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Abstract—Current Al-based Intrusion Detection Systems (IDS)
primarily rely on untrustworthy black box methods. Tradi-
tionally, many of these black box IDS are built using Error
Based Learning (EBL) algorithms such as neural networks.
EBL algorithms can offer high accuracy but at the cost of
explainability. White box algorithms, on the other hand, are
far more explainable and trustworthy than black box EBL
techniques. Our proposed solution is a white box Competitive
Learning (CL) based eXplainable Intrusion Detection System
(X-IDS), offering innate explainability. This architecture is built
using DARPA’s guidelines for explainable systems. We analyze
the statistical and visual explanations generated by the CL models
and demonstrate a method for understanding the explanations.
Using these explanations, users could potentially make changes
to the architecture to improve security. Lastly, a performance
analysis using traditional accuracy metrics is performed using the
NSL-KDD and CIC-IDS-2017 datasets. While achieving slightly
lower accuracies (1%-3% less than EBL models) on NSL-
KDD and CIC-IDS-2017 datasets, CL. models provide enhanced
explainability and trustworthiness.

I. INTRODUCTION

Shifting away from the current trend of black box Intru-
sion Detection Systems (IDS) can lead to more trustworthy
and transparent anomaly detection. Existing methods for Al
enabled intrusion detection use Error Based Learning (EBL)
algorithms to detect anomalies. EBL refers to models that
train through minimizing a loss function, generally through
the gradient descent algorithm. These models can achieve high
detection rates, however they suffer from a few problems. First,
these models are not easy to understand and are not innately
explainable. Users who use these opaque models do not know
how or why a prediction was computed. This can cause a lack
of trust and prevent the adoption of AI IDS solutions [1], [2].
Second, many of these methods have high false positive rates
which can harm the overall performance of a real-world IDS
[3]. Without truly understanding the model, it is difficult to
discover why the model is creating incorrect predictions.

eXplainable Intrusion Detection Systems (X-IDS) are a po-
tential solution to the above mentioned problems [4]. The De-
fence Advanced Research Projects Agency (DARPA) defines
an explainable system as an Al that can explain the reasoning
for its decisions, characterize its strengths and weaknesses, and
convey a sense of its future behavior [5]. Many methods can
allow current EBL Al models to achieve these tenets. Solu-
tions such as Local Interpretable Model-agnostic Explanations
(LIME) [6], SHapely Additive exPlantions (SHAP) [7], and
Layer-wise Relevance Propagation (LRP) [8] have the ability
to convert black box models into semi-transparent, explainable
models. However, the use of these types of solutions comes
with downsides. One major downside to these techniques is
their black box nature. Similar to the black box EBL models
that they are used to explain, the user does not know how or
why these explanation frameworks come to conclusions. If one
of the goals of black box XAl is to generate trust in opaque
models, how can we view explanations from opaque surrogate
models as trustworthy? Black box surrogate explanation can
be seen as less trustworthy than certain alternatives.

White box algorithms are a beneficial alternative to black
box EBL models. One such set of white box algorithms is
Competitive Learning (CL). CL algorithms, in contrast to
EBL methods like deep neural networks and recurrent neural
networks, employ a competitive learning process rather than
weight adjustments to minimize loss. In CL-based techniques,
nodes representing data samples compete against each other,
with the winning node adjusting its weights to resemble
the training sample, creating abstract representations of data.
These nodes can be data-mined to create various visual and
statistical explanations that users can use to understand the
model’s reasoning. Notably, the Self Organizing Map (SOM)
and its variants, such as the Growing Self Organizing Map
(GSOM) [9] and Growing Hierarchical Self Organizing Map
(GHSOM) [10], constitute prominent CL algorithms, with
the latter two enhancing the original SOM by dynamically
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expanding the node map, enabling broader learning of abstract
data patterns.

The use of CL algorithms in X-IDS offers several benefits,
including enhanced transparency, explainability, and trustwor-
thiness. This transparency enables users to formulate more
confident responses to IDS-related tasks, leveraging the trust
instilled by the CL algorithm’s explanations. Security analysts
can utilize model explanations to gain deeper insights into
attacks, helping to strengthen the network’s defenses. More-
over, machine learning engineers can identify and address
model logic deficiencies, enhancing overall effectiveness by
adjusting the architecture or introducing new training samples.
Ultimately, these explanations contribute to bolstering the
trust and credibility of the IDS, instilling users with greater
confidence in their ability to fulfill their tasks effectively.
Our previous work used the SOM algorithm to create an X-
IDS. This work focuses on using the GSOM and GHSOM
algorithms to create a more accurate, explainable intrusion
detection system.

The major contributions presented in this paper are:

¢ An X-IDS architecture featuring three CL-based algo-
rithms, built using DARPA’s guidelines for an explainable
system. We find that the innately explainable CL models
have comparable accuracy to EBL models and that CL
explanations can be more trustworthy than their black box
counterparts.

¢ An analysis of statistical and visual explanations for an
effective X-IDS. Our X-IDS architecture generates a col-
lection of explainable visualizations ranging from global
significance charts to fine-grained feature explanations.
Users can use these explanations to understand how and
why the model makes decisions.

e A performative analysis of our architecture using tra-
ditional accuracy metrics. We compare CL models to
existing EBL models using the NSL-KDD and CIC-IDS-
2017 datasets. CL models are 1% - 3% less accurate than
EBL algorithms. Even though they are less accurate, their
innate explainability and trustability make CL algorithms
an important tool for X-IDSs.

The rest of the paper is outlined as follows - In Section
II, we discuss background on IDS, XAI, and X-IDS. Section
III describes the GSOM and GHSOM algorithms used in
this paper. Section IV, outlines our CL based X-IDS with its
architecture presented in Figure 1. Section V discusses our
experimental results. Finally, the conclusion and future work
are discussed in Section VI.

II. RELATED WORK

In this section, we present some related work on Intrusion
Detection Systems (IDS), Explainable Artificial Intelligence
(XAI), and Explainable Intrusion Detection Systems (X-IDS).

A. Intrusion Detection Systems (IDS)

An intrusion refers to an action that obtains unauthorized
access to a network or system [11]. An Intrusion Detection
System (IDS) consists of tools, methods, and resources that

help a Cyber Security Operation Center (CSoC) protect an
organization by detecting an intrusion [12], [13]. IDS can
be categorized into operation-based classes, such as signa-
ture, anomaly, and hybrid. Signature-based IDSs operate by
preventing known attacks from accessing a network. The
IDS compares incoming network traffic to a database of
known attack signatures. Notably, this method has difficulty
in preventing zero-day attacks [14]. Anomaly-based IDSs
look for patterns in incoming traffic to recognize potential
threats and leverage complex Al models [4], [15], [16]. A
significant drawback of this approach is the tendency for such
systems to categorize legitimate, unseen behavior as anoma-
lous. Hybrid-based IDS incorporates the design philosophy of
both signature-based and anomaly-based IDS to improve the
detection rate while minimizing false positives [17], [18].

Current work on Al enabled anomaly-based IDSs can be
further divided into black box and white box models [4].
White box models are considered easy to understand by an
expert. This allows the expert to analyze the decision process
and understand how the model renders its decision. This
(semi-) transparent property allows white box models to be
deployed in decision sensitive domains, where auditing the
decision process is a requirement. White box models may
use regression-based approaches [19], decision trees [20], and
Self Organizing Maps (SOMs) [21]. Black box models, on the
other hand, have an opaque decision process. This opaqueness
property makes establishing the relationship between inputs
and the decision difficult, if not outright impossible. Black
box models comprise nearly all the Al enabled state-of-the-
art approaches for IDS, as the focus is traditionally on model
performance, not explainability. Examples of popular black
box model techniques are Isolation Forest [22], One-Class
SVM [23], and Neural Networks [24].

B. Explainable Artificial Intelligence Systems (XAI)

The notion of an Explainable Artificial Intelligence system
(XAI) dates back to the 1970s. Moore et al. [25] surveyed
works from the 1970s to the 1980s, detailing early methods of
explanations. Some early explanations consisted of canned text
and code translations, such as the 1974 explainer MYCIN [26].
We can find a more current definition of XAI by the Defense
Advanced Research Projects Agency (DARPA) [5]. DARPA
defines XAl as ‘systems that are able to explain their reasoning
to a human user, characterize their strengths and weaknesses,
and convey a sense of their future behavior’. An XAI system
that follows this definition offers some form of justification
for its action, leading to more trust and understanding of the
system. The explanations from an XAl system help the user
not only in using and maintaining the Al model but also in
helping users complete tasks in parallel with the Al system.
Tasks can include doctors making medical decisions [26],
[27], [28], credit score decisions [29], detecting counterfeit
banknotes [30], advance maintenance [31], or CSoC operators
defending a network [2], [5], [32].

The current literature consists of many different black box
models being used alongside explanation techniques. Common
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explainer modules for black box models are Local Inter-
pretable Model-agnostic Explanations (LIME) [6], SHapely
Additive exPlantions (SHAP) [7], and Layer-wise Relevance
Propagation (LRP) [8]. Modern techniques for explaining
black box models consist of creating surrogate models that
generate explanations either locally or globally. Other methods
involve propagating predictions backward in a neural network
or decomposing a gradient. More novel approaches have also
experimented with making datasets explainable [33] or making
graphical user interfaces for explainable systems [34].

C. Explainable Intrusion Detection Systems (X-IDS)

Explainable Intrusion Detection Systems are still an emerg-
ing sub-genre. The need for explainability in IDS is becoming
increasingly necessary. In decision sensitive domains, black
boxes obfuscate the decision making process causing a lack
of trust in predictions. The users need to be confident in
the predictions or recommendations computed by an IDS.
Understandable and trustworthy explanations allow users to
perform their tasks correctly. The stakeholders of an IDS (e.g.
CSoC operators, developers, and investors) are individuals
who will be dependent on the performance of the system
[4]. CSoC operators will be performing defense actions based
on prediction and explanation results. Developers can use
explanations to fortify the model in areas where it is weak.
Investors may need explanations to help them make their
company’s budgeting decisions.

There are many examples of X-IDS being used in research
today. A survey by Neupane et al. [4] describes in detail
different X-IDS systems. Many black box implementations
have been shown using libraries such as SHAP, LIME, or
LRP [35], [36], [37]. There have also been more original
explanation frameworks, such as one that involves using the
CIA triad to generate explanations [33]. On the other hand,
white box models have also been used to create strong X-
IDS architectures. Notable entries have created explainable
decision trees and linear regression models [19], [20]. In
our previous work [2], we created a proof-of-concept X-IDS
architecture that uses a Self Organizing Map (SOM). The
architecture, based on DARPA’s recommendation [5], is meant
to be a good starting point for developing explainable IDS
systems.

III. COMPETITIVE LEARNING ALGORITHMS

The GSOM and GHSOM algorithms chosen for this pa-
per are the Direct Batch Growing Self-Organizing Map
(DBGSOM) and Directed Batch Growing Hierarchical Self-
Organizing Map (DBGHSOM) [38]. Their pseudocode can be
found in Alg. 1 and 2. Both take the same inputs: the dataset’s
dimensions (D), Spread Factor (SF), Learning Rate (LR), and
Total Epochs (T). D is the number of features a dataset has.
SF determines how quickly new nodes are generated. LR is
the same as in the SOM. Another important variable that is
not selected by the user is the Cumulative Error (CE). Each
node in the GSOM has a C'E value. CE is the sum of all

Algorithm 1 DBGSOM Algorithm

Input: Data Dimension (D), Spread Factor (SF), Learning
Rate (LR), Total Epochs (T)
Output: Weights (W)
BEGIN
Initialization
1: Initialize 4 starter nodes with random Weights W [0,1]
2: Calculate Growth Threshold (GT): GT = —D  In(SF)
Growing Phase
3: for Each Training Epoch in T do
4 Reset Cumulative Error (CE) for all nodes to O
5 Present training samples
6:  Determine BMU using Euclidean Distance
7
8
9

Update BMU and Neighboring weights
Calculate CE for all BMUs
for all non-boundary nodes do

10: Distribute CE to neighbors
11:  end for
12:  for all boundary nodes CE > GT do
13: Grow depending on number of available neighbor
positions
14:  end for
15: end for
16: return W
END

the differences between a sample and its Best Matching Unit
(BMU). This value slowly accumulates throughout training.

Algorithm 2 DBGHSOM Algorithm

Input: Data Dimension (D), Spread Factor (SF), Learning
Rate (LR), Total Epochs (T)
Output: Weights (W)
BEGIN
Initialization
1: Same as Alg. 1
Horizontal Growing Phase
2: Same as Alg 1
Vertical Growing Phase
Calculate the Sum of all CE (SE)
Calculate the Vertical Threshold VT = LR % SE
for All nodes with CE > VT do
Create new child DBGSOM
Train new child DBGSOM using Alg. 1
end for
return W
END

R A O

DBGSOM and DBGHSOM follow similar tenets as the
original algorithms. The main difference is that they generate
new neighboring nodes in a batch process. Both are initialized
with four starter nodes with randomized weights between 0
and 1. A growth threshold is calculated based on SF which
is static throughout the training process. After the models are
initialized, they enter the Growing Phase for the GSOM or
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Fig. 1: A competitive learning based X-IDS architecture. The architecture is divided into four phases: Pre-Modeling, Modeling,
Post-Modeling Optimization, and Prediction Explanation. Each phase contributes to translating raw input data into accurate
predictions and useful explanations. Culminating in a user successfully completing an associated task or being required to

make changes to previous steps in the architecture.

Horizontal Growth Phase for the GHSOM. All nodes have
their CE reset to 0. Training the GSOM is now similar to
training a SOM. Each training sample is presented to the map,
and its respective BMU is found. The BMU has its weights
and CE updated based on the training sample. Additionally, all
neighbors of the BMU have their weights updated. After all of
the training data has been used to update weights, we find all
non-boundary nodes. For each of these nodes, we distribute
their CE to their neighbors. Lastly, all boundary nodes for
which CFE; > GT have a new neighbor node generated next to
it. An extra step is taken for the GHSOM where it checks if any
node’s CE is greater than the model’s Vertical Threshold (VT).
If any node’s CE; > VT, a new child GSOM is generated
hierarchically “below” the parent GSOM with the offending
node.

A. Competitive Learning and Intrusion Detection

In the past, CL algorithms have been used to create many
IDSs. These studies focused on building accurate IDSs and
did not discuss explainability. Among these approaches, SOMs
were used to create both host-based [39] and network-based
[40], [41], [42] IDSs. The majority of these methods simply
trained a SOM based IDS and illustrated mappings between
data points and the associated BMU. The approaches described
in [42], [43] use multiple SOMs in conjunction with one
another to create a more effective IDS. Only one approach
[40] discussed the false positive rate and accuracy of a SOM-
based IDS. Their method for prediction involved assigning a
label to BMUs based on the training dataset. In our previous
work [2], we created an X-IDS architecture based on DARPA’s
recommended architecture. One of its main features is having
user input for correcting or modifying the model or its
explanations. Using this architecture, we were able to achieve
an accuracy of 91% on NSL-KDD and 80% on CIC-IDS-2017.

In addition, we can look at instances of GSOM-based IDS.
A multi-agent GSOM proposed by Palomo et al. [44] was
created to be more accurate on datasets with many different

attack types. The Growing SOM should be able to continu-
ously grow as it discovers new attack types. Their IDS was
able to achieve a 90% accuracy and a 1% false positive rate on
the KDD CUP 1999 dataset using 38 different attacks. A novel
GSOM algorithm was developed in [45] named Statistics-
Enhanced Direct Batch Growth Self-Organizing Map (SE-
DBGSOM). One of the goals of using this updated algorithm is
to improve the cfficiency of inserting new nodes. The authors
note that their algorithm improves upon previous GSOMs by
reducing the number of ‘unnecessary’ nodes. This improves
both runtime and false positive rates. SE-DBGSOM was able
to achieve a greater than 99% accuracy on KDD99 and
CICIDS2017 datasets with false positive rates as low as .6%.

GHSOMs have also made an impact in the field of IDS.
One inspiring work that created a GHSOM IDSs is from
the authors Ippoliti et al. [46]. They create an Adaptive GH-
SOM (A-GHSOM) that uses dynamic normalization scaling,
adaptive growth thresholds, and confidence filtering to reduce
inconsistent predictions. We can find other works that make
other modifications like adding new metrics for numeric and
symbolic data [47], enhancing map initialization and weight
distribution [48], and changing growing conditions [49]. Many
of these implementations were tested using KDD CUP 1999
or NSL-KDD to great effect.

IV. A COMPETITIVE LEARNING BASED EXPLAINABLE
INTRUSION DETECTION SYSTEMS (X-IDS)

Explanations generated by the X-IDS should assist Cyber
Security Operation Center (CSoC) operators in their mission
to protect their organization. To help achieve this goal, we
create the proof of concept Competitive Learning (CL) based
X-IDS architecture in Figure 1. The proposed architecture is
based on DARPA’s recommended architecture for XAl systems
[5]. The framework’s components can be changed to suit
the user’s needs. The architecture is abstract enough, such
that methods other than CL algorithms can be interchanged
to create different X-IDSs. The architecture consists of four
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Fig. 2: Local and global feature explanations for NSL-KDD and CIC-IDS datasets. (a)(c) Demonstrate features chosen by
the GSOM for malicious samples from NSL-KDD and CIC-IDS-2017 datasets. The closer a sample’s feature value is to the
BMU’s feature value, the higher its significance. (b)(d) Global feature significance is calculated using Bayesian Probability of
Significance [50]. Features with higher significance values are much more likely to cause predictions to be made for benign

or anomalous. Global explanations apply to all tested models.

phases: pre-modeling, modeling, post-modeling optimization,
and prediction explanation. In the pre-modeling phase, raw
datasets are preprocessed and parameters are selected for the
model. In the modeling phase, our CL algorithms are trained
and quality metrics are recorded. In our proof of concept
system, we are using the SOM family of CL algorithms.
In the post-modeling optimization phase, models can then
be optimized through various means described below. In
the prediction explanation phase, data mining techniques are
employed on the resulting models to generate explanatory
visualizations that allow users to understand how predictions
are generated.

A. Pre-Modeling Phase

The pre-modeling phase consists of preprocessing raw
datasets and initial parameter selection. The parameters used
to train the CL algorithms can be found in Table I. The
preprocessing for our models includes feature selection and
normalization. The feature selection algorithm that we have
chosen to use is the ‘Bayesian probability of significance’ [50],
which selects the most relevant features from each dataset.
Feature selection is not used when training the GHSOM.
The GHSOM is able to use all of the features in a dataset
more effectively due to its hierarchical nature. Additionally,

the datasets are preprocessed for binary classification. Lastly,
the datasets are normalized to minimize feature bias and
improve accuracy. After preprocessing is finished, the new,
high-quality dataset can then be passed to the model. The next
section details information about the selected datasets and their
usefulness in testing IDSs.

In this work, NSL-KDD [51] and CIC-IDS-2017 [52] are
used to test the explainability and effectiveness of our archi-
tecture. NSL-KDD is chosen because of its wide use in the
literature. There are a few major benefits to using the NSL-
KDD dataset. First, it allows our method to be compared
to other existing methods for IDSs. Second, the dataset’s
relatively small size allows for quick testing and runtime
comparisons against larger datasets. On the other hand, CIC-
IDS-2017 includes more modern attacks and is useful for
testing an unbalanced dataset. It was synthetically created over
the course of five days to mimic the behavior of 25 users.
The use of this dataset, allows us to show that our IDS is
compatible with real-world data and to stress-test our systems
for various performative metrics.

B. Modeling Phase

Using the high quality dataset and the parameters selected in
the pre-modeling phase, we can train the set of CL models. We
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Parameter | NSL-KDD | CIC-IDS-2017
n 18 18
m 18 18
Som LR 3 3
Epochs 1000 1000
LR .006 .006
GSOM SF 9 9
Epochs 100 40
LR .006 .006
SF 3 3
GHSOM Epochs 100 40

TABLE I: The selected parameters for each CL model.

utilize a subclass of CL models described in Section III. These
models create clusters mimicking input data, and in doing
so, they create a map that can be data-mined for explanatory
purposes. The GSOM and GHSOM are more complex versions
of the SOM algorithm that allow for dynamic growth, allowing
them to have higher accuracies on more complex datasets.

There have been various metrics and measures proposed
to evaluate the quality of a trained SOM. These include
quantization error, topographic error, embedding accuracy,
and convergence index. The quantization error was used by
Kohenen [53], and measures the average distance between
nodes and the data points. The topographic error measures
how well preserved features are in the low dimensional output
space. It is measured by evaluating how often the BMU and
the second BMU are next to each other [54], [55]. The map
embedding accuracy is similar to the quantization error. This
metric measures how similar the distribution of the input
data is with respect to that of the SOM units [56]. In order
to measure both topographic preservation and distribution
similarity between the input and SOM units, the convergence
index was proposed to be a measure that linearly combines
the map embedding accuracy and the topographic error [57].
Performative metrics are also important to include in an IDS
architecture. These metrics include accuracy, Fl-score, false
positive rate, and false negative rate. We also opt to include
training time and prediction speed since they can play an
important role in intrusion detection. The experimental results
using these performative metrics can be view in Section V.
These measurements allow the architecture to be compared to
the architecture of other existing IDS.

C. Post-Modeling Optimization Phase

In this phase, we optimize the model using Bayesian Search
to get more accurate predictions and explanations. Bayesian
search is a probabilistic hyper-parameter tuning method that
limits its search space. It makes informed decisions about each
set of parameters tested. On average, Bayesian search can
provide a set of parameters faster than grid search and random
search, two notable hyper-parameter search algorithms. The
trade-off is that it may not find the best set of parameters as
it doesn’t search the entire parameter space.

D. Prediction Explanation Phase

Once the modeling and optimization phases have been
completed, and the quality metrics have ensured that the

model is a good representation of the data, the model can be
used to perform a variety of explainability and visualizations.
The models themselves are lists of nodes and the weights
associated with the nodes. Visualizations include creating local
and global explanations, U-Matrices, and feature heatmaps.
Users can use explanations to perform tasks to better defend
the network. When a user receives a subpar explanation, the
user can modify the architecture where needed to help bolster
the X-IDS. By using the explanations generated from the white
box CL models, the user can build trust and confidence that
the model is working as intended.

1) Local and Global Explanations: Global and local ex-
plainability can be achieved by examining important features
of the trained CL algorithm, and then utilizing this information
to generate an explanation for a specific data instance classi-
fication or cluster classification [58]. Global significance for
NSL-KDD is shown in Figure 2b with higher values denoting
that a feature has a higher probability of being important. The
algorithm chosen to determine this variance was ‘Bayesian
probability of significance’ [50]. Higher variance features
increase the probability that a model will capture the dataset’s
structure. Through this graph, an analyst can understand which
features are important to the overall SOM structure, allowing
them to examine predictions at a local level based on globally
important features.

Figure 2a shows the GSOM local explanations for a pre-
diction on the NSL-KDD dataset. Each feature has a value
representing its significance. Significance (S) is a calculation
involving the min-maxed distances from a BMU inverted so
that higher values are more important. The formula can be seen
in Formula 1. Features with the highest significance are closer
to the BMU, therefore, they played a large role in computing
the predicted value. Seeing the specific features that influence
predictions provides insight into samples labeled as malicious
or benign and can further help users determine the reason
for incorrect predictions. These features can also be further
investigated with feature value heat maps.

X - X’min ) (])
X maxr Xmln

2) Unified Distance Matrix (U-Matrix): The U-Matrix vi-
sualizes the distances between neighboring SOM nodes. With
distances shown as a color gradient, nodes far apart will create
light boundaries while areas with similar nodes will be darker.
This can visually represent the natural clusters of input data.
To enhance the standard U-Matrix, the starburst model uses
connected component lines of nodes overlaid on the matrix to
better represent clusters [59]. For a labeled data set, the user
is able to visualize each BMU along with the associated label.
Figure 3a shows clear clusters with boundaries separating
malicious (1) and benign (0) behavior. Using this information
users can investigate more visualizations and feature impor-
tance values to gain an understanding of why certain malicious
network activities are being grouped together.

3) Feature Value Heat Map: A heat map applied to a
feature shows general trends that a feature has on a model, in

S=1-(
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Fig. 3: Visualizations generated from a GSOM for models trained on NSL-KDD and CIC-IDS-2107. (a)(d) The U-matrix
displays clusters in the map. Darker nodes denote nodes that are more similar to one another while lighter nodes denote
separation. (b)(e) The feature value heatmaps display a specific feature’s value on each GSOM node. Lighter values represent
units with values closer to 1, while darker values show values closer to 0. (c)(f) The Neuron Label map shows the class label

represented by a red or yellow color.

this case, the entire GSOM model. GSOM feature values are
represented from O to 1, and the heat maps denote this with
darker and lighter values, respectively. An example feature
value heat map can be found in Figure 3b. In this example,
the ‘dst bytes’ feature has a cluster of higher values in the top-
right corner, while the rest of the GSOM consists of lower
values. Users can use this information to form conclusions
about the model. Feature value maps are more powerful when
multiple are viewed at a time. The U-Matrix chart can then
be referenced to make general decisions about the model. The
heat maps work well as a fine-grained global explanation that
helps users understand the overall model.

4) Users Performing Tasks: An important component of
our architecture is its user-in-the-loop system. A ‘user’ is a
network’s stakeholder. There can be many kinds of stakehold-
ers for an IDS. Al engineers who implement and maintain
the X-IDS architecture, security analysts who protect the
network, and investors who manage security expenses. Tasks
are performed with the goal of protecting the network and are
enhanced by the X-IDS’s generated predictions.

When a satisfactory prediction has been created, a user
can perform their task. Satisfactory explanations will cause
the user to be able to perform their tasks more effectively.
However, not all explanations will be useful. When an unsat-
isfactory explanation is created, a user can use that explanation

to make changes to the parts of the architecture. This could
be accomplished by changing how datasets are preprocessed,
choosing a new ML model, modifying optimizations, or cre-
ating a new style of explanation.

V. EVALUATION & EXPERIMENTAL RESULTS

Our CL based architecture and its SOM variants were eval-
uated on both traditional performative tests and explanation
generation. The datasets used to test our architecture were
NSL-KDD and CIC-IDS-2017. In this section, we examine the
performative results from the GSOM and GHSOM algorithms
and compare them to the basic Self Organizing Map (SOM)
algorithm and black box EBL algorithms.

A. Model Explainability

The explanations generated by the GSOM for the NSL-
KDD and CIC-IDS-2017 datasets can be found in Figures 2
and 3. To understand the model, following a methodology can
be beneficial. Users can begin by viewing the global feature
significance charts in Figures 2b and 2d. Here we can see
that the features with the most variability for the NSL-KDD
dataset are ‘Destination (Dst) bytes’, ‘Destination (Dst) host
count’, and ‘Source (Src) bytes’. We can then look at many
local significance explanations for a particular label. Figure 2a
is an example of an anomalous explanation. Three of the four
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NSL-KDD

CNN
NDNN BGRU+MLP BAT-MC
SOM — GSOM  GHSOM. g o4 al. [60] M"';:“;‘“f‘g‘}"“" Xu et al. [62]  Su et al. [63]
Accuracy 90.9% 96.7% 98.2% 95.0% 99.8% 99.3% 99.2%
Precision 97.2% 96.6% 98.0% - - - -
Recall 83.3% 96.5% 98.3% 97.4% - 99.3% -
F1 89.7% 96.6% 98.1% 91.4% - - -
FPR 2.2% 3.1% 1.9% - - 0.8% -
FNR 16.6% 3.5% 1.6% - - - -
Network Size 1 1 7288 - - - -
Training Time (s) 8 60 692 - - - -
Prediction Time (ms) .03 .03 .06 - - - -
CIC-IDS-2017
SDCNN DNN+RE SS-Deep-1ID CNN-IDS*
SOM GSOM GHSOM Khan et al. [64] Almutlaq Abdel-Basset Halbouni
: et al. [65] et al. [66] et al. [67]
Accuracy 79.4% 94.6% 96.7% 99.3% 97.4% 99.6% 99.6%
Precision 83.2% 83.7% 89.1% 99.1% 98.3% 99.5% 99.7%
Recall 42.0% 90.0% 94.5% 99.7% 99.2% 99.2% 99.4%
F1 55.8% 86.7% 91.7% 99.4% 98.3% 99.4% 99.7%
FPR 19.0% 4.3% 2.8% 1.0% - 0.7% 0.5%
FNR 23.0% 10.0% 5.5% 1.0% - 0.5% -
Network Size 1 1 16894 - - - -
Training Time (s) 260 1820 4299 - - - -
Prediction Time (ms) .03 .06 1.5 - - - -

TABLE II: This table shows the results from testing our CL based X-IDS architecture. We compare our results with existing
black box EBL models including deep neural networks, convoluted neural networks, and various ensemble methods. We do
not provide the training and testing times for other models as they are not tested on the same machine.

most significant features (destination bytes, destination host
count, and source bytes) coincide with the top features in the
global feature significance explanation. A user, after having
looked at many anomalous examples, would then be able to
form some conclusions about how the model labels data.

Next, users can use the visual explanations in order to
fine tune their understanding of the model. The U-matrix,
feature component map, and label map can be found in Figure
3. Since features with higher variability are more likely to
cause separation in clustering, users can use the global feature
significance explanation as a starting point. The U-matrix in
Figure 3a shows five to six scparated clusters. Using the
feature component map in Figure 3b, we can see that one of the
clusters is associated with higher values of ‘Destination (Dst)
bytes’. Finally, the user can use the label map to formalize their
conclusion. In this case, the user may conclude: “Higher values
of Destination bytes are associated with benign traffic.” Users
would continue with this methodology with other features,
helping them to create more complex conclusions. Using these
explanations, it may be possible to determine why the model
is losing accuracy and make adjustments to parts of the X-IDS
architecture. This paper leaves the CIC-IDS-2017 explanations
as an exercise for the reader.

Understanding the GSOM explanations using this method-
ology appears straightforward. However, the same cannot be
said for the GHSOM. Table II shows that the GHSOM for
NSL-KDD and CIC-IDS-2017 have a network size of 7,288

and 16,894 respectively. The above methodology not only
requires the user to browse the single GSOM explanations but
also many of the feature component explanations as well. The
large size of the GHSOM, although considered explainable, is
difficult for users to understand. Future works should look to
making GHSOMs easier to grasp for humans.

B. Performative Tests

The model parameters can be found in Table I. The GSOM
parameters were set to 100 and 40 training epochs for NSL-
KDD and CIC-IDS-2017, respectively. We found that this, in
addition to an aggressive Spread Factor (SF) of .9 created the
best performative results. The GHSOM parameters were set
to 100 epochs per GSOM created using an SF of .3 and a
Learning Rate (LR) of .006. These settings were discovered
using the parameter selection process outlined in Section IV-D.
Using these parameters, we were able to create well trained,
highly accurate models.

Table II shows the results from our CL-based X-IDS archi-
tecture. We compare the GSOM and the GHSOM to the basic
SOM algorithm and black box EBL algorithms found in the
literature. The GHSOM performs the best of the CL algorithms
with an accuracy of 98.2% on the NSL-KDD dataset. The
less complex GSOM algorithm loses some accuracy falling
to 96.7%. Compared to the EBL models, these explainable,
white box models lose about 1% accuracy on NSL-KDD. The
results from CIC-IDS-2017 tell a different story. We see a
similar trend where the more complex CL algorithms perform
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better. However, we notice there is a much lower F1-score on
this dataset. Using the explanations that we previously viewed,
we can likely conclude that CIC-IDS-2017 model has overfit.
The higher false negative rate is likely due to the bottom
cluster that has a mix of benign and malicious nodes. This is
likely corrected by stratifying the dataset in preprocessing. By
making changes to parts of the X-IDS architecture, the CIC-
IDS-2017 model may be able to overcome the 3% accuracy
loss compared to the EBL algorithms.

VI. CONCLUSION

In this paper, we introduced an Explainable Intrusion Detec-
tion (X-IDS) architecture featuring Competitive Learning (CL)
based algorithms. The architecture is built using DARPA’s
guidelines for explainable systems. Our architecture consists
of four phases: Pre-Modeling, Modeling, Post-Modeling Opti-
mization, and Prediction Explanation. By employing Growing
Self Organizing Map (GSOM) and Growing Hierarchical Self
Organizing Map (GHSOM), we demonstrated the efficacy
of CL algorithms in achieving accuracies similar to Error
Based Learning (EBL) algorithms. The architecture was able
to achieve accuracies of 98.2% on NSL-KDD and 96.7%
on CIC-IDS-2017. Despite being slightly less accurate than
EBL algorithms, CL algorithms are far more trustworthy and
explainable. We emphasized the importance of explainability,
showcasing the CL algorithms’ ability to provide interpretable
explanations, furthering user trust and model improvement.
Our findings show the potential of CL algorithms in advancing
X-IDS by combining accuracy with interpretability, paving the
way for more explainable and trustworthy security in the form
of explainable intrusion detection systems.
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