
Video-Based Cryptanalysis: Extracting Cryptographic Keys from Video Footage of
a Device’s Power LED Captured by Standard Video Cameras

Ben Nassi1, 2, Etay Iluz2, Or Cohen2, Ofek Vayner2, Dudi Nassi2, Boris Zadov2, and Yuval Elovici2

1Cornell Tech, New York, USA
2Ben-Gurion University of the Negev, Beersheba, Israel

bn267@cornell.edu, {nassib, etayil, ora2, ofekvay, nassid, zadov}@post.bgu.ac.il, elovici@bgu.ac.il
Website - https://www.nassiben.com/video-based-crypta

Abstract—In this paper, we present video-based cryptanalysis,
a new method used to recover secret keys from a device by
analyzing video footage of a device’s power LED. We show that
cryptographic computations performed by the CPU change the
power consumption of the device which affects the brightness of
the device’s power LED. Based on this observation, we demon-
strate how attackers can exploit commercial video cameras
(e.g., an iPhone 13’s camera or Internet-connected security
camera) to recover secret keys from devices. This is done by
obtaining video footage of a device’s power LED (in which the
frame is filled with the power LED) and exploiting the video
camera’s rolling shutter to increase the sampling rate by three
orders of magnitude from the frames per second (FPS) rate (60
measurements per second) to the rolling shutter speed (60K
measurements per second in the iPhone 13 Pro Max). The
frames of the video footage of the device’s power LED are
analyzed in the RGB space, and the associated RGB values
are used to recover the secret key by inferring the device’s
power consumption from the RGB values. We demonstrate
the application of video-based cryptanalysis by performing two
side-channel cryptanalytic timing attacks and recover: (1) a
256-bit ECDSA key from a smart card by analyzing video
footage of the power LED of a smart card reader obtained
by a hijacked Internet-connected security camera located 16
meters away from the smart card reader, and (2) a 378-bit
SIKE key from a Samsung Galaxy S8 by analyzing video
footage of the power LED of Logitech Z120 USB speakers
that were connected to the same USB hub used to charge
the Galaxy S8 obtained by an iPhone 13 Pro Max’s camera.
We also discuss countermeasures, limitations, and the future of
video-based cryptanalysis in light of the expected improvements
in video camera specifications.

1. Introduction

Over the past 25 years, research has highlighted the
fact that high-end hardware can be used by attackers to
recover secret keys from devices. Numerous studies have
demonstrated innovative secret key extraction techniques
that rely on dedicated professional equipment to capture
data-dependent physical leakage from target devices. These

methods employ equipment like scopes to obtain power
traces (e.g., [1, 2]), software-defined radio (SDR) and probes
to capture electromagnetic radiation (EMR) traces (e.g., [3–
9]), photodiodes and dedicated photon detectors to obtain
optical traces (e.g., [10–14]), as well as ultrasonic micro-
phones to capture acoustic traces (e.g., [15]). While these
methods have deepened understanding of the security risks
high-end hardware poses to secret keys, it is important to
note that the equipment required to perform these techniques
is not readily available, is often costly, and demands spe-
cialized expertise to operate. These considerations naturally
give rise to the question: Can easily accessible ubiquitous
equipment be used to recover secret keys from devices
instead of specialized hardware?

In this paper, we present video-based cryptanalysis, a
new side-channel cryptanalytic attack that attackers can
perform to recover a secret key from a target device by
obtaining video footage of the target device’s power LED
using a commercial video camera (e.g., the video camera
of a smartphone or an Internet-connected security camera).
We show how attackers can exploit such video footage
to recover a device’s secret key. This is possible, because
the intensity/brightness of a device’s power LED correlates
with its power consumption. This correlation stems from
the fact that in many devices, the power LED is connected
directly to the power line of the electrical circuit, which
lacks an effective means (e.g., filters, voltage stabilizers) of
decoupling the correlation.

We empirically analyze the sensitivity of video cameras
in the task of secret key recovery and show that they
can be used to conduct cryptanalysis because: (1) the 8-
bit resolution (a discrete space of 256 values) of a single
RGB channel of a device’s power LED in video footage is
sufficient for the detection of the differences in the device’s
power consumption caused by the cryptographic compu-
tations, and (2) the video camera’s rolling shutter can be
exploited to increase the sampling rate of the video camera
by three orders of magnitude to the level needed to perform
cryptanalysis, i.e., from the FPS rate (60 measurements per
second) to the rolling shutter rate (60K measurements per
second in the iPhone 13 Pro Max), by zooming the video
camera in on the power LED of the target device so that the

view of the LED fills the entire frame of the video footage.
By doing so, attackers can use a standard video camera to
perform cryptanalysis remotely, instead of the professional-
grade sensors typically used (e.g., a scope, SDR).

First, we show that standard video cameras can detect
changes in the power supply to a power LED at a higher
frequency than their FPS (frames per second) rate by ex-
ploiting their rolling shutter. Then, we discuss two potential
threat models that attackers can use to apply video-based
cryptanalysis, which are based on the type of power LED
the target device has: (1) for devices with standard on/off
power LEDs, attackers can obtain video footage using their
smartphone’s video camera (meaning that attackers must
have physical access to the target device), and (2) for devices
with indicative power LEDs (in which the color of the power
LED changes in response to a CPU operation), attackers
can obtain the video footage using a nearby compromised
Internet-connected video camera (meaning that attackers can
apply the attack remotely over the Internet).

Next, we demonstrate video-based cryptanalysis by re-
covering: (1) a 256-bit ECDSA key from a smart card
(exploiting the vulnerability presented in [16–18]) by an-
alyzing video footage obtained via an Internet-connected
video camera located 16 meters away from the smart card;
and (2) a 378-bit SIKE key from a Samsung Galaxy S8
(exploiting the vulnerability presented in [19]) by analyzing
video footage obtained by the video camera of an iPhone 13
Pro Max of the power LED of Logitech Z120 USB speakers
that were connected to the same USB hub used to charge
the Samsung Galaxy S8.

Finally, we discuss the potential of video-based crypt-
analysis today given the use of professional video cameras
and raise concern regarding the possibility that in the near
future, more devices will be vulnerable to video-based crypt-
analysis in light of the recent and expected improvements
in video camera specs (including increased shutter speed, a
wider RGB space, and improved zoom capabilities).

Contributions. (1) We extend the recent CCS’23 study
by Nassi et. al [10, 11] that recovered secret keys by using
professional high-end photodiodes to obtain optical traces
from power LEDs. Instead of using photodiodes, we demon-
strate key recovery from power LEDs using ubiquitous
commercial off-the-shelf (COTS) video cameras. The video
cameras used in our study are considered more common and
readily available than the equipment used to conduct crypt-
analysis in prior work (e.g., scopes [1, 2], probes and SDR
[3–9], near-infrared photon detectors [12–14], and ultrasonic
microphones [15]). (2) We demonstrate two non-intrusive
attack vectors (one requiring physical proximity and an-
other that can be performed remotely over the Internet) for
the application of video-based cryptanalysis, which can be
exploited to perform existing and new cryptanalytic side-
channel attacks. (3) We show that at least six commercial
smart card readers (which we purchased on Amazon) and
a smartphone leak information that can be exploited in
order to apply video-based cryptanalysis directly from their
power LEDs or indirectly via the power LEDs of connected
peripherals (speakers, USB hubs).

Structure. In Section 2, we review related work. The
threat model is presented in Section 3. In Section 4, we
analyze the bandwidth of power LEDs captured by video
cameras. In Sections 5-6, we demonstrate the application of
video-based cryptanalysis and recover ECDSA and SIKE
keys from various devices. In Section 7, we describe coun-
termeasures, in Section 8, we discuss limitations, and in
Section 9, we discuss our findings.

2. Related Work

Cryptanalysis. Cryptanalytic side-channel attacks,
which exploit the correlation between the cryptographic
computations performed by a device and its physical
emanations, have been demonstrated in many studies.
Those studies exploited the variation in a device’s power
consumption to recover secret keys by measuring a device’s
power consumption (e.g., [1, 2]) or other side effects,
including EMR leakage (e.g., [3–9]), acoustic noise (e.g.,
[15]), and optical leakage [10–14]. These methods utilized
high-end and dedicated sensors to perform cryptanalysis.

Optical Side-Channel Attacks. Optical sensors (video
cameras, photodiodes, and LiDAR) were used to perform
side-channel attacks to recover: (1) content from monitors
[20–22], (2) keystrokes from physical and virtual keyboards
[23–29], (3) the content of a conversation/meeting from
light bulbs [30], a bag of chips [31], desktop ornaments
[32], and other objects [33–35]. Discussion regarding the
risks posed to information confidentiality stemming from
the correlation between the intensity of a power LED and
the power consumed by the device [36] began over 20 years
ago [37]. However, prior research demonstrating methods
capable of exploiting a device’s power LED for data exfil-
tration relied on preinstalled malware [38–40] that actively
triggered and controlled a device’s power LED (e.g., the
power LED of a keyboard [38], router [39], hard drive [40])
in order to establish optical covert channels. Two recent
studies presented side-channel attacks against power LEDs
by obtaining optical traces from power LEDs to recover (1)
speech from virtual meetings [41, 42], and (2) secret keys
from devices [10, 11].

Video Cameras. Many studies analyzed and discussed
the risks video cameras pose to individuals’ privacy in the
physical world (e.g., spying [43, 44], sound/speech eaves-
dropping [31, 33, 35]). However, little is known about the
risks video cameras pose to information confidentiality in
the digital world.

3. Threat Model and Sampling Rate

3.1. Threat Model

In video-based cryptanalysis, the attacker recovers secret
keys from a target device using video footage of the power
LED of the target device (i.e., a direct attack) or the power
LED of a connected peripheral (i.e., an indirect attack)
whose power consumption is also affected by the power

TABLE 1. COMPARISON OF THE TWO ATTACK VECTORS.

Close Video
Acquisition

Over-the-Internet
Video Acquisition

Video Camera
Required

A smartphone’s
video camera Security camera

Vulnerable Type
of Power LED Type 1 or 2 Type 2

Distance Very close distance
Depends on the
video camera’s
zoom capabilities

Attacker
Capabilities

Physical access
to the target device

Capable of remotely
controlling a hijacked
Internet-connected
video camera

Needed
Ambient Light

Not dependent on
ambient light Darkness

consumption of the target device. The attacker exploits the
correlation between the brightness/color of a device’s power
LED and the device’s power consumption (which is affected
by the cryptographic operations performed); this correlation
stems from the fact that in many devices, the power LED is
connected directly to the power line of the device’s electrical
circuit which lacks effective means (e.g., filters, voltage
stabilizers) of decoupling the correlation. This correlation,
which can be detected by analyzing the RGB values of the
device’s power LED in video footage, is used by the attacker
to perform cryptanalysis. In order to achieve a sampling
rate that can be used for cryptanalysis, the attacker uses
the video camera’s rolling shutter to increase the sampling
rate by filling the entire frame with the LED (a detailed
explanation of this is provided later in this section).

Target Device. We assume that a cryptographic library
vulnerable to a timing side-channel attack is installed on the
target device and cryptographic operations are performed by
the device. The cryptographic operations can be initiated by:
(1) the user of the device, e.g., by opening a TLS session
to access an HTTPS website or by using a VPN, or (2)
an attacker, e.g., by sending the device messages aimed
at triggering automatic digital signing. We assume that the
target device has a power LED or is connected to another
device/peripheral that has a power LED (e.g., speakers, USB
hub) of one of the following types: (1) A standard on/off
power LED (type 1) - This is the most common type of
power LED integrated in devices. In this case, the color of
the LED does not change, and it only emits light when the
device is turned on. The brightness of the LED changes very
slightly in response to the changes in power consumption,
however these changes are imperceptible to the human eye.
(2) An indicative power LED (type 2) - This type of
power LED is very common in smart card readers, and its
color changes in response to the cryptographic operations
triggered.

Attacker. We consider an attacker that is a malicious
entity interested in recovering a secret key from the target
device in order to: (1) decrypt cryptograms delivered to the
target device and intercepted by the attacker, or sign on a
message on behalf of a target device. We assume that the
attacker can obtain video footage of the power LED.

Attack Vectors. We consider two types of video footage
acquisition models, which are based on the power LED type.
(1) Close video acquisition - In this acquisition model,
the attacker uses their smartphone’s video camera to obtain
the video footage. In this case, we assume that the power
LED (type 1 or 2) of a device or connected peripheral
leaks information (which correlates with the cryptographic
operations). Since this attack vector requires the attacker
to be very close to the target device, we assume that the
attacker has access to the target device and the lens required
to zoom their smartphone in on the power LED of the target
device (or the connected peripheral) while it is performing
cryptographic operations. Finally, we assume that in cases
in which the target device does not contain an integrated
power LED, the attacker can connect the target device to
a peripheral with a vulnerable LED (e.g., a USB hub,
speakers). (2) Over-the-Internet video acquisition - In this
acquisition model, the attacker obtains the video footage
using a hijacked Internet-connected security camera. In this
case, we assume that the attacker is able to compromise a
360◦ Internet-connected video camera with an optical zoom
that is located near the target device. We further assume
that the attacker can control the video camera using its API,
zoom the video camera in on the power LED of the target
device (or the connected peripheral), obtain video footage of
the power LED, and exfiltrate the footage over the Internet
to their possession. In this video acquisition model, we also
assume that the device has an indicative power LED (type
2) and that the differences in the color of the device’s power
LED triggered by cryptographic operations can be detected
from the video camera’s location. Moreover, we assume that
the video recording is made in darkness. Table 1 presents
the differences between the two attack vectors.

Significance. We note that the threat model is non-
intrusive (in contrast to models’ relying on power traces
which often require connecting probes to the circuitry of
the device or attaching monitoring equipment directly to
the power line); relies on a smartphone’s video camera or
Internet-connected video camera, which are common/ubiq-
uitous equipment (as opposed to other cryptanalysis methods
that rely on specialized equipment including SDR, photodi-
odes, scopes, and probes); can be applied over the Internet;
and can endanger devices that do not even have a power
LED via the power LED of connected peripherals (e.g.,
speakers, USB hub splitters).

3.2. Increasing a Video Camera’s Sampling Rate

The FPS rate supported by the vast majority of commer-
cial smartphones and security/IP video cameras is limited to
60-120 FPS which is insufficient for performing cryptanal-
ysis. In order to increase the number of measurements per
second (sampling rate) to a level sufficient for cryptanalysis,
the attacker can exploit the video camera’s rolling shutter.

The rolling shutter is an image-capturing method in
which a frame (in video footage) is captured by scanning the
scene vertically/horizontally. When this method is used, a
frame/picture is not actually composed of a single snapshot

Figure 1. A video camera’s rolling shutter. In every frame period, the rolling
shutter scans an object vertically and exposes the shutter for a short time
determined by E. The time it takes to scan a single frame is denoted by S.
Between two consecutive frames there is a transition period, during which
the object is not captured by any frame, which is denoted by T .

Figure 2. Increasing the sampling rate from the FPS rate of the video
camera to the shutter rate: An Arduino’s LED flickering at 4 kHz (left)
is recorded by a Samsung Galaxy S22 Ultra using a lens that increases
the size of the LED so that it fills the entire screen (middle). A frame of
the video recorded by the smartphone that captures the 4 kHz flickering
(right).

of a scene taken at a specific point in time but rather is
composed of multiple snapshots taken of vertical/horizontal
parts of the scene at different times. Fig. 1 illustrates this
process: With a vertical rolling shutter, the video camera
scans the captured object row-by-row sequentially from top
to bottom at different times according to a configurable
shutter speed (E) which determines the amount of time that
the video camera is exposed to light. Because in a sensor
with a rolling shutter each row (or group of adjacent rows)
is captured at a different time, attackers can increase the
sampling rate from the camera’s FPS rate (60/120 FPS) to
the rate at which rows are recorded, a rate which is based
on the shutter speed. This technique has also been used in
prior studies to increase the sampling rate of a video camera
[31, 33, 35].

In video-based cryptanalysis, attackers exploit the
rolling shutter to increase the number of measurements per
second (sampling rate) obtained of the power LED to a
higher rate. This is done by setting the rolling shutter of the
video camera to its highest speed and zooming the video
camera in on the LED, ensuring that the view of the LED
fills the entire frame of the video footage. By doing this, the
attacker ensures that the entire amount of time it takes to
scan a frame (which is denoted as S in Fig. 1) is dedicated
to obtaining RGB samples of the power LED. This allows
the attacker to increase the sampling rate by a few orders
of magnitude from the FPS rate (60-120 measurements

per second) to the approximate shutter rate of the video
camera (60K measurements per second in an iPhone 13 Pro
Max). We note that the measurements obtained are not ideal,
because they are not uniformly sampled across time. As can
be seen in Fig. 1, there are transition periods (denoted by T)
between frames that are not sampled by the video camera
and do not appear in any frame. We consider the rolling
shutter sampling distribution as semi-uniform: The sampling
is uniform within a frame but is not uniform across the video
due to the transitions between frames.

3.3. Determining the Transition and Scanning Time

In some cases, the exact transition time and scanning
time must be determined in order to perform cryptanalytic
attacks (e.g., as demonstrated later in Section 5), and we
now explain how attackers can empirically determine these
times.

Experimental Setup. We programmed an Arduino Uno
to modulate a 4 kHz flicker using the Arduino’s red inte-
grated LED (using on/off modulation), by turning the power
LED on and off every 250 microseconds. We placed a
Samsung Galaxy S22 Ultra on the power LED and used a
lens so that the entire frame of the video footage would be
filled with the view of the LED. We used the smartphone’s
native camera application and set the video camera’s FPS
rate at 60 and the shutter speed at 1

12,000 .
Calculating the Scanning and Transition Time. The

results of this experiment are presented in Fig. 2. As can be
seen, the frame consists of red lines (which indicate that the
LED was on) and black lines (which indicate that the LED
was off) that result from the flickering LED. The scanning
time can be calculated by multiplying the amount of time
that the power LED was flickering (250 microseconds in our
experiment) by the number of transitions between the on/off
states in the frame (39 transitions in the frame presented in
Fig. 2). In our case, the scanning time is S = 9.75 millisec-
onds. Since T = 1000

FPS − S, the transition time of the video
camera used in this experiment is T = 1000

60 − 9.75 = 6.91
milliseconds.

Note that the process of determining the scanning time
(S) and transition time (T) can only be performed by at-
tackers with physical access to a video camera; for example,
when an attacker uses their smartphone to perform the
attack, the attacker can simply perform the steps described
above to determine T and S. In cases in which an attacker
performs the attack over the Internet, using a remote video
camera, the attacker would need to purchase the same
camera (used to perform the remote attack) in order to
empirically determine T and S (unless such information is
provided in the camera’s specs).

4. Analysis

In this section, we analyze the factors that affect video-
based cryptanalysis: the bandwidth of the video camera,
the target cryptographic library, the distance between the

video camera and a device’s power LED, and the ambient
light. In the experiments described in this section, we used
two functions to create a signal from a given channel (red,
green, or blue) in the video footage: Average−Rows and
Average − Frames (see Algorithm 1). The Average −
Rows function creates a signal (time series) from the rows
of a video’s frames by averaging the RGB values in each
row in a frame to produce a single value for the signal. The
Average− Frames function creates a signal (time series)
from the frames of a video by averaging all RGB values
in a frame to produce a single value for the signal. The
Average−Rows function is mainly used for video footage
obtained from a type 2 power LED, while the Average −
Frames function is mainly used for video footage obtained
from a type 1 power LED.

The reason we used a different function for each case
is due to the noise added to each frame. In every frame,
noise is present in individual pixels, and when the signal
is weak, the noise can overpower the signal. To mitigate
this, averaging all pixel values in the frame (i.e., using
the Average − Frames function) reduces the noise and
improves the signal-to-noise ratio (SNR). However, when
the signal is strong, averaging only the rows (i.e., using
the Average − Rows function) preserves fine details and
captures rapid changes, providing better time resolution. The
choice depends on both the signal strength and the desired
balance between noise reduction and temporal accuracy.

Algorithm 1 Creating Time Series from a Video
Inputs: vid = (f1, ..., fn) // a series of frames

chan // a value (0-2) for the RGB channel
Output: signal = a time series of rows’ average values
procedure AVERAGE-ROWS(vid, chan)

return Avg-Rows-And-Frames (vid, chan, ’rows’)
procedure AVERAGE-FRAMES(vid, chan)

return Avg-Rows-And-Frames (vid, chan, ’cols’)
procedure AVG-ROWS-AND-FRAMES(vid, chan, fl)

signal1 = {}, index1 = 0, signal2 = {}, index2 = 0
for (frame in video) do

nRows = length(frame), sum2 = 0
for (r = 0; r < nRows; r++) do

nCols = length(frame[r]), sum1 = 0
for (c = 0; c < nCols; r++) do

sum1 += frame[r][c][chan]
sum2 += frame[r][c][chan]

signal1 [index1] = sum1/nCols
index1++

signal2 [index2] = sum2/(nCols * nRows)
index2++

if (fl == ’rows’) then
return signal1

return signal2

Figure 3. Recovering a frequency scan using a photodiode (left) and a
smartphone (right), by capturing video footage of the power LED of a
USB hub.

Figure 4. A function generator was used to modulate a frequency scan over
the power supplied to a USB hub. Pictured are the spectrograms extracted
from the scope, photodiode, and blue channel of the video cameras of the
two smartphones used in these experiments.

4.1. The Captured Bandwidth

First, we examine the bandwidth captured by various
video cameras in response to changes in the intensity of a
device’s power LED.

Experimental Setup. We connected a USB hub to a
function generator which was used to modulate a 200-
25,200 Hz frequency scan using 26 sine waves at intervals
of 1,000 Hz (starting from 200, 1,200, 2,200,, 25,200
Hz), each of which was modulated for a half of a second.
Each sine wave was modulated for 500 ms over the power
supplied to the USB hub using an amplitude of 2 V.

We conducted two experiments; in each experiment a
different smartphone was used: an iPhone 13 Pro Max (res-
olution: 1920x1080, FPS: 120, rolling shutter speed: 1

61400)
and a Samsung Galaxy S22 Ultra (resolution: 1920x1080,
FPS: 120, rolling shutter speed: 1

12000). Both smartphones
were configured to their highest rolling shutter speed. In
each experiment, the smartphone was placed on the USB
hub’s power LED, and its video camera was used to film
the LED, using a lens, as seen in Fig. 3). We also conducted
a third experiment and obtained an optical trace, using a
photodiode (Thorlabs PDA100A2) that was connected to an
NI-9223 ADC card. The photodiode was placed 2 cm away
from the power LED and sampled at a sampling rate of
100 kHz. The optical trace was used for control purposes to
validate the changes in the USB hub’s power LED with a
high-end optical sensor. The experimental setup is presented
in Fig. 3. We also obtained a power trace by inserting an

TABLE 2. COMPARISON OF THE OPTICAL SNR OBTAINED DIRECTLY
AND INDIRECTLY FROM A RASPBERRY PI RUNNING THE
CRYPTOGRAPHIC LIBRARIES TARGETED BY [17, 19, 45].

Directly Indirectly
Raspberry
Pi 3b+

Connected
USB Hub

Connected
Speakers

Libgcrypt 1.8.4 15.2 dB 16.4 dB 13.2 dB
GnuPG 1.4.13 16.5 dB 17.6 dB 14.5 dB
PQCrypto-SIDH 3.4 18.1 dB 22.4 dB 17.4 dB

adapter between the function generator and the USB using
a Digilent Analog Discovery 2 (scope).

Results. First, we extracted a spectrogram from the
optical trace obtained by the photodiode (see Fig. 4). The
spectrogram shows that the frequency scan can be captured
using a high-end optical sensor.

Next, we used the Extract − Rows function and ex-
tracted three signals for the blue channel and extracted a
spectrogram for each signal (see Fig. 4). As can be seen
in the figure, only the first six sine waves appear in the
spectrogram extracted from the video footage obtained by
the Samsung Galaxy S22 Ultra, and only the first nine sine
waves appear in the spectrogram extracted from the video
obtained by the iPhone 13 Pro Max. These results indicate
that the effective bandwidth captured by the video cameras
is lower than their maximum shutter speed. Moreover, as
can be seen in the spectrogram extracted from the Samsung
Galaxy S8, the sixth sine wave that was produced at 5.2 kHz
(and was captured by the photodiode at the same frequency)
appears at around 4 kHz in the spectrogram extracted from
the Samsung Galaxy and around 3.7 kHz in the spectrogram
extracted from the iPhone. This is due to the video cameras’
non-uniform sampling of the power LED, which stems from
the fact that the video cameras do not capture the power
LED during transitions between frames.

Then, we examined the SNR in the examined spec-
trum, comparing the SNR of the video cameras of the
two smartphones, the optical trace, and the power trace
generated by the function generator (see Fig. 5). Based
on the results presented in the figure, we concluded that:
(1) the effective bandwidth captured by the video cameras
(maximum 6-10 kHz) is lower than the bandwidth captured
by the photodiode (25 kHz); within the effective bandwidth,
the SNR obtained by the signal extracted from the video
cameras is significantly lower than the SNR of the optical
trace obtained by the photodiode; and (2) the bandwidth
captured by the iPhone (maximum 10 kHz) is wider than
the bandwidth captured by the Samsung Galaxy S22 Ultra
(maximum 6 kHz).

4.2. Influence of the Cryptographic Library and
Connected Peripherals

Next, we examine how the SNR is affected by the
cryptographic library installed on the target device when the
video is acquired directly from its power LED and indirectly
from connected peripherals.

Figure 5. Left: SNR obtained from various devices. Right: SNR of smart
card readers obtained from various distances.

Experimental Setup. We compared the SNR obtained
from the cryptographic computations performed by three
cryptographic libraries installed on a Raspberry Pi 3B+:
(1) Libgcrypt 1.8.4 (during an ECDSA sign operation), (2)
GnuPG 1.4.13 (during an RSA decrypt operation), and (3)
PQCrypto-SIDH 3.4 (during an SIKE operation).

We conducted three experiments. In the first experiment,
for each of the three cryptographic libraries we obtained
video footage of the power LED of the Raspberry Pi 3B+. In
the second experiment, for each library, we obtained video
footage of the power LED of a USB hub that we connected
to the Raspberry Pi 3B+. In the third experiment, for each
library, we obtained video footage of the power LED of
Logitech Z120 USB speakers that were connected to the
USB hub that was connected to the Raspberry Pi 3B+.

Results. We applied the Extract − Frames function
on each video, extracted nine signals, and calculated the
SNR for the signals. As can be seen in the results presented
in Table 2, the target library under attack greatly affects the
optical SNR: the SNR obtained from an SIKE operation ex-
ecuted by the PQCrypto-SIDH 3.4 library yields the highest
SNR for the three devices (17.4-22.4 dB); the SNR obtained
from an ECDSA sign operation executed by the Libgcrypt
1.8.4 library yields the lowest SNR for the three devices
(13.2-15.2 dB); and the SNR obtained from an RSA decrypt
operation executed by the GnuPG 1.4.13 library yields an
SNR lower than that of PQCrypto-SIDH 3.4 and higher than
Libgcrypt 1.8.4 (14.5-17.6 dB). Based on these results, we
concluded that: (1) the optical leakage is present both in the
power LED of the device that performs the cryptographic
operations and the power LED of peripherals connected to
the device (the USB hub and USB speakers); (2) the power
LED of a connected peripheral can amplify or reduce the
SNR (depending on the peripheral and the device under
attack); in our case, the USB hub increases the optical SNR
by ∼1.1-4.3 dB, while the USB speakers decrease the SNR
by ∼0.7-2.0 dB (compared to the SNR obtained directly
from the power LED of the Raspberry Pi); and (3) even
devices that do not contain an integrated power LED or
whose integrated power LEDs do not leak information may
be vulnerable to video-based cryptanalysis when they are
connected to another peripheral with a vulnerable power
LED.

4.3. Influence of Distance

Next, we examine how the SNR is affected by the dis-
tance between the target device’s power LED and the video
camera. This experiment was conducted using three smart
card readers that we purchased from Amazon (to ensure
confidentiality in our process of responsible disclosure, we
have not mentioned the specific models used in this version
of the paper; we will include this information in the paper in
coordination with the manufacturers). Each of the smart card
readers contains an indicative power LED (type 2, which
is described earlier in the paper), allowing the power LED
color changes to be detected from a distance. We note that
the differences in the RGB values of standard on/off power
LEDs (type 1) can be detected from a maximum range
of one meter, and they are not vulnerable to video-based
cryptanalysis performed from a distance (i.e., using over-
the-Internet video acquisition).

Experimental Setup. We conducted three experiments.
In each experiment, we connected a smart card reader to
a laptop and inserted the Athena IDProtect smart card into
the reader. We wrote a script that triggers an ECDSA sign
operation every 200 milliseconds, using the smart card; the
color of the power LED of the smart card readers changes
in response to an ECDSA sign operation. Then, we placed
the SUNBA video camera 25X optical zoom 5MP smart
security dome [46] at five different distances from the smart
card reader (5, 10, 15, 20, 25 meters) and filmed the power
LED of the smart card reader in two states: idle and sign.

Results. We applied the Extract − Frames function
and extracted the associated signals for the blue channel. We
compared the SNR, using the idle state values and the RGB
values of the ECDSA sign operation (see Fig. 5). Based
on these results, we concluded that the beginning/end of
ECDSA sign operations can be detected by analyzing the
video footage of a type 2 power LED from a range of up
to 25 meters for a specific smart card reader.

4.4. Influence of Ambient Light

Next, we examine how the optical SNR is affected by
ambient light for two types of optical data acquisition: (1)
close data acquisition, in which the video camera of a
smartphone placed on the device is used to film the power
LED, and (2) over-the-Internet video acquisition, in which
a remote video camera is used to film the power LED.

Experimental Setup. We conducted two experiments.
In the first experiment, we connected a USB hub (Gold
Touch 4 Ports USB3.0 Slim HUB) to a Samsung Galaxy
S8. We wrote a program that alternates between one-second
repetitions of integer multiplications (MUL) and one-second
sleep operations (WFI) and executed the code on the Sam-
sung Galaxy S8. We placed an iPhone 13 Pro Max on the
USB hub and filmed its power LED in three environmental
settings: a dark room (0 lux), a room lit with fluorescent
lighting (300 lux fluorescent tubes), and a sunlit room (3000
lux). In the second experiment, we inserted the Athena

TABLE 3. THE INFLUENCE OF AMBIENT LIGHT AND DATA
ACQUISITION ON THE OPTICAL SNR.

Ambient Light

Darkness Fluorescent
Lighting Sunlight

Data Acquisition 0 Lux 300 Lux 3000 Lux
Remote via a
security camera (10 meters) 26.8 dB 14.6 dB 0 dB

Close via a
smartphone (2 cm) 16.9 dB 17.2 dB 16.6 dB

IDProtect smart card into a smart card reader that was con-
nected to a laptop. We wrote code that triggers an ECDSA
sign operation every 200 ms. We placed the SUNBA video
camera 10 meters away from the smart card reader and
filmed its power LED in the same environmental settings
as the previous experiment: 0, 300, and 3000 lux.

Results. We analyzed the six videos and calculated the
SNR. Based on these results, which are presented in Table
3, we concluded that: (1) in close video acquisition (where
the smartphone’s video camera is placed directly on the
power LED), the ambient light does not affect the SNR (in
this case, there is a change of up to 0.6 dB in the SNR,
which is a reasonable sampling error), and (2) in over-the-
Internet video acquisition (where the video camera is placed
a distance away from the power LED of the device), the
ambient light highly affects the SNR (there is a change of
up to 26.8 dB in the SNR), and dark environments yield
higher SNR values.

5. Recovering ECDSA Keys

In this section, we describe the Minerva attack [17]
we performed to demonstrate the recovery of the 256-bit
ECDSA private key from a smart card, using video footage
obtained by an Internet-connected security camera directed
at the power LED of a smart card reader from a range of
16 meters.

Minerva Attack. As observed by [16–18], many com-
mon cryptographic libraries optimize the computation time
of ECDSA signing by truncating the leading zeros. This
optimization results in a variable number of loop iterations
that is associated with the variable execution time for the
entire main loop, which is determined by the number of
leading zeros in the randomly generated nonce. Thus, by
measuring the signing time, attackers can detect the number
of loop iterations and determine the number of leading
zeros in the nonce k, which can be used to extract the
target’s private key, by using lattice techniques in which the
signatures whose nonces have many leading zeros are used
to construct a hidden number problem, which is reduced to
a shortest vector problem and solved using lattice reduction
(see [17] for details).

We performed the Minerva attack to recover a smart
card’s ECDSA private key by estimating the signing time
of a signature from video footage of the smart card reader’s
power LED (as opposed to the original applications [17, 18]
of the attack which relied on CPU measurements of the

Figure 6. The RGB values extracted from 96 consecutive frames (with 103,680 rows) from video footage of the smart card reader’s power LED during
the execution of six different ECDSA signing operations, separated by 200 ms sleep episodes. The colors represent the associated RGB channel.

Figure 7. An obfuscated picture (we blurred the visual identifiers of the
manufacturers) of the six smartcard readers, from which we recovered
ECDSA keys by analyzing their power LED.

ECDSA signing operations obtained using code installed on
the target laptop/computer).

5.1. Identifying ECDSA Operations from Various
Smart Card Readers

First, we show that six commercial smart card readers
with an indicative power LED (type 2) that we purchased
on Amazon leak information about the execution time of
the ECDSA signature from their power LED (see Fig. 7).
The color of these smart card readers’ power LED changes
in response to an operation triggered by a connected laptop.

Experimental Setup. We conducted six experiments,
and in each experiment one of the smart card readers was
connected to a laptop via a USB cable, and the Athena
IDProtect smart card was inserted into the reader. We placed

Figure 8. Experimental setup. Top: The video camera located 16 meters
away from the smartcard reader. Bottom: As seen on the left, the smart
card reader (pointed at by the red arrow) is pictured from 16 meters away.
On the right is an image of the smart card reader’s power LED.

a SUNBA video camera 25X optical zoom 5MP smart secu-
rity dome [46] 20 cm away from the smart card reader. The
Internet-connected video camera’s remote API was used,
and the camera’s lens was directed at the smart card reader’s
power LED. We focused the video camera on the power
LED and zoomed in until it filled the entire frame. Video
footage (full HD resolution, 60 FPS, shutter speed 1

500 , 8-
bit resolution for a single channel) was obtained from six
consecutive different ECDSA sign operations performed by
the smart card (separated by 200 ms of sleep).

Results. The six videos obtained in the experiment
described above were processed. For each video, we ap-
plied Algorithm 1, which creates a signal from the rows
of frames by averaging the RGB values in each row in a

Figure 9. Examples of ECDSA series extracted from video footage of a smart card reader’s power LED. Top: a series of signatures’ frames that started
and ended during the rolling shutter’s scanning time (a Class I series). Middle: A series of frames that started during the transition time between frames
(a Class II series). Bottom: A series of frames that ended during the transition time between frames (a Class II series).

frame to a single value in the signal. Fig. 6 presents the
signals (average RGB values) of the 127,440 rows of 118
consecutive frames from the five videos during six different
ECDSA operations, separated by 200 ms sleep episodes.
Based on this experiment, we concluded that: (1) the six
ECDSA signatures can be seen in the six extracted signals,
and (2) the thresholds that differentiate the signing and sleep
episodes vary depending on the signal extracted from the
smart card reader and the RGB channels.

5.2. Recovering ECDSA Keys from a Distance

We now demonstrate the end-to-end recovery of a 256-
bit ECDSA private key from video footage.

Experimental Setup. We connected one of the smart
card readers to a laptop via a USB cable and inserted the
Athena IDProtect smart card into the reader. We placed
a SUNBA video camera 25X optical zoom 5MP smart
security dome 16 meters away from the smart card reader
(the experimental setup can be seen in Fig. 8). We used the
Internet-connected video camera’s remote API and directed
the camera lens at the power LED of the smart card reader
and zoomed in on the power LED until it filled the entire
frame (see Fig. 8). The experiment was conducted in a dark
environment (i.e., the lights in the room were turned off). We
obtained video footage (full HD resolution, 60 FPS, shutter
speed 1

500 , 8-bit resolution for a single channel) from 10,500
different ECDSA sign operations performed by the smart
card (separated by 200 ms of sleep). The 10,500 signatures
were recorded in 35 different videos. Each video was an
hour and fifty minutes long and consisted of 300 ECDSA
signatures.

Extracting Frame Series Associated with ECDSA
Signatures. We applied the function percentage (see Al-
gorithm 2) on the video frames (f0, ..., fn) in order to
determine whether a frame is associated with (1) the idle
state of the smart card reader (i.e., the frame consists of
just blue rows), or (2) the smart card reader used for an
ECDSA signing operation (i.e., the frame consists of at
least one red row). The function percentage fulfills the
abovementioned requirement by receiving a frame fi and

applying Algorithm 1 to extract a signal si, where each value
in the signal is the average of a row of fi in the blue channel.
The function returns pi, which is the associated percentage
of the values (averages of rows) in si that are below the
threshold distinguishing between the two states of the smart
card reader: idle (> 37.5) and sign operation (< 37.5). The
threshold separating the two states was determined based on
the experiment described in Section 3.3 (see Fig. 6).

For each frame fi, the associated value pi was used
to compute bi, a binary value {idle/sign} that determines
whether the associated frame fi is associated with the idle
state of the smart card reader (i.e., 0% of the rows are
blue/red, and 100% of the rows are blue) or was used for
signing (i.e., some of the rows are blue/red, and some of
the rows are blue) as follows:

bi =

{
idle, if pi = 0

sign, otherwise
(1)

We note that at the end of this process, the values of
b0, ..., bn consisted of 10,500 consecutive series of sign
separated by 10,501 consecutive series of idle as follows:
idle, idle, ..., idle, sign, sign, sign, ..., sign, idle, idle, ..., idle.
We identified the 10,500 consecutive sign series (that were
separated by the idle series), extracted their associated
frames (f1

start,, f
1
end, ..., f10,500

start ,, f10,500
end),

and mapped them to their relevant signatures
(ECDSA1,, ECDSA10,500).

For each ECDSAi signature (1 ≤ i ≤ 10, 500), the
frame series associated with it (f i

start,, f
i
end) was ana-

lyzed, and the signature was classified as one of two classes:
Class I - a series of signatures’ frames that started and
ended during the scanning time; such signatures can be
identified based on the switch between the blue and red
colors somewhere in the middle of the first (f i

start) and last
(f i

end) frames, as can be seen in Fig. 9; and Class II - a
series of signatures’ frames that started or ended during the
transition time (which is not captured by a frame); such
signatures can be identified based on the completely black
color in the first (f i

start) or last (f i
end) frame (see Fig. 9).

Figure 10. A heat map of the estimated execution times of the ECDSA sign
operations as a function of the number of leading zero bits in the nonce.

The class of each signature ECDSAi with its asso-
ciated frame series f i

start, ..., f
i
end was determined by ex-

amining whether blue rows appear in the first (f i
start) or

last (f i
end) frame. This was done by applying the per-

centage function (see Algorithm 2), calculating pf
i
start =

Percentage(f i
start) and pf

i
end = Percentage(f i

end), and
examining whether their values according to:

class(ECDSAi) =


class II, if pf

i
start = 1.0

class II, if pf
i
end = 1.0

class I, otherwise
(2)

Estimating the ECDSA Signature Time from Frame
Series. We note that we were unable to compute the ECDSA
signature time of frame series that started or ended during
the transition between frames (i.e., Class II signatures) with-
out adding an error, since the beginning/end of the Class II
signatures occurred during the transition between the frames
and are not captured in any video frames. Since the process
of performing lattice reduction and time extraction is highly
sensitive to errors, we filtered the 2,674 Class II signatures
from the data.

Next, we empirically computed the video camera’s scan-
ning (S) and transition (T) times by performing the exper-
iment described in Section 3.3. Based on that experiment,
we determined that S = 13.8 ms and T = 2.8 ms.

Then, we computed the execution time of the frame
series of the remaining 7,826 Class I signatures. For ev-
ery ECDSAi signature with associated frames’ series
videoi = f i

start, ..., f
i
end that started at index start and

ended at index end, we computed the signing time by
applying the SigningTime function (Algorithm 2) as follows:
SigningTime(video = videoi, scan = 13.8, trans = 2.8,
threshold = 37.5, channel = 1).

Algorithm 2 calculates the signing time of an ECDSA
signature ECDSAi as the sum of T1 + T2 + T3 (see
Fig. 9). The algorithm calculates T1 by multiplying the
relative number of rows that are associated with the sign
operation in the first frame f i

start by the scanning time S
and adding the transition time T to the product. Algorithm
2 calculates T3 by multiplying the relative number of rows
associated with the sign operation in the last frame f i

end
by the scanning time S (in this case we do not add the

Figure 11. Heat maps extracted from five smart card readers which present
the estimated execution times of the ECDSA sign operations as a function
of the number of leading zero bits in the nonce.

transition time T , because the sign operation ends in the
middle of the last frame’s f i

end scanning time). Algorithm
2 calculates T2 for the additional end − start − 1 frames
(f i

start+1, f
i
start+2,, f

i
end−2, f

i
end−1) by multiplying the

number of frames by the sum of S + T . The sum of
T1 +T2 +T3 is returned as the signing time for ECDSAi.

Algorithm 2 Minerva Attack
Inputs: video: (fstart, ..., fend) // a series of frames

ch: numeric value {0,1,2} for the RGB channel
scan: numeric a rolling shutter scanning time (ms)
tran: a rolling shutter transition time (ms)
thresh: a cutoff to distinguish the idle/sign states

Output: signal: a time series of rows’ average values
procedure SIGNINGTIME(video, ch, scan, tran, thresh)

T1 = Percentage(fstart, ch, thresh)× scan + trans
T2 = (end− start+ 1)× (scan + trans)
T3 = Percentage(fend, ch, thresh)× scan
return T1 + T2 + T3

procedure PERCENTAGE(frame, ch, thresh)
signal = Average-Rows(frame, ch)

sum = 0
for (i = 0; i < length(signal); i++) do

if (signal[i] < thresh) then
sum++

return sum/length(signal)

Results We computed the ECDSA signing time for the
7,826 Class I signatures by applying Algorithm 2 on the

7,826 associated videos. The heat map presented in Fig. 10
shows that the signatures with the shortest estimated time
(calculated from the video footage) have nonces with many
leading zeros, as needed for the Minerva attack. We then
executed the Minerva cryptanalysis script (downloaded from
the official Minerva GitHub repository [47]) and recovered
the full 256-bit ECDSA key in two minutes.

We also recovered the ECDSA key from the power
LED of the other five smart card readers (using the same
video camera) from varied distances of 5-10 meters. An
obfuscated picture of the six smartcard readers and the heat
maps extracted from the power LED of the other five smart
card readers can be seen respectively in Figs. 11 and 7.

6. Recovering SIKE Keys

In this section, we describe the recovery of a secret
key from supersingular isogeny key encapsulation (SIKE),
a post-quantum key encapsulation mechanism based on the
supersingular isogeny Diffie-Hellman (SIDH) key exchange
protocol [48]. We perform the Hertzbleed attack [19] against
a Samsung Galaxy S8 and recover a secret key (378-bit)
from the implementation of SIKE-751 in the PQCrypto-
SIDH library by using the video camera of an iPhone 13
Pro Max to obtain video footage of the power LED of USB
speakers that were connected to the USB hub used to charge
the Samsung Galaxy S8 (which contained the SIKE key).

Hertzbleed Attack. As seen in the paper presenting
the Hertzbleed attack [19], the SIKE implementation in the
PQCrypto-SIDH library leaks information regarding the bits
of the key due to Intel’s DVFS (dynamic voltage and fre-
quency scaling) mechanism, which in certain circumstances
can be exploited by an attacker to induce variations in the
CPU frequency by overloading the CPU with computations.
This results in differences in the execution time associated
with the data processed; these differences can be amplified
to a distinguishable level (at a granularity of milliseconds)
by executing a large number of operations in parallel (see
[19] for details).

We performed the Hertzbleed attack to recover a Galaxy
S8’s SIKE private key by estimating the running time of
various SIKE decapsulation operations, using video footage
(obtained by an iPhone 13 Pro Max) of the power LED of
a connected USB hub which was used to charge the smart-
phone. By doing so, we show that the ARM architecture is
also vulnerable to the Hertzbleed attack (the original attack
targeted an x86 architecture).

The Hertzbleed key extraction attack targets the smart-
phones’s static secret key, an integer m with bit expan-
sion m = (ml−1, ...,m0)2, where l = 378 (for SIKE-
751). During the decapsulation operation, the code computes
P + [m]Q for elliptic curve points P and Q included in the
ciphertext, using the Montgomery three-point ladder. Based
on m0,...,mi−1 (the i least significant bits of m), an attacker
can construct points P and Q so that if mi ̸= mi−1, then
the (i + 1)st round of the Montgomery three-point ladder
produces an anomalous zero value. Once that anomalous
zero value appears, the decapsulation algorithm gets stuck,

and every intermediate value produced for the remainder of
the ladder is zero. If mi = mi−1, or if the attacker was
wrong about the i LSB of m when constructing the cipher-
text, then the (i + 1)st round generates a non-zero value.
Heuristically, the remainder of the computation proceeds
without producing an anomalous zero value (except with
negligible probability).

When mi ̸= mi−1 and the decapsulation algorithm
gets stuck, repeatedly producing and operating on zero
values, the processor consumes less power and runs at a
higher steady-state frequency (therefore decapsulation takes
a shorter amount of time). Hertzbleed exploits this and
amplifies the effect of the time difference to recover bits
by triggering a large fixed number of encapsulation opera-
tions for the private key’s bit under attack and determining
whether mi = mi−1 or not, based on a timing threshold.

6.1. Determining the Timing Threshold

First, we examine whether the behavior (the time differ-
ence) seen on the x86 architecture reported in the original
paper on Hertzbleed [19] is also seen on the ARM architec-
ture of the Samsung Galaxy S8.

Experimental Setup. We downloaded the code pub-
lished in the Hertzbleed repository [49], installed the code
on the Samsung Galaxy S8, and used it to examine whether
the time difference is observable on the smartphone. We
analyzed the execution time of the Samsung Galaxy S8’s
CPU for each decapsulation operation. In our experiments,
we used the four different SIKE-751 keys. For each key
m = (ml−1, ...,m0)2, we uniformly targeted 38 bit posi-
tions: 5, 15, 35, 45,...,375. For each of the bit positions,
we executed a series of 8,800 SIKE operations divided
into eight iterations, where in each iteration 1,100 SIKE
operations were executed on 1,100 threads spawned con-
currently. In total, we executed 1,337,600 SIKE operations
that consisted of 1,216 iterations (each of which consisted of
100 SIKE operations); eight iterations were used to measure
the execution time of each bit. In these experiments, the
execution time of the SIKE iterations was calculated using
CPU measurements obtained with the code downloaded
from the official Hertzbleed repository.

Results. For each bit, we only used the last seven
iterations (which consisted of 7,700 SIKE decapsulation
operations) and disregarded the first iteration (which con-
sisted of 1,100 SIKE decapsulation operations), since we
found that the first iteration was unstable and mainly used
to overload the CPU in order to produce stable execution
differences associated with the data processed in the next
seven iterations. As a result, 12.5% of the measurements
were filtered out.

Fig. 12 presents the distribution of the execution times
of the iterations, calculated from the CPU measurements. As
can be seen, the distribution is very noisy, and there is no
clear threshold that can be used to differentiate the case of
a switch (mi ̸= mi−1) and non-switch (mi = mi−1). The
execution times in red represent cases of a switch (mi ̸=
mi−1), with mean = 36.354 and standard deviation (STD)

Figure 12. A histogram of video-footage-based estimations of the minimal running time based on one iteration (left) and eight iterations (center). The
error rate (when a threshold of 36.15 is used to distinguish between mi = mi−1 and mi ̸= mi−1) vs. the number of iterations used to determine the
minimal running time (right).

= 0.7478, and the execution times in blue represent cases of
a non-switch (mi = mi−1), with mean = 36.527 and STD
= 0.8211.

Therefore, we examined the seven iterations of each bit
to identify the one with the shortest execution time. The
distribution of the 152 bits (based on the minimal execution
time for the associated iterations) is presented in Fig. 12.
The execution times in red represent cases of a switch (mi ̸=
mi−1), with mean = 36.092 seconds and STD = 0.073, and
the execution times in blue represent cases of a non-switch
(mi = mi−1), with mean = 36.223 seconds and STD =
0.084. As seen in Fig. 12, a threshold of 36.15 seconds
can be used to differentiate between the two classes with a
negligible error. We also computed the error as a function of
the number of iterations (2-8) used to produce the minimal
execution time with a threshold of 36.15 seconds (the results
are presented in Fig. 12). As can be seen, the error converges
to 1% in the seventh iteration.

Based on this experiment, we concluded that: (1) the
behavior (the time difference) reported in the Hertzbleed
paper [19] on the x86 architecture is also observable on the
ARM architecture at the granularity of a series of 1,100
consecutive operations, with a threshold of 36.15 seconds
that differentiates the switch cases from the non-switch
cases, and (2) there is a need to employ an error correction
algorithm to handle the expected 1% of errors.

6.2. SIKE Key Recovery

We now demonstrate the recovery of a full (378-bit)
private key from the SIKE-751 implementation using video
footage (obtained by an iPhone 13 Pro Max) of the power
LED of USB speakers that were connected to a USB hub
that was used to charge a Samsung Galaxy S8 (which
contains the SIKE key) in a series of adaptively chosen
ciphertext attacks.

Experimental Setup. We connected the Samsung
Galaxy S8 to a USB hub (Gold Touch 8 Ports USB3.0 Slim
HUB). We also connected USB speakers (Logitech Z120) to
the USB hub. We downloaded and installed the application
Rec [50] on the iPhone 13 Pro Max. This application allows

Figure 13. Experimental setup. The video camera of an iPhone 13 Pro Max
is directed (through a lens) at the power LED of Logitech Z120 speakers
that are connected to a USB hub used to charge a Samsung Galaxy S8
(which contains the SIKE key).

Figure 14. Top: The RGB values of eight SIKE iterations extracted from
video footage. |Bottom: Zooming in on the green channel (Bottom).

Figure 15. Snapshots taken from the video footage of the power LED of
the speakers captured by the iPhone. The difference in the brightness of
the power LED of the speakers when the smartphone is idle and when it
performs SIKE operations cannot be discerned by the human eye.

Algorithm 3 Hertzbleed Attack
Inputs: vid: (fstart, ..., fend) // a series of frames

chan: numeric value {0,1,2} for the RGB channel
Output: signal: a time series of rows’ average values
procedure EXTRACT-INDEXES (SIGNAL, THRESH)

indexes = [], i = 0
signal = Average-Frames (video,1)
for (j = 0; j < length(signal); j++) do

if (signal [j] > threshold) then
indexes [i] = signal [j]
i++

return indexes
procedure MINITERTIME (VID, CHAN, THRESH)

estimatedTimes = {} , i =0
signal = Average-Frames (vid, chan)
indexes = Extract-Indexes (signal, threshold)
for (j1 = 0; j1 < length(indexes)-1; j1++) do

for (j2 = j1+1; j2 < length(indexes)-1; j2++) do
n = indexes [j2] - indexes [j1])
time = n × (1/fps)
if (time > 36) then

estimatedTimes [i] = time
i++

min = minimum (estimatedTimes)
return min

the user to configure the shutter speed of the recorded video.
We used the camera of the iPhone and zoomed the video
camera in on the power LED of the USB speakers (via the
application) with a lens (see Fig. 13). Using the application,
we obtained video footage (resolution: 1920x1080, FPS:
120, rolling shutter speed: 1

61400) of the power LED of the
USB speakers while the Samsung Galaxy was attacked in a
series of adaptive chosen ciphertext attacks.

The series of adaptive chosen ciphertext attacks was
created as follows: For each index i of the private key
we wanted to recover, we created a dedicated input Mi

which was used to attack the implementation of SIKE-751 in
the PQCrypto-SIDH library, as described in the Hertzbleed
paper [19] (using the i−1 bits already recovered). We used
Mi to trigger 800 SIKE operations, which were divided
into eight iterations, where in each iteration 100 consecutive
SIKE operations were triggered with Mi and executed using
100 threads. This process was repeated iteratively for all 377
indexes.

Processing the Signal. We processed the video footage
obtained as we triggered the adaptive chosen ciphertext at-
tack as follows: We applied the MinIterT ime function (see
Algorithm 3) on the video footage obtained. This function
calls Average − Frames to extract a signal based on the
green channel. An example of the signal extracted from one
of the videos is presented in Fig. 14; as can be seen in
the image presenting the green channel, the eight iterations
can be detected by analyzing the RGB values, although the
difference between the brightness of the power LED when
the smartphone performs SIKE operations and when the
smartphone is idle cannot be discerned by the human eye

Figure 16. Minimum times used to extract the first 20 bits (1 to 20) and
last 20 bits (358 to 377) of the SIKE key based on eight iterations.

(see Fig 15).
Next, MinIterT ime calls Extract−Indexes to extract

the indexes of the frames associated with the beginning
of the iterations. This is done by determining whether the
values of the indexes of the frames are greater than 204.9.
We note that due to the added noise, the Extract−Indexes
function may return more than eight indexes (i.e., the func-
tion may produce errors). Next, MinIterT ime computes
the number of frames between every two indexes (due to the
errors that may have been produced by Extract−Indexes)
and calculates the associated running time by multiplying
the number of frames by 1

fps (the fraction of a second
it takes to capture a frame, including the transition time).
The function filters any result that is under 36 seconds and
caused by the added errors. Finally, MinIterT ime returns
min, the minimal running time. We determined the value
of the i-th index of the key according to the value of min:

mi =

{
mi−1 if (min > 36.15)

mi−1 otherwise
(3)

Results. First, we note that we guessed that the value
of the first index of the key (where j = 0) would be
zero. According to the Hertzbleed paper [19], an incorrect
guess/prediction of the value of the key in any index n
(where 0 ≤ n ≤ 377) will create 377− n consecutive non-
switch cases (i.e., no anomalous zeros will appear from this
point on). We verified that our guess for the first index was
correct by using the next bit index (where j = 1), which was
predicted to be a switch case. The minimal values among
the seven iterations of the first 20 LSB positions (bits 1–20)
and the last 20 most significant bit (MSB) positions (bits
358–377) of the key we recovered are presented in Fig. 16.

The 378 bits of the key were recovered with six errors
that we encountered and corrected during the recovery pro-
cess using an error detection and correction algorithm.

Error Detection and Correction. We used an error
detection and correction algorithm to detect and correct the
six errors we encountered during the key recovery. The
algorithm was implemented based on the error detection and
correction algorithm suggested in the Hertzbleed paper [19].
In the case of an error in the recovery of a bit with an index
i, the phenomenon that causes anomalous zeros (which is
expected to happen with a probability of 1

2) will not be
triggered in the subsequent bits recovered (see [19] for more

Figure 17. The error detection (left) and correction (right) of bit indexes
41, 101, and 151.

details). The untriggered anomalous zeros in the recovery of
the subsequent indexes will result in a non-switch case and
a longer execution time (that will cross the threshold used
to distinguish between mi = mi−1 and mi ̸= mi−1). This
will result in a chain of recovered bits with similar values
(the result of a chain of non-switches) for the subsequent
indexes.

In order to detect such errors, we set the detection
algorithm to raise an alert after 17 consecutive recoveries
classified as non-switch cases (cases in which execution
time crossed the threshold of 36.15 seconds). A chain of 17
consecutive non-switch bits is expected to be the result of an
error in a recovered bit with 99.9992% probability (except
for a negligible error with a probability of 1

131,072 , which is
the result of 17 consecutive bits with the same value as the
key). Figs. 17 and 18 present six chains of 17 consecutive
non-switch bits that we encountered during the key recovery
process (the errors appeared in indexes 41, 101, 151, 218,
236, and 361 and created a chain of 17 non-switch cases for
each error). For these chains (which we encountered during
the recovery), we repeated the sampling process. This was
done by sampling each index again, starting from the last
index in which we encountered a switch case, before the
beginning of the chain (indexes 28, 74, 148, 198, 234, and
326). The corrected classifications for the chains of the six
bits are also presented in Figs. 17 and 18.

Figure 18. The error detection (left) and correction (right) of bit indexes
218, 236, and 361.

7. Countermeasures

In this section, we describe several methods that can be
used to mitigate or prevent video-based cryptanalysis.

Software-Based Countermeasures. The best way to
prevent attackers from recovering secret keys from devices
is to ensure that the cryptographic library used does not
leak any information that can be exploited to recover the
key. However, we note that attackers can still apply video-
based cryptanalysis using zero-day attacks found in the most
updated cryptographic libraries.

Hardware- and Firmware-Based Countermeasures.
We differentiate between two types of power LEDs: type
1 power LEDs (standard on/off power LEDs) and type
2 power LEDs (power LEDs that provide an indication
regarding CPU operations by changing their color). We
advise manufacturers to use constant-time LED indication
for type 2 power LEDs (that are integrated into devices),
i.e., use constant time flickering which is independent of
the data being processed by the device (e.g., always use
a 100 millisecond on/off LED blink). In many devices,
a type 1 power LED is connected directly to the power
line of the device. As a result, the device’s power LED is
affected by the power consumption fluctuations that occur
when cryptographic operations are performed. To counter
this phenomenon, a capacitor can be integrated parallel to
the power LED indicator; in this case, the capacitor behaves
as a low-pass filter. This is an inexpensive solution for
reducing the fluctuations in power consumption. However,

in devices with high power consumption, the integrated
capacitor’s capacitance must be large enough to support the
power supplied to the device.

Consumer Side Countermeasures. Remote attacks can
be prevented by placing black tape over a device’s power
LED. However, attackers can easily remove the tape from
the LED if they apply the attack in close video acquisition.

8. Limitations

In this section, we discuss the limitations of video-based
cryptanalysis and how attackers can overcome them.

Limited Sampling Rate. Currently, the fastest shutter
speed of a commonly used commercial video camera sup-
ports a speed of 1

60,000 (iPhone). As a result, devices with
high CPU rates (e.g., servers) may not be at risk of video-
based cryptanalysis, even if their power LED leaks fine-
grained information. However, we note that professional
video cameras already support a higher shutter speed (e.g.,
Fujifilm X-H2 supports a shutter speed of 1

180,000).
Semi-Uniform Distribution of Sampling. In a video

camera with an FPS rate, the time provided by 1
FPS =

S + T consists of S, which denotes the scanning time of
a single frame, and T , which denotes the transition time
between frames (see Fig. 1 for more details). As a result,
while the rolling shutter samples the distribution of the
power LED’s intensity within a frame uniformly, the video
of the power LED does not reflect a uniform distribution of
the intensity of the power LED across time (due to the fact
that the power LED is not captured by a frame during the
transition time). Some cryptographic operations may start or
end during the transition time (which will prevent attackers
from accurately calculating the exact time that the crypto-
graphic operation was performed). Attackers can use one of
the following two approaches to address this: (1) Estimate
the missing beginning/end time of an operation as half of the
transition time (T2). The main disadvantage of this simple
approach is the fact that some cryptanalytic attacks cannot
tolerate errors. (2) Accurately calculate the beginning/end
time by collecting additional measurements. In general, if
we denote the transition time as T and the scanning time as
S, where S = 1

FPS − T , the probability that the beginning
and end of a cryptographic operation will be captured in the
video is: S2 × FPS2. Based on this observation, attackers
can obtain a few video recordings of the power LED (while
triggering the same cryptographic operation) to ensure that
the beginning and end of a cryptographic operation are
captured in the frames.

Low SNR from Integrated Power LEDs. We note that
some devices do not leak fine-grained information from their
integrated power LEDs or leak fine-grained information with
a very low SNR. In such devices, the device manufacturers
decoupled the correlation between the power consumption
of the device and the intensity of the integrated power LED
in the design of the electrical circuits. However, assuming
that the power consumption of the device actually does leak
fine-grained information that can be used for cryptanalysis,
attackers can overcome this challenge by performing an

indirect attack (i.e., exploiting the leakage from the power
LED of a connected device), as we demonstrated in Section
6.

Limited Sampling Sensitivity. We note that the video
cameras used in this research (with an 8-bit RGB depth) are
less sensitive than photodiodes, which can be sampled with
a 16-bit ADC and can capture much more subtle changes
in the brightness of the power LED (see Fig. 5). Therefore,
only a portion of the cryptanalytic attacks that can be applied
using a photodiode can be applied with a video camera.
We note that attackers can improve the sensitivity of video
footage by using professional video cameras with greater
sensitivity (e.g., a video camera with a 12-bit RGB depth
already exists).

Limited Exposure. The number of devices exposed to
video-based cryptanalysis is affected by various factors.
One factor limiting the exposure of this attack is the fact
that video-based cryptanalysis relies on the existence of
a cryptographic vulnerability in a cryptographic library.
With that in mind, video-based cryptanalysis can be applied
using known attacks (e.g., Minerva and Hertzbleed) against
old cryptographic libraries installed on devices. However,
attackers can also apply video-based cryptanalysis to recover
secret keys using zero-day cryptographic vulnerabilities that
exist in the most updated cryptographic libraries (just as
in the past, when the cryptographic libraries of that time
were considered the most up-to-date versions until a vul-
nerability was found). Another factor that may limit the
exposure of the attack is related to over-the-Internet video
acquisition (using an Internet-connected video camera). This
attack vector can only be applied from a distance, against
devices that contain a type 2 power LED and are located in
dark rooms (see Fig. 3), using video cameras that have the
required optical zoom capabilities to capture the LED from
the distance.

Long Application Time. We note that some of the
attacks (e.g., Hertzbleed) may take a long time to perform.
While this has negligible implications on remote video
acquisition, it has a substantial effect on close video ac-
quisition in that it requires the attacker to be near the target
device when the video footage is obtained (during filming).
However, we note that this is not only a disadvantage of
video-based cryptanalysis but rather it is a disadvantage
of the time it takes to apply the cryptanalytic attack used
to recover the secret key even with the use of specialized
hardware (e.g., SDR, scope, photodiode).

9. Conclusions, Discussion, and Disclosure

In this research, we showed how a COTS video camera
can be used to extract secret keys from a device by analyzing
the device’s power LED. In doing so, we raise awareness
regarding the ability of adversaries to recover secret keys
from devices whose power LEDs leak information, with-
out the use of specialized hardware (scopes, photodiodes,
probes, SDR, or ultrasonic microphones).

One might argue against the novelty of the paper and
claim that Minerva and Hertzbleed are well-known crypto-

graphic vulnerabilities that we did not discover. We note that
the contribution of our paper relates to the attack vector and
not to the discovery of a new cryptographic vulnerability.
While demonstrated on known cryptanalytic side-channel
attacks, the new attack vector can be used to facilitate new
cryptanalytic side-channel attacks. One might also question
the contribution of video-based cryptanalysis, arguing that
this method can really only be used to facilitate timing-
based cryptanalytic side-channel attacks and that as a result,
the video footage is not needed, since the API used to
trigger the cryptographic operation during the attack on the
target device can be used to obtain time measurements by
calculating the time elapsed between the API request and
the API response. In response to this, we note that in many
cases, the latency of networks and the Internet prevents
attackers from performing timing-based cryptanalytic side-
channel attacks remotely, because the timing measurements
are compromised by the network’s latency. For example,
in the FAQ section of the GitHub repository published
by the authors of the Minerva attack [17], the authors
mentioned that they were unable to perform the attack
remotely (using network measurements) for this reason (see
Is this exploitable remotely? in Minerva’s GitHub [47]). In
contrast, video-based cryptanalysis can be used to apply
the Minerva attack remotely over the Internet using video
footage obtained by a hijacked video camera.

We also raise concern regarding the potential of video-
based cryptanalysis today, given recent improvements in
video camera specifications. In our research, we used COTS
video cameras to obtain the video footage (i.e., video cam-
eras with an 8-bit space for a single RGB channel, full HD
resolution, and a shutter speed of 1

60,000). However, new
versions of smartphones already support 10-bit resolution
video footage (e.g., iPhone 14 Pro). Moreover, professional
video cameras with a resolution of 12-14 bits already exist
and may provide much greater sensitivity, allowing attackers
to perform additional attacks that require the ability to detect
very subtle changes in the intensity of the power LED.
In addition, many Internet-connected security cameras with
greater optical-zoom capabilities than the video camera used
in our research (25X) already exist (30X and 36X) and
are likely already widely deployed, allowing attackers to
obtain video footage of a target device’s power LED from
a greater distance than that demonstrated in this paper.
Finally, new professional video cameras support a shutter
speed of 1

180,000 (e.g., Fujifilm X-H2) which may allow
attackers to obtain measurements at a higher sampling rate,
potentially exposing other devices to the risk of video-based
cryptanalysis.

Considering the expected advancements in COTS smart-
phones and security video cameras (based on Moore’s law)
in the near future and the fact that more and more functional
IoT devices with limited CPU capabilities (e.g., sensors,
home appliances) are being deployed each day, we ex-
pect that the number of devices exposed to video-based
cryptanalysis will increase each year (unless precautionary
measures are employed to protect electrical circuits). Given
this, we believe that the infosec/security community needs

to encourage manufacturers to build resilient devices that are
robust against the recovery of keys using COTS devices.

We disclosed our findings to the manufacturers of the
devices used in our study via their bug bounty programs
and contact us email addresses (except for one manufacturer
for which we were unable to find any information on the
web). A few manufacturers responded to our email and
asked us for additional details which we shared with them.
We recommend that other hardware manufacturers empiri-
cally test their devices to determine if they are vulnerable
to video-based cryptanalysis and redesign their electrical
circuits (according to the suggestions provided in Section
7) as needed. We are, however, uncertain whether they
will choose to do so, as some solutions may increase the
manufacturer’s overall costs, decreasing revenue or requiring
the manufacturer to increase the product’s price. While
the cost of our countermeasures might seem negligible,
the addition of a component to prevent the attack could
cost a manufacturer millions of dollars, since such devices
are often mass-produced. Given the cost-driven nature of
consumers and the profit-driven nature of manufacturers,
mitigations are not always applied. This fact may leave many
devices vulnerable to video-based cryptanalysis attacks in
the future.

For future work, we suggest examining the potential of
professional video cameras to recover cryptographic keys
and the influence of video compression algorithms on the
quality of the video footage used to recover the key.

Acknowledgments

This work was partially supported by the Cyber Security
Research Center at Ben-Gurion University of the Negev, the
Jacobs Urban Tech Hub at Cornell Tech, and the Technion’s
Viterbi Fellowship for Nurturing Future Faculty Members.
We would like to Daniel Genkin, Eran Tromer, and Jan
Jancar for providing us with valuable insights.

References

[1] P. Kocher, J. Jaffe, and B. Jun, “Differential power
analysis,” in Annual international cryptology confer-
ence. Springer, 1999, pp. 388–397.

[2] P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “Introduc-
tion to differential power analysis,” Journal of Cryp-
tographic Engineering, vol. 1, no. 1, pp. 5–27, 2011.

[3] J.-J. Quisquater and D. Samyde, “Electromagnetic
analysis (ema): Measures and counter-measures for
smart cards,” in International Conference on Research
in Smart Cards. Springer, 2001, pp. 200–210.

[4] D. Agrawal, B. Archambeault, J. R. Rao, and P. Ro-
hatgi, “The em side—channel (s),” in International
workshop on cryptographic hardware and embedded
systems. Springer, 2002, pp. 29–45.

[5] G. Camurati, S. Poeplau, M. Muench, T. Hayes, and
A. Francillon, “Screaming channels: When electro-
magnetic side channels meet radio transceivers,” in

Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, 2018, pp.
163–177.

[6] K. Gandolfi, C. Mourtel, and F. Olivier, “Electro-
magnetic analysis: Concrete results,” in International
workshop on cryptographic hardware and embedded
systems. Springer, 2001, pp. 251–261.

[7] D. R. Gnad, J. Krautter, and M. B. Tahoori, “Leaky
noise: New side-channel attack vectors in mixed-signal
iot devices,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 305–339, 2019.

[8] D. Genkin, L. Pachmanov, I. Pipman, and E. Tromer,
“Ecdh key-extraction via low-bandwidth electromag-
netic attacks on pcs,” in Cryptographers’ Track at the
RSA Conference. Springer, 2016, pp. 219–235.

[9] D. Genkin, N. Nissan, R. Schuster, and E. Tromer,
“Lend me your ear: Passive remote physical side chan-
nels on pcs,” in 31st USENIX Security Symposium
(USENIX Security 22), 2022, pp. 4437–4454.

[10] B. Nassi, O. Vayner, E. Iluz, D. Nassi, O. H.
Cohen, J. Jancar, D. Genkin, E. Tromer, B. Zadov,
and Y. Elovici, “Optical cryptanalysis: Recovering
cryptographic keys from power led light fluctuations,”
Cryptology ePrint Archive, Paper 2023/1068, 2023,
https://eprint.iacr.org/2023/1068. [Online]. Available:
https://eprint.iacr.org/2023/1068

[11] B. Nassi, O. Vayner, E. Iluz, D. Nassi, J. Jancar,
D. Genkin, E. Tromer, B. Zadov, and Y. Elovici,
“Optical cryptanalysis: Recovering cryptographic keys
from power led light fluctuations,” in Proceedings of
the 2023 ACM SIGSAC Conference on Computer and
Communications Security, 2023, pp. 268–280.

[12] E. Carmon, J.-P. Seifert, and A. Wool, “Photonic side
channel attacks against RSA,” in 2017 IEEE Interna-
tional Symposium on Hardware Oriented Security and
Trust (HOST). IEEE, 2017, pp. 74–78.

[13] A. Schlösser, D. Nedospasov, J. Krämer, S. Orlic, and
J.-P. Seifert, “Simple photonic emission analysis of
AES,” in International Workshop on Cryptographic
Hardware and Embedded Systems. Springer, 2012,
pp. 41–57.

[14] J. Ferrigno and M. Hlaváč, “When aes blinks: intro-
ducing optical side channel,” IET Information Security,
vol. 2, no. 3, pp. 94–98, 2008.

[15] D. Genkin, A. Shamir, and E. Tromer, “Rsa key ex-
traction via low-bandwidth acoustic cryptanalysis,” in
Annual Cryptology Conference. Springer, 2014, pp.
444–461.

[16] B. B. Brumley and N. Tuveri, “Remote timing attacks
are still practical,” in Computer Security–ESORICS
2011: 16th European Symposium on Research in Com-
puter Security, Leuven, Belgium, September 12-14,
2011. Proceedings 16. Springer, 2011, pp. 355–371.

[17] J. Jancar, V. Sedlacek, P. Svenda, and M. Sys, “Min-
erva: The curse of ECDSA nonces (systematic anal-
ysis of lattice attacks on noisy leakage of bit-length
of ECDSA nonces),” IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, vol. 2020,

no. 4, pp. 281–308, 2020.
[18] D. Moghimi, B. Sunar, T. Eisenbarth, and N. Heninger,

“Tpm-fail: Tpm meets timing and lattice attacks,” in
Proceedings of the 29th USENIX Security Symposium,
2020.

[19] Y. Wang, R. Paccagnella, E. T. He, H. Shacham, C. W.
Fletcher, and D. Kohlbrenner, “Hertzbleed: Turning
power {Side-Channel} attacks into remote timing at-
tacks on x86,” in 31st USENIX Security Symposium
(USENIX Security 22), 2022, pp. 679–697.

[20] M. G. Kuhn, “Optical time-domain eavesdropping risks
of crt displays,” in Proceedings 2002 IEEE Symposium
on Security and Privacy. IEEE, 2002, pp. 3–18.

[21] M. Backes, M. Dürmuth, and D. Unruh, “Compro-
mising reflections-or-how to read lcd monitors around
the corner,” in 2008 IEEE Symposium on Security and
Privacy (sp 2008). IEEE, 2008, pp. 158–169.

[22] M. Backes, T. Chen, M. Dürmuth, H. P. Lensch, and
M. Welk, “Tempest in a teapot: Compromising re-
flections revisited,” in 2009 30th IEEE Symposium on
Security and Privacy. IEEE, 2009, pp. 315–327.

[23] Y. Xu, J. Heinly, A. M. White, F. Monrose, and J.-
M. Frahm, “Seeing double: Reconstructing obscured
typed input from repeated compromising reflections,”
in Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, 2013, pp.
1063–1074.

[24] R. Raguram, A. M. White, Y. Xu, J.-M. Frahm,
P. Georgel, and F. Monrose, “On the privacy risks of
virtual keyboards: automatic reconstruction of typed
input from compromising reflections,” IEEE Transac-
tions on Dependable and Secure Computing, vol. 10,
no. 3, pp. 154–167, 2013.

[25] R. Raguram, A. M. White, D. Goswami, F. Monrose,
and J.-M. Frahm, “ispy: automatic reconstruction of
typed input from compromising reflections,” in Pro-
ceedings of the 18th ACM conference on Computer
and communications security, 2011, pp. 527–536.

[26] D. Balzarotti, M. Cova, and G. Vigna, “Clearshot:
Eavesdropping on keyboard input from video,” in 2008
IEEE Symposium on Security and Privacy (sp 2008).
IEEE, 2008, pp. 170–183.

[27] K. Mowery, S. Meiklejohn, and S. Savage, “Heat
of the moment: Characterizing the efficacy of ther-
mal camera-based attacks,” in Proceedings of the 5th
USENIX conference on Offensive technologies, 2011,
pp. 6–6.

[28] Q. Yue, Z. Ling, X. Fu, B. Liu, K. Ren, and W. Zhao,
“Blind recognition of touched keys on mobile devices,”
in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, 2014, pp.
1403–1414.

[29] D. Shukla, R. Kumar, A. Serwadda, and V. V. Phoha,
“Beware, your hands reveal your secrets!” in Pro-
ceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, 2014, pp.
904–917.

[30] B. Nassi, Y. Pirutin, R. Swisa, A. Shamir, Y. Elovici,

and B. Zadov, “Lamphone: Passive sound recovery
from a desk lamp’s light bulb vibrations,” in 31st
USENIX Security Symposium (USENIX Security 22),
2022, pp. 4401–4417.

[31] A. Davis, M. Rubinstein, N. Wadhwa, G. J. Mysore,
F. Durand, and W. T. Freeman, “The visual micro-
phone: passive recovery of sound from video,” 2014.

[32] B. Nassi, R. Swissa, J. Shams, B. Zadov, and
Y. Elovici, “The little seal bug: Optical sound recovery
from lightweight reflective objects,” in 2023 IEEE
Security and Privacy Workshops (SPW). IEEE, 2023,
pp. 298–310.

[33] M. Sheinin, D. Chan, M. O’Toole, and S. G.
Narasimhan, “Dual-shutter optical vibration sensing,”
in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, pp.
16 324–16 333.

[34] S. Sami, Y. Dai, S. R. X. Tan, N. Roy, and
J. Han, “Spying with your robot vacuum cleaner:
Eavesdropping via lidar sensors,” in Proceedings
of the 18th Conference on Embedded Networked
Sensor Systems, ser. SenSys ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p.
354–367. [Online]. Available: https://doi.org/10.1145/
3384419.3430781

[35] Y. Long, P. Naghavi, B. Kojusner, K. Butler, S. Ram-
pazzi, and K. Fu, “Side eye: Characterizing the limits
of pov acoustic eavesdropping from smartphone cam-
eras with rolling shutters and movable lenses,” arXiv
preprint arXiv:2301.10056, 2023.

[36] S. King, “Luminous intensity of an LED as a function
of input power,” ISB J. Phys, vol. 2, no. 2, 2008.

[37] J. Loughry and D. A. Umphress, “Information leakage
from optical emanations,” ACM Transactions on Infor-
mation and System Security (TISSEC), vol. 5, no. 3,
pp. 262–289, 2002.

[38] M. Guri, B. Zadov, D. Bykhovsky, and Y. Elovici,
“Ctrl-alt-led: Leaking data from air-gapped computers
via keyboard leds,” in 2019 IEEE 43rd Annual Com-
puter Software and Applications Conference (COMP-
SAC), vol. 1. IEEE, 2019, pp. 801–810.

[39] M. Guri, B. Zadov, A. Daidakulov, and Y. Elovici,
“xled: Covert data exfiltration from air-gapped net-
works via switch and router leds,” in 2018 16th An-
nual Conference on Privacy, Security and Trust (PST).
IEEE, 2018, pp. 1–12.

[40] M. Guri, B. Zadov, and Y. Elovici, “Led-it-go: Leaking
(a lot of) data from air-gapped computers via the
(small) hard drive led,” in International conference on
detection of intrusions and malware, and vulnerability
assessment. Springer, 2017, pp. 161–184.

[41] B. Nassi, Y. Pirutin, T. Galor, Y. Elovici, and B. Zadov,
“Glowworm attack: Optical tempest sound recovery
via a device’s power indicator led,” in Proceedings of
the 2021 ACM SIGSAC Conference on Computer and
Communications Security, 2021, pp. 1900–1914.

[42] B. Nassi, Y. Pirutin, J. Shams, R. Swissa, Y. Elovici,
and B. Zadov, “Optical speech recovery from desktop

speakers,” Computer, vol. 55, no. 11, pp. 40–51, 2022.
[43] C. Bloom, J. Tan, J. Ramjohn, and L. Bauer, “Self-

driving cars and data collection: Privacy perceptions
of networked autonomous vehicles,” in Symposium on
Usable Privacy and Security (SOUPS), 2017.

[44] B. Nassi, R. Bitton, R. Masuoka, A. Shabtai, and
Y. Elovici, “Sok: Security and privacy in the age of
commercial drones,” in 2021 2021 IEEE Symposium on
Security and Privacy (SP). Los Alamitos, CA, USA:
IEEE Computer Society, may 2021, pp. 73–90. [On-
line]. Available: https://doi.ieeecomputersociety.org/
10.1109/SP40001.2021.00005

[45] D. Genkin, A. Shamir, and E. Tromer, “Acoustic crypt-
analysis,” Journal of Cryptology, vol. 30, no. 2, pp.
392–443, 2017.

[46] “Sunba-ceiling-outdoor-security-infrared,”
https://www.amazon.com/SUNBA-Ceiling-Outdoor-
Security-Infrared/dp/B09Z6R48SH/r.

[47] “Minerva github,” https://github.com/crocs-muni/
minerva/tree/master/poc/attack.

[48] D. Jao and L. D. Feo, “Towards quantum-resistant
cryptosystems from supersingular elliptic curve iso-
genies,” in International Workshop on Post-Quantum
Cryptography. Springer, 2011, pp. 19–34.

[49] “Hertzbleed github,” https://github.com/FPSG-UIUC/
hertzbleed.

[50] “Rec - pro video camera,” https://apps.apple.com/us/
app/rec-pro-video-camera/id1175490870.

Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.1. Summary

This paper proposes a novel type of side channel attacks
in which a (possibly remote attacker) analyses the video
of a power/status LED to learn about the timings of cryp-
tographic implementations running on the device. This is
possible either because power consumption directly affects
the brightness of the power LED, or, because the color of
the LED is used to explicitly mark the execution of some
sensitive operation. The rolling shutter of a camera is used
is used to achieve a sufficient sampling rate even with COTS
cameras. The paper evaluates the impact of brightness and
distance on the attack and shows two concrete examples of
key recovery via known timing vulnerabilities/attacks.

A.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field

A.3. Reasons for Acceptance

1) This paper shows that the optical side channel leak
provided by a power/status LED can be exploited
using only a COTS video camera.

2) In the best case, attacks are possible from a large
distance or even remotely, if an attacker compro-
mises a security camera.

3) The paper solves many practical challenges to
demonstrate the feasibility of the attacks in various
scenarios.

4) Overall, the paper raises awareness about the risks
of optical indicators leaking side channel informa-
tion to video cameras controlled by an attacker.

A.4. Noteworthy Concerns

1) While the optical side channel attacks with COTS
cameras presented in this paper are novel, some
of the underlying techniques have been studied in
previous work. The optical side channel caused
by power/status LEDs was shown and exploited
using a photodiode in [10, 11]. Using a rolling
shutter to increase the sample rate of cameras was
explored, for different goals, in [31, 33, 35]. As the
paper focuses on demonstrating a novel method to
measure optical side channel leakage, the attacks
are based on existing timing vulnerabilities [17, 19].
These works are discussed in the paper.

2) The threat model has very strong requirements
(e.g., presence of a vulnerable LED or connection
to a vulnerable device, presence of a timing side
channel vulnerability, proximity, darkness, long ac-
quisition time). These requirements are described
in the paper for each attack, and acknowledged in
the limitations on applicability.

