packages available from Maven Central and Docker Hub.
For Hugging Face, we used the Hugging Face API to
collect packages. For PyPI, we used the Google BigQuery
dataset [94] to collect packages. In the remainder of this
subsection, we describe the package structure and collection
techniques used for each registry.

6.3.1. The Ecosyste.ms Cross-registry Package Index.
Ecosyste.ms provides a comprehensive cross-registry pack-
age index, aggregating package data from multiple registries
into a database. Periodically, ecosyste.ms releases datasets
that can be downloaded and subjected to detailed queries.
In this work, we used the most recent version of the dataset
— 01 Mar 2024. This dataset indexed PyPI, Docker Hub,
and Maven Central, but not Hugging Face. We did not use
this dataset for PyPI because the BigQuery dataset contains
signing information.

We sought to obtain data up to 31 Dec 2023 from each
registry. We arbitrarily set the start date to 01 Jan 2015

imitating [17], so that the reported data would not be too
different from current practices.

6.3.2. Details Per-Registry. PyPI: In PyPI, packages are
distributed by version as wheels or source distributions (i.e.,
each package may have multiple versions each with their
own distributions). For example, the latest version of the
requests package is 2.31.0 (as of this writing) and has two
distribution files: (1) a wheel file named requests-2.31.0-
py3-none-any.whl and (2) a source distribution file named
requests-2.31.0.tar.gz. Both of these files can be signed, so
we collect each of these files during our assessment of PyPI.

To collect all packages from PyPI between 01 Jan 2015
and 31 Dec 2023, we used Google’s BigQuery PyPI dataset.
This dataset contains a list of package distributions and
associated metadata for each package hosted on PyPI.

Since this study is only concerned with the quality and
quantity of signatures, we did not need to download any
packages without signatures (we only need to count how
many packages have no signature). We downloaded signed
packages to assess the quality of their signatures.

Maven Central: Maven Central packages are stored in a
directory structure organized by namespace, package name,
and version number. Each version of a package contains
several files for use by the downstream user. These typically
include .jar, .pom, .xml, and .json files which include
the package, source distributions, tests, documentation, or
manifest information. Each of the files included in a package
version typically has a corresponding PGP signature file
with a .asc extension.

We used ecosyste.ms’ data dump from 01 Mar 2024 to
collect packages from Maven Central. This data dump con-
tains a list of package distributions and associated metadata
for each package hosted on Maven Central.

Docker Hub: Docker Hub packages are organized into
repositories which are collections of images. Each repository
contains tags which are versions of the image. These tags
can be signed using Docker Content Trust (DCT). DCT is
a Docker-specific signing tool built on Notary [95].

To collect all packages from Docker Hub between 01
Jan 2015 and 31 Dec 2023, we use ecosyste.ms’ data
dump from 01 Mar 2024. This data dump contains a list
of package distributions and associated metadata for each
package hosted on Docker Hub.

Hugging Face: Hugging Face hosts models, datasets, and
spaces for machine learning. For the purpose of this study,
we only focus on the models, which are stored as git
repositories. Hugging Face uses git commit signing, i.e.,
signatures occur on a per-commit basis for each repository.

To collect all of the model packages on Hugging Face
between 01 Jan 2015 and 31 Dec 2023, we use the Hugging
Face Hub Python interface to generate a list of packages
(and metadata) in our date range. We then iteratively clone
all repositories from Hugging Face.



TABLE 3. PACKAGES AVAILABLE AFTER EACH STAGE OF THE
PIPELINE. COLLECT PACKAGES REFERS TO THE TOTAL NUMBER OF

PACKAGES AVAILABLE IN THE REGISTRY. FILTER PACKAGES REFERS TO
THE NUMBER OF PACKAGES WITH ≥ 5 VERSIONS BETWEEN 01 JAN
2015 AND 31 DEC 2023 AND NON-GATED HUGGING FACE MODELS.
MEASURE SIGNATURES REFERS TO THE NUMBER OF PACKAGES WE

ATTEMPTED TO MEASURE. DUE TO DOWNLOAD RATES, WE ONLY
MEASURE A RANDOM SAMPLE OF THE FILTERED MAVEN CENTRAL

PACKAGES (10% OF THE TOTAL POPULATION).

Stage PyPI Maven Docker HF
Collect Packages 623,346 499,588 1,001,771 559,517
Filter Packages 205,513 243,191 91,719 128,338
Measure Signatures 205,513 49,959 91,719 128,338

6.4. Stage 3: Filter Packages

After obtaining the lists of packages, we filtered them
for packages of interest to our study. Since our study was
interested in effects over time, our primary filter was for
packages with multiple versions. In all of the registries, we
filtered for all packages with ≥ 5 versions between 01 Jan
2015 and 31 Dec 2023. 3

On Hugging Face, we also filter models that are gated
(i.e., they have some sort of access control). Examples
include pyannote/segmentation which requires users to agree
to terms of use. These models account for 0.9% (5,138)
of the total models. We are unable to tell how many of
these models have ≥ 5 commits in the time period, without
gaining access. In many cases, this requires agreeing to
terms of use, which we are unable to do at scale.

See Table 3 for the number of packages available after
each stage of the pipeline.

6.5. Stage 4: Measure Signatures

After filtering, we measured the quantity and quality of
the signatures associated with the surviving packages.

In §4 we defined signature quantity as the fraction of
signed artifacts in a registry, and quality as the fraction
of good signatures among those. Since signatures apply
to different units of analysis in each registry, we defined
quantity and quality somewhat differently for each registry.
The nature of the signable artifacts was discussed earlier
in this work. However, certain aspects of quality cannot be
measured in all registries (e.g., signature expiration is not
applicable to git commits). We use the remainder of this
subsection to clarify signature quality for each registry.

For quality, not all failure modes can be measured in
each registry. Recall that Figure 1 indicated failure modes
in a typical signing scheme. However, some registries use
unique signing schemes, such as Docker Content Trust
(DCT). These schemes do not allow us to measure quality
in the same manner as other registries. Although they use

3. Note that for Docker Hub we filtered for packages with ≥ 5 tags and
for Hugging Face we filtered for packages with ≥ 5 commits. The notion
of a version for ML models is less clear than for software packages, so we
used commits as a proxy. Hugging Face has some mechanisms (e.g., tags)
for versioning, but we found that these are not consistently used.

TABLE 4. SIGNATURE STATUSES AND WHETHER OR NOT THEY ARE
MEASURABLE ON EACH PLATFORM. ✓: MEASURABLE. ✗: NOT

MEASURABLE. –: THEORETICALLY MEASURABLE. PK: PUBLIC KEY.

Status Failure # PyPI Maven Docker HF
Good Signature – ✓ ✓ ✓ ✓

No Signature 1 ✓ ✓ ✓ ✓
Bad Signature 3 ✓ ✓ ✗ ✓
Expired Signature 7 ✓ ✓ ✗ –
Expired PK 6 ✓ ✓ ✗ –
Missing PK 4,8 ✓ ✓ ✗ –
Revoked PK 5 ✓ ✓ ✗ –
Bad PK 2 ✓ ✓ ✗ –

similar cryptographic methods, we cannot measure points
of failure in the same manner as other registries. Using the
numbering system of Figure 1, in Table 4 we indicate which
signature failures can be measured on each platform.

6.5.1. PGP. PyPI and Maven Central use PGP signatures to
secure packages. The measurements for these registries are
similar, so we describe commonalities here.

Discovery: For PGP, we need to discover the public keys
associated with each signature. The most common method
for sharing public PGP keys is to use a public key server.
Sonatype recommends the Ubuntu, OpenPGP, and MIT
servers [96]. We found 5 more servers via Google searches.

On this set of 8 servers, we conducted a small-scale
experiment to determine which servers to use in our study.
Using a sample of ∼3,800 keys from PyPI and Maven
Central, we found that only 4 servers worked reliably (i.e.,
some servers are no longer functional or perform slowly).
For example, the famous pgp.mit.edu server often times out.

We found that four servers responded consistently: key-
server.ubuntu.com keys.openpgp.org keyring.debian.org, and
pgp.surf.nl For each key, we queried each of these servers
in order to find the public key associated with the signature.
If we were unable to find the key in any of these servers,
we marked the signature as having a missing public key.

Among our selected servers, the Ubuntu server was able
to discover the most keys, followed by the Surf, OpenPGP,
and Debian servers. The Surf server is queried last because
has the most overlap with the Ubuntu server (i.e., we are
more likely to find the key by looking at other servers first).

Verification: To verify a PGP signature, we use the gpg
command line utility. This utility provides a verify command
which can be used to verify the validity of a signature. This
command returns the status of the signature verification. We
parse this status to determine the quality of a signature.

Expiration: For our measurements, we consider a key to
be expired if the key’s expiration had passed at the time of
our measurement. There is no definitive way to determine
if a signature was created before or after the key expired.

Cryptographic Algorithm: The strength of a PGP key is
determined by the cryptographic algorithm. The gp com-
mand line utility provides a list-packets command which
can be used to extract metadata from a signature. This com-
mand returns the cryptographic algorithm and, particularly
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important for RSA keys, the key length. We compare this
to NIST’s recommendations [97].

6.5.2. Details Per-Registry. PyPI: PyPI uses PGP signa-
tures to secure packages. As a result, we use the methods
described in §6.5.1 to measure the quality and quantity of
signatures on PyPI packages.

Maven Central: Maven Central requires PGP signatures
on all artifacts. As a result, we use the methods described
in §6.5.1 to measure the quality and quantity of signatures
on PyPI packages.

For Maven Central, we were unable to sample the entire
filter population. Due to the high adoption quantity and
the number of files associated with each Maven Central
package, verifying Maven Central packages requires a large
amount of network traffic to download every file and its
signature. For this reason, we choose to only check a random
sample of the filter population (10% of the total population).
See Table 3 for the number of packages we attempted to
measure versus the total number of packages available.

Docker Hub: Docker Hub uses Docker Content Trust
(DCT) to sign image tags. This tool has first-class support in
the Docker CLI, so we use the docker trust inspect command
to verify the validity of signatures. Since DCT automates
much of the signature process, we can only measure the
presence of a signature (i.e., you cannot upload a bad
signature with DCT). For this reason, all signatures are
considered valid unless they are missing.

Hugging Face: Hugging Face uses git commit signing for
its models. Typically, git commit signatures are verified us-
ing the git verify-commit command. This uses PGP under the
hood, and still requires a public key to verify the signature.
On platforms like GitHub, the public key is stored on the
user’s profile. However, Hugging Face does not currently
expose the public keys for its users [98]. Since users upload
keys to Hugging Face they do not necessarily upload them
to a public key server as in §6.5.1 — we tried and had a low
discovery rate. For this reason, verifying signatures with git
verify-commit is not actually representative of the signature
quality. Instead, we use Hugging Face’s UI to verify the
validity of signatures. Verified signatures are marked as
good, and unverified signatures are marked as bad.

6.6. Stage 5: Evaluate Adoption

For RQ1 and RQ2, our method is to report and analyze
the statistics for each registry.

To answer RQ3, we need to evaluate hypotheses H1–H4.
For these hypotheses, we need distinct factors corresponding
to each class of incentive. We identified a set of factors
through web searches such as “software supply chain attack”
or “government software signing standard”. Four authors
collaborated in this process to reduce individual bias.

The resulting set of factors are given in Table 5. We
identified changes in registry policies and in three kinds of

TABLE 5. FACTORS THAT COULD PROVIDE SIGNING INCENTIVES.
FACTORS WERE IDENTIFIED VIA WEB SEARCHES BY FOUR AUTHORS,

AND CATEGORIZED BY INCENTIVE TYPE PER TABLE 1.

Factor Category Date
PyPI De-emph Registry policy Mar 2018
Docker Hub Update Registry policy Sep 2019
PyPI Removed PGP Registry policy May 2023

NotPetya Signing event (attack) Jun 2017
CCleaner Signing event (attack) Sep 2017
Magecart Signing event (attack) Apr 2018
DockerHub Hack Signing event (attack) Apr 2019
SolarWinds Signing event (attack) Dec 2020
Log4j Signing event (attack) Dec 2021

NIST code signing Signing event (government) Jan 2018
CISA Publication Signing event (government) Apr 2021
Exec. Ord. 14028 Signing event (government) May 2021

CMMC Signing event (standard) Jan 2020
CNCF Best Practices Signing event (standard) May 2021
SLSA Framework Signing event (standard) Jun 2021

signing events: software supply chain attacks, government
actions, and industry standards.

Using these factors, we perform exploratory data anal-
ysis (visual analysis) to identify trends in signing adoption.
This analysis was performed on another sample of the data
to avoid biasing our final statistical tests. On the final data,
we use statistical tests to evaluate hypotheses H1–H3.

We conduct statistical tests as follows:

• We assume that if an event (incentive) impacts a given
registry, then the effect will be measurable within 6
months. This time horizon was selected to permit some
amount of lag, while not introducing too many possible
confounding events within the time frame.

• The data used in the tests are the daily signing rates
from each registry (calculation: Number of signed units
/ Total number of units).

• We select a 99% confidence level (p-values should be
< 0.01 to be considered significant)

We note two caveats: First, there are many comparisons
that could be performed (4 registries x 16 events in Table
5), but every additional test increases the risk of Type-1
errors (false positives). For this reason, we only test the
hypotheses that are supported by exploratory data analysis
and apply a Bonferroni correction to our p-values. Second,
where present, statistically significant results indicate cor-
relation, not causation. Our research is motivated by an
underlying predictive theory. If the predicted results occur
at a statistically significant level, they support the theory.

We conducted 3 kinds of statistical tests: (1) a one-
way ANOVA test on overall differences between registry
adoption quantity; (2) a subsequent Tukey tests; and (3)
selected independent t-tests to compare signing before and
after selected events. All tested distributions meet the as-
sumptions inherent in the corresponding tests.



7. Results

For RQ1, we present the quantity and quality of sig-
natures we measured in each registry in §7.1. For RQ2,
we describe changes in signing practices over time in §7.2.
Finally, for RQ3, we assess the influence of incentives on
signing adoption in §7.3.

7.1. RQ1: Quantity and Quality of Signatures

In Table 6, we show the quantity and quality of signa-
tures in each registry. We show the total amount of signable
artifacts in each registry, how many of those are signed, and
the status of the subset of signed signatures. We show both
the most recent year of data (Jan-Dec 2023) and the entire
time period (01 Jan 2015 to 31 Dec 2023).

7.1.1. Quantity of Artifact Signatures. With respect to
the quantity (proportion) of signed artifacts, the registries
lie in three groups by order of magnitude. First, Maven
Central experiences the highest signing rate with 97.1% of
artifacts signed in 2023. We conjecture that this degree of
signing occurs only when signing is mandatory. 4 Second,
Docker Hub has a low adoption rate with 1.0% of tags
signed in 2023. Third, Hugging Face and PyPI currently
have a negligible amount of signatures with 0.1% and 0.2%
of artifacts signed in 2023, respectively. Keep in mind that
PyPI’s low signing rate includes data since the feature was
removed in 23 May 2023. Even considering this, the relative
number of signed artifacts is still the lowest on Hugging
Face. Out of all 2.02M commits across the 100K packages
on Hugging Face in 2023, only 1.24K are signed.

Finding 1: Between 01 Jan 2023 and 31 Dec 2023, all
registries aside from Maven Central had less than 2%
of artifacts signed. Maven Central, the only registry in
our study that mandates signing, had 97.1% of artifacts
signed in that same time period.

7.1.2. Quality of Artifact Signatures. Failure Modes:
With respect to quality, each registry has a distinct flavor.
On Docker Hub signatures either exist or not — we can
only tell if maintainers correctly signed a tag. On Hugging
Face, we can only tell if the signature was valid. On Maven
Central and PyPI, we can measure the failure modes of
signatures.

Of the registries with measurable quality, Maven Central
has the best with 72.9% of signatures valid since 01 Jan
2023. PyPI has the next best quality with 48.4% of signa-
tures valid since 01 Jan 2023. Not only does Hugging Face
have the lowest quantity of signed artifacts, but it also has
the lowest quality of signed artifacts. Of the 1.24K signed
artifacts, only 296 (23.9%) were valid.

4. Not all Maven Central packages are signed. Some are ingested from
other Java package registries and the Maven signing requirement is waived.
Source: Personal communication with Maven team.

We observed differences between signing failure modes
by registry. The three most common failure modes on Maven
Central were expired public keys, missing public keys, and
bad public keys. Failures related to public keys accounted
for over 99% of all Maven signing failures in 2023. The
three most common failure modes on PyPI were missing
public keys, revoked public keys, and expired public keys.
Expired signatures are very rare, the only instances we could
find were from 2014 versions of the leekspin package on
PyPI Similar to Maven Central, public key related failures
accounted for over 99% of all PyPI signing failures in 2023.
On Hugging Face, the registry records but does not publish
the public keys disclosed by package maintainers.5 Due
to the lack of published public keys, we were unable to
determine the cause of the invalid signatures. Finally, we
observed no signing failures in Docker Hub.

Finding 2: Signing failures were common in three of
the four studied registries. On Maven Central and PyPI,
24.0% and 53.1% of signatures between 01 Jan 2023 and
31 Dec 2023 were invalid, respectively. On Hugging Face
the situation is worse, with 76.1% invalid signatures.
Lastly, on Docker Hub, we observed no signing failures.

Cryptographic Algorithms: For Maven Central and PyPI,
we observed the use of several cryptographic algorithms. We
show the distribution of algorithms in Table 7. RSA was
the most common algorithm used in both Maven Central
and PyPI. In Maven Central, RSA was used in 96.01% of
signatures. In PyPI, RSA was used in 85.82% of signatures.

RSA signature security is dependent on the key length.
In Table 8, we show the distribution of RSA key lengths
used in Maven Central and PyPI. Of the RSA signatures in
Maven Central, most of them used either 2048 or 4096 bit
keys. The same is true for PyPI. These keysizes comply with
the US NIST’s SP-800-78-5 baseline [97] for keysizes for
this decade. Only a small fraction of signatures used keys
larger than 4096 bits or smaller than 2048 bits.

Finding 3: For both Maven Central and PyPI, RSA
was the most common cryptographic algorithm used in
signatures. Most RSA signatures used 2048 or 4096 bit
keys. A small fraction used insecurely-small key sizes
(<2048 bits) or very large key sizes (>4096 bits).

Expired Keys: We report expired keys as a failure mode
regardless of the publishing time of the artifact. For old
artifacts, this may be unfair, since the key was presumably
valid at time of publication, and since a newer version of
the package may have been available. We investigated both
of these aspects for signatures whose keys had expired.

First, we examined the typical time of validity, i.e.,
the time remaining in the public key’s lifespan at time of
signature creation. Surprisingly, a substantial proportion of
signatures are created after the expiration of the associated
public key, i.e., it was never a valid signature. For Maven

5. We asked the Hugging Face engineers for access. They declined.



TABLE 6. THE NUMBER OF ASSESSED PACKAGES AND ARTIFACTS FROM EACH REGISTRY, THE PERCENT WITH AND WITHOUT SIGNATURES, AND
THE BREAKDOWN OF SIGNATURE STATUS FOR SIGNED ARTIFACTS. FOR EACH MEASUREMENT, WE SHOW THE MOST RECENT YEAR AND THE ENTIRE

MEASUREMENT PERIOD. “—”: NOT MEASURABLE; HUGGING FACE HIDES KEYS, ONLY DISCLOSING WHETHER VALIDATION SUCCEEDED.

Registry PyPI Maven Central Docker Hub Hugging Face
1 year (Total) 1 year (Total) 1 year (Total) 1 year (Total)

Total Packages 93.2K (206K) 24.1K (50K) 70K (91.7K) 100K (128K)
Total Versions 1.2M (4.83M) 378K (2.04M) 5M (9.52M) 2.02M (2.66M)
Total Artifacts 2.75M (9.68M) 1.55M (7.96M) 5M (9.52M) 2.02M (2.66M)

Unsigned Artifacts 99.8% (98.8%) 2.9% (5.9%) 99.0% (97.5%) 99.9% (99.9%)
Signed Artifacts 0.2% (1.2%) 97.1% (94.1%) 1.0% (2.5%) 0.1% (0.1%)
Good Signature 48.4% (50.2%) 72.9% (68.5%) 100% (100%) 23.9% (20.2%)
Bad Signature 0.0% (0.2%) 0.2% (0.7%) 0.0% (0.0%) —
Expired Signature 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%) —
Expired Public Key 6.6% (16.0%) 15.0% (23.0%) 0.0% (0.0%) —
Missing Public Key 23.4% (16.0%) 7.3% (3.8%) 0.0% (0.0%) —
Public Key Revoked 18.5% (15.7%) 0.5% (2.3%) 0.0% (0.0%) —
Bad Public Key 3.1% (1.9%) 4.2% (1.6%) 0.0% (0.0%) —

TABLE 7. CRYPTOGRAPHIC ALGORITHMS USED IN SIGNATURES.

Algorithm Maven Central PyPI
RSA 96.01% 85.82%
DSA 1.79% 11.22%
EdDSALegacy 2.15% 2.71%
RSA Sign Only 0.03% 0.00%
ECDSA 0.01% 0.26%

TABLE 8. RSA KEY LENGTHS USED IN SIGNATURES.

Length Maven Central PyPI
8192 0.005% 0.142%
4608 0.006% 0.000%
4096 38.162% 49.317%
3072 13.892% 2.174%
2048 47.662% 48.223%
1536 0.000% 0.001%
1024 0.271% 0.143%

Central, 16.8% of the artifacts whose public key eventually
expired had signatures created after the expiration. For PyPI,
11.4% of the artifacts whose public key eventually expired
had signatures created after the expiration. For signatures
created with a still-valid public key, signatures on Maven
Central had a median of 1.37 years remaining in the public
key’s lifespan and those on PyPI had a median of 1.93 years
remaining in the public key’s lifespan.

Second, we examined the availability of an upgrade path
from an expired to an unexpired version of a package.
On Maven Central, in only 26.7% of cases was there a
newer version of the package with an unexpired signature.
On PyPI, the number was 8.0%. Thus, upgrade paths are
usually unavailable, suggesting that signature expiration is
not well managed in these ecosystems. This result may be
confounded by abandoned packages.

7.2. RQ2: Change in Signing Practices Over Time
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Figure 4. Quantity of signed artifacts over time. Axes are time (monthly
increments) and the percentage of signed artifacts per registry.

7.2.1. Quantity of Artifact Signatures. In Figure 4, we
show the quantity of signed artifacts over time. We measured
signing rates for the signable artifacts published in that
month. This figure shows how many such artifacts were
signed, grouped by registry.

We observe a stark contrast in signing quantity between
Maven Central and the other registries. Because of its
mandatory signing policy as of 2005, Maven Central had
a high quantity of signed artifacts throughout the period
we measured. In contrast, the other registries have had
a low quantity of signed artifacts throughout. PyPI, for
example, has had a historically decreasing quantity of signed
artifacts until they were ultimately removed in 23 May 2023.
Hugging Face has also experienced a low signing rate across
its lifespan. 6 Before late 2019, Docker Hub had a worse

6. The Hugging Face spikes in Figure 4 are due to the small number of
commits in Jan 2017–Dec 2019 (only 1,266 commits in this period).
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Figure 5. Quality of signed artifacts over time. X-axis shows time (monthly
increments). Y-axis shows percentage of signatures with good status.

signing rate than PyPI. From early 2020 through the middle
of 2022, Docker experienced a notable increase in signing.

Finding 4: Maven Central is the only registry with a
consistently high quantity of signed artifacts.

7.2.2. Quality of Artifact Signatures. Failure Modes: In
Figure 5, we show the quality of signed artifacts over time.
This figure shows how many of the signed artifacts in each
registry were signed correctly in a given month. Within each
registry, we observe no change in the quality over time.
Between registries, we observe perfect quality in Docker
Hub; high quality in Maven, lower and variable quality in
PyPI, and spikes (due to the low number of signatures) of
quality in Hugging Face.

Next we consider the failure modes of signatures by
registry. For PyPI, see Figure 6. There are several common
failure modes. They vary in relative frequency and none
dominates. For signing failure modes in Maven Central
see Figure 7. The primary failure mode in our study period
is an expired public key. Revoked public keys have become
less of a concern over time and missing public keys have
become more of a concern since the end of 2019. Bad public
keys are also on the rise. Public key creation and distribution
remains challenging.

We omit figures for Docker Hub and Hugging Face.
Since Docker Hub signatures are either valid or invalid
(and all we measured were valid), we cannot distinguish
the failure modes. On Hugging Face, we cannot access the
maintainers’ PGP keys, so we cannot analyze the failure
modes of signatures there.

Finding 5: Docker Hub is the only registry with perfect
quality. For Maven Central and PyPI, the most common
failure modes are related to public keys in our study
period.
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Figure 6. Failure modes of signatures on PyPI.
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Figure 7. Failure modes of signatures on Maven Central.

Cryptographic Algorithms: For RSA keys on PyPI, Fig-
ure 8 shows the key lengths used over time. Note that 2048
and 4096 bit keys trade off as the most common over time.
3072 bit keys are also used starting in mid-2018, but remain
much less common than the other two key lengths.

For RSA keys on Maven Central, Figure 9 shows the
key lengths used over time. 2048 bit keys are initially the
most common, but then drop to a similar level as the 4096
bit keys. As in PyPI, 3072 bit keys start to be used in mid-
2018. 3072 bit keys start to replace 2048 bit keys in late
2020 but are still less common than 2048 and 4096 bit keys.

Finding 6: 2048 and 4096 bit RSA keys have remained
the most common key lengths in both Maven Central and
PyPI between 01 Jan 2015 and 31 Dec 2023. On Maven
Central, 3072 bit keys started to replace 2048 bit keys in
late 2020.

7.2.3. No bias from new packages. Software package
registries grow over time [88]. One consideration about our
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Figure 8. RSA key length over time in PyPI.
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Figure 9. RSA key length over time in Maven Central.

longitudinal analysis is therefore whether the signing prac-
tices of new packages dominates our measure in each time
window. To assess this possibility, Figure 10 shows the num-
ber of first-versions (i.e., a new package) and subsequent-
versions (i.e., a new version of an existing package) of
packages on PyPI, binned monthly. We note that most of the
artifacts on PyPI are from subsequent-versions of packages.
Maven Central, Docker Hub, and Hugging Face follow the
same trend. Hence, our results reflect the ongoing practice
of existing maintainers rather than the recurring mistakes of
new maintainers.

7.3. RQ3: Influence of Incentive

To test our hypotheses, we performed a one-way
ANOVA test, subsequent Tukey tests, and a selection of one-
sided, two-way t-tests. The dependent variable is signature
quantity, i.e., daily signing rate (percent of signed artifacts).

For the one-way ANOVA test, we compared the signing
rates over the entire sample period between each of our reg-
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Figure 10. Number of first-artifacts and subsequent-artifacts of packages
on PyPI.

TABLE 9. RESULTS OF T-TESTS FOR EACH HYPOTHESIS. PER EVENT,
WE SHOW THE REGISTRY, ADJUSTED P-VALUE, AND EFFECT SIZE.

*: STATISTICALLY SIGNIFICANT VALUE AT P < 0.01.

Event Registry Adj. P-Val Effect Size

PyPI De-emph PyPI 0.000* 0.228
PyPI De-emph Maven Central 0.081 0.085
PyPI De-emph Docker Hub 0.005* 0.149

DockerHub Update PyPI 0.971 0.100
DockerHub Update Maven Central 0.971 0.066
DockerHub Update Docker Hub 0.000* 0.392

DockerHub Hack PyPI 0.999 0.170
DockerHub Hack Maven Central 0.999 0.117
DockerHub Hack Docker Hub 0.021 0.129

SolarWinds PyPI 0.922 0.015
SolarWinds Maven Central 0.021 0.144
SolarWinds Docker Hub 0.021 0.122

istries. We received a p-value of 0.000 and an F-statistic of
116135.82. This indicates a significant difference in signing
rates between the registries.

To determine which registries are different, we per-
formed a Tukey test. The Tukey test performs pairwise
comparisons between the registries. In all cases except for
the comparison between PyPI and Hugging Face (p-value of
0.000), we observed a significant difference in signing rates
(all p-values of 0.000). This indicates that the signing rates
of all registries are significantly different from each other
except for PyPI and Hugging Face.

We use these results, and a series of one-sided, two-way
t-tests to evaluate our hypotheses. The summary of those t-
tests is shown in Table 9. Note that we do not include Hug-
ging Face in our t-tests because it has a negligible quantity
of signed artifacts during the time periods surrounding the
selected events.

7.3.1. H1: Registry Policies. H1 predicts that registry poli-
cies will either encourage or discourage signing adoption
quantity. If this is the case, we would expect to see corre-



sponding changes in the measurements shown in Figure 4.
For Maven Central and Hugging Face, we did not identify
any changes in registry policies during the time period of
this study. We did, however, identify two policy changes
in PyPI and one change in Docker Hub. These are shown
in Table 5 and appear as vertical lines in Figure 4.

Three observations from this figure support hypothesis
H1. On 22 Mar 2018, PyPI de-emphasized the use of PGP
by removing UI elements that encouraged signing. Our t-
tests show a statistically significant change (decrease) in
signing rates on PyPI after this event. We also measured an
effect on Docker Hub, although the effect size is small and
referring to Figure 4 there is no clear long-term trend.

Second, Docker Hub’s quantity of signatures experi-
enced an appreciable increase at the start of 2020. This
increase follows a provenance visibility related update to
Docker Hub, published on 05 Sep 2019.7 In this update,
Docker Hub increased tag visibility and updated security
scan summaries. This update may have encouraged main-
tainers to sign their tags. Our t-tests show that the only
registry with a statistically significant change in signing rate
after the Docker Hub update was Docker Hub.

Third, the notable difference in signing quantity between
Maven Central and the other registries suggests that manda-
tory signing policies encourage adoption. Since Maven
Central has a mandatory signing policy, we expected, and
observe, a high quantity of signatures. Our ANOVA test,
discussed earlier, found that the signing rate of Maven
Central is significantly different (higher) than the others.

7.3.2. H2: Dedicated Tooling. H2 predicts that dedicated
tooling will affect both the quantity and quality of signa-
tures. Since Docker Hub is the only registry in our study that
has dedicated tooling, H2 predicts that Docker Hub would
have a higher quantity and quality of signatures than the
other registries.

We do not observe support for the quantity aspect of
H2. In Figure 4, we observe that Docker Hub has a lower
quantity of signatures than Maven Central and had lower
quantity of signatures than PyPI before 2020. This suggests
that the dedicated tooling on Docker Hub did not signifi-
cantly impact the quantity of signatures. After all, between
01 Jan 2023 and 31 Dec 2023, Docker Hub’s signing rate
was only 1.0%.

However, we do find support for the quality aspect of
H2. In Figure 5, we observe that Docker Hub has perfect
signature quality — something no other registry can achieve.
This is because all signatures on Docker Hub must be
created with through the DCT which, in itself, checks to
make sure signatures are created correctly.

7.3.3. H3: Cybersecurity Events. H3 predicts that cyberse-
curity events will encourage signing adoption quantity and
quality. Since these events are not specific to any registry,
we would expect to see corresponding changes in the mea-
surements shown in Figure 4 and Figure 5 from multiple

7. See https://docs.docker.com/docker-hub/release-notes/#2019-09-05.

registries. Table 5 lists several influential software supply
chain attacks and cybersecurity events. However, neither
preliminary visual analysis nor t-tests show any significant
changes in signing rate or quality after these events.

We illustrate this with two cases. First, consider the
registry-specific Docker Hub hack in April 2019. Although
this attack was widely publicized and required over 100,000
users to take action to secure their accounts, this attack
had little observable effect on the quantity of signatures
on Docker Hub. The large increase in signing adoption on
Docker Hub occurred at the start of 2020, about 9 months
after the Docker Hub hack (and just after a registry-specific
policy change, to the visibility of package signatures). This
implies that the attack did not even have an impact on the
quantity of signatures of its victim registry. Other registries
were not affected at all.

Second, the SolarWinds attack in December 2020 had
little effect on the quantity of signatures for any registry.
This attack was one of the largest software supply chain
attacks in history. It led to several government initiatives
to improve software supply chain security. However, So-
larWinds (and those government initiatives, e.g., the sub-
sequent executive order and NIST guidance) had no dis-
cernible effect on signing adoption in the studied registries.

7.3.4. H4: Startup Cost. H4 predicts that the first signature
in a package will encourage subsequent signing. This is rela-
tively simple to measure. First, we determine the probability
of an artifact having a signature in each registry. We then
determine the probability of an artifact having a signature
if one of the previous artifacts from the same package has
been signed. We then compare these two probabilities to
determine if the first signature predicts subsequent signing.

In Table 10, we show both of these probabilities for
each of our four registries. All registries experience an
increase from the raw probability to the probability after
the first signature. This suggests that overcoming the burden
of signing for the first time encourages subsequent signing.
The magnitude of this increase varies by registry. On Maven
Central, we observe a small increase in signing probability,
but this is expected since Maven Central has a mandatory
signing policy. On the other platforms, the increase was
∼40x. These changes suggest that the initial burden of
signing is a significant barrier to adoption.

TABLE 10. THE PROBABILITY OF AN ARTIFACT HAVING A SIGNATURE.
RAW PROBABILITY DESCRIBES THE LIKELIHOOD OF ANY ARTIFACT IN

THE REGISTRY HAVING A SIGNATURE. AFTER 1st SIGNATURE
DESCRIBES THE PROBABILITY THAT AN ARTIFACT WILL BE SIGNED IF

ONE OF THE PREVIOUS ARTIFACTS FROM THE SAME PACKAGE HAS
BEEN SIGNED.

Registry Name Raw Probability After 1st Signature
PyPI 1.25% 42.60%
Maven Central 94.14% 96.00%
Docker Hub 2.47% 88.30%
Hugging Face 0.07% 15.10%

https://docs.docker.com/docker-hub/release-notes/#2019-09-05


8. Discussion

We highlight three points for discussion.
First, our findings suggest that the long line of liter-

ature on the usability of signing tools (§3) may benefit
from extending its perspective from an individual view to
ecosystem-level considerations. Two registries, Maven and
PyPI, use the same PGP-based signing method. We observe
significant variations in signing adoption between these
two registries, both in signature quantity and in signature
quality/failure modes. Our answers to RQ3 suggest that
the registry policies have a substantial effect on signing
adoption, regardless of the available tooling. However, we
acknowledge that our data do substantiate their concern
about signature quality — our data expose major issues
with signature quality in both the Maven and the PyPI
registries, and that the dedicated tooling available in Docker
Hub appears to eliminate the issues of signing quality.

Second, our findings suggest that registry operators con-
trol the largest incentives for software signing. Mandating
signatures has not apparently decreased the popularity of
Maven — we recommend that other registries do so. Reg-
istry operators can also learn from the success of Docker
Hub, whose dedicated tooling results in perfect signing qual-
ity. No registry currently mandates signatures and provides
dedicated tooling. Our results predict that the combination
would result in high signature quantity and quality.

Third, we were disturbed at the non-impact of signing
events — software supply chain attacks, government orders,
and industry standards. Good engineering practice (not to
mention engineering codes of ethics) calls for engineers to
recognize and respond to known failure modes. Our contrary
results motivate continued research into engineering ethics
and a failure-aware software development lifecycle [99].

9. Threats to Validity

We distinguish three kinds of threats: construct, internal,
and external.

Construct: Our study operationalized several constructs.
We defined signature adoption in terms of quantity (propor-
tion) and quality (frequency of no failure). We believe our
notion of signature quantity is unobjectionable. However,
signature quality is somewhat subjective. We made four
assumptions that may bias our results: (1) We defined quality
based on failure modes derived from the error cases of GPG;
(2) We considered expired and revoked keys as failures even
if the keys were valid at the time of signing; (3) We reported
the cryptographic algorithm and key size for signatures on
PyPI and Maven Central but did not include this as a factor
in quality; and (4) We relied on the correctness of specific
(albeit widely used) tools to measure the signatures.

We acknowledge that the limitations of our data sources
may potentially impact the robustness of our results. Our
reliance on third party metadata (i.e., ecosyste.ms and Big-
Query) may introduce errors and our key discovery method-
ology may fail to find keys that exist on small websites or

that have been shared through other means. In addition, our
insights into failure modes were limited by the data made
available by the signing infrastructure of our target registries.

Internal: We evaluated a theory of incentive-based soft-
ware signing adoption based on several hypotheses. Due to
the difficulty of conducting controlled experiments of this
theory, we used a quasi-experiment, and assumed no uncon-
trolled confounding factors. Among Maven Central, PyPI,
and Docker Hub, we have no reason to believe there would
be such factors. In Hugging Face, there may be confounding
factors related to the nature of the platform itself. As noted
by Jiang et al., Hugging Face is characterized by a “research
to practice pipeline” more than traditional software package
registries are [23]. Researchers have little incentive to follow
secure engineering practices. This difference could comprise
an uncontrolled confounding factor. However, Hugging Face
had little variation in signing quantity and none of our main
results relied on Hugging Face phenomena.

External: All empirical studies are limited in general-
izability by the subjects they study. Our work examines
four of the most popular software package registries, across
three kinds of packages (traditional software, Docker con-
tainers, and machine learning models). Our results thus
have some generalizability. However, our results may not
generalize to contexts with substantially different properties,
e.g., registries more influenced by government policy or
more dominated by individual organizations.

10. Future Work

We suggest several directions for future research.
Further Diversification of Registries: Our findings are

provocative, but we recommend diversifying the types of
ecosystems under study. Further work could go beyond
open-source registries to include commercial and proprietary
registries (e.g., app stores), and ecosystems implementing
different forms of signing solutions. This approach will
facilitate a comprehensive exploration of other factors, in-
centives and cost trade-offs that influence the adoption of
software signing for these types of ecosystems.

Incorporating Human Factors: Our approach is grounded
in a theory of software signing based in incentives. Qual-
itative data — e.g., surveys and interviews of engineers
in the registries of interest — would shed light on the
relative weight of the factors we identified. Such studies
could expose new factors for quantitative evaluation.

Identifying Machine Learning (ML) Software and Pre-
Trained Model Signing requirements: Signing adoption rates
in the Hugging Face registry are much lower than in all
other studied registries. We recommend research on signing
practices in this context. The issue might be an odd signing
target — commits rather than packages. The challenge might
be more fundamental, clarifying the nature of effective
signatures for ML models and training regimes [100].

Apply the results: As noted in §8, registry operators appear
to have a strong influence on software signing quantity and



quality. Partnering with registry operators, researchers can
apply our results to empirically validate them.

11. Conclusion

In this study, we assessed signing in four public software
package registries (PyPI, Maven Central, Docker Hub, and
Hugging Face). We measured signature adoption (quantity
and quality). We found that, aside from Maven Central, the
quantity of signatures in package registries is low. Aside
from Docker Hub, the quality of signatures in package
registries is low. To explain these observations, we pro-
posed and evaluated an incentive-basd theory explaining
maintainer’s decisions to adopt signatures. We used quasi-
experiments to test four hypotheses. We found that incen-
tives do influence signing adoption, and some incentives are
more influential than others. Registry policies and startup
costs seem to have the largest impact on signing adoption.
Cybersecurity events do not appear to have a significant
impact on signing adoption.

We hope that our results will encourage the software
engineering community to improve their software signing
efforts, enhancing the overall security of software systems.
Our findings suggest specific incentives that could signifi-
cantly improve software signing adoption rates.

12. Data Availability

The tools used to collect and analyze the data are
available at https://github.com/PurdueDualityLab/signature-
adoption. This repository also contains the reported data in
a relational database snapshot.
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Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.1. Summary

Code that can be authenticated to its source is a nec-
essary prerequisite to a secure software supply chain. This
paper looks at package signing practices in PyPI, Maven,
Hugging Face, and DockerHub, and evaluates the quality
and quantity of the signatures found there. The authors then
compare the ecosystems to argue that only a mandate will
lead to universal signing and ecosystems with easy-to-use
tooling will lead to more voluntary signing.

A.2. Scientific Contributions

• Provides a New Data Set For Public Use
• Addresses a Long-Known Issue
• Provides a Valuable Step Forward in an Established

Field

A.3. Reasons for Acceptance

The paper assimilates significant data from multiple
ecosystems that helps to shed light on signing practices.

The findings are interesting, showing a large amount of
variance across ecosystems. Likewise, rigid adherence to
signing practices is also shown not to be a security panacea.
The data and corresponding insights struck the PC as a
valuable contribution to aid understanding and direct future
research.

A.4. Noteworthy Concerns

1) While any empirical study will have limitations, the PC
had concerns with the approach taken to classify public
keys as valid. Best practices recommend that keys are
rotated. The validity of a key seems most important at
the time when a commit is performed, not years later.

2) The paper studies events that may have influenced
signature adoption. It reports correlative, not causative,
evidence for the influence of factors. Understanding
causation requires further study.

3) The paper excludes Hugging Face models that require
assenting to a Terms of Service agreement. The PC
wonders whether models with a ToS are more likely to
be professionally developed and possibly more likely
to be signed.

Appendix B.
Response to the Meta-Review

We take no issue with the meta-review. We appreciate
the holistic critique.
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