
Citation: Krebs, R.; Bagui, S.S.; Mink,

D.; Bagui, S.C. Applying Multi-Class

Support Vector Machines:

One-vs.-One vs. One-vs.-All on the

UWF-ZeekDataFall22 Dataset.

Electronics 2024, 13, 3916. https://

doi.org/10.3390/electronics13193916

Academic Editor:Wajeb Gharibi

Received: 26 August 2024

Revised: 26 September 2024

Accepted: 30 September 2024

Published: 3 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Applying Multi-CLASS Support Vector Machines: One-vs.-One
vs. One-vs.-All on the UWF-ZeekDataFall22 Dataset
Rocio Krebs 1 , Sikha S. Bagui 1,* , Dustin Mink 2 and Subhash C. Bagui 3

1 Department of Computer Science, University of West Florida, Pensacola, FL 32514, USA;
rk50@students.uwf.edu

2 Department of Cybersecurity, University of West Florida, Pensacola, FL 32514, USA; dmink@uwf.edu
3 Department of Mathematics and Statistics, University of West Florida, Pensacola, FL 32514, USA;

sbagui@uwf.edu
* Correspondence: bagui@uwf.edu

Abstract: This study investigates the technical challenges of applying Support Vector Machines
(SVM) for multi-class classification in network intrusion detection using the UWF-ZeekDataFall22
dataset, which is labeled based on the MITRE ATT&CK framework. A key challenge lies in handling
imbalanced classes and complex attack patterns, which are inherent in intrusion detection data. This
work highlights the difficulties in implementing SVMs for multi-class classification, particularly
with One-vs.-One (OvO) and One-vs.-All (OvA) methods, including scalability issues due to the
large volume of network traffic logs and the tendency of SVMs to be sensitive to noisy data and
class imbalances. SMOTE was used to address class imbalances, while preprocessing techniques
were applied to improve feature selection and reduce noise in the data. The unique structure of
network traffic data, with overlapping patterns between attack vectors, posed significant challenges in
achieving accurate classification. Our model reached an accuracy of over 90% with OvO and over 80%
with OvA, demonstrating that despite these challenges, multi-class SVMs can be effectively applied
to complex intrusion detection tasks when combined with appropriate balancing and preprocessing
techniques.

Keywords: multi-class classification; SVM; machine learning; network log analysis; imbalanced
datasets; supervised learning

1. Introduction

To maintain the security and integrity of information systems, it is necessary to
effectively detect and classify cyber attacks on networks. Classifying cyber attacks on
network logs requires developing sophisticated techniques to identify a thread and correctly
specify the kind of threat. Traditional methods of intrusion detection rely on correct cyber
threat classification. Machine learning, particularly Support Vector Machines (SVMs), is a
powerful tool that identifies network threats and anomalies in large datasets.

This research explores the use of SVMs for the multi-class classification of cyber attacks
using the UWF-ZeekDataFall22 dataset [1]. This dataset, provided by the University of
West Florida, comprises comprehensive network log data labeled according to the MITRE
ATT&CK framework, a globally recognized knowledge base of adversary tactics and
techniques [2]. The dataset aligns with real-world cyber threat scenarios, making it an ideal
candidate for evaluating machine learning models.

Multi-class classification with SVMs is achievable using the following strategies: One-
vs.-One (OvO) and One-vs.-All (OvA). The OvO strategy involves training a separate
classifier for each pair of classes, resulting in many binary classifiers that collectively handle
the multi-class problem. This method offers more precise decision boundaries but at the
cost of increased computational complexity. Contrarily, the OvA strategy simplifies the
multi-class problem by training a single classifier per class, distinguishing one class from

Electronics 2024, 13, 3916. https://doi.org/10.3390/electronics13193916 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13193916
https://doi.org/10.3390/electronics13193916
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0008-6219-023X
https://orcid.org/0000-0002-1886-4582
https://orcid.org/0000-0003-0106-3890
https://orcid.org/0000-0001-6140-5384
https://doi.org/10.3390/electronics13193916
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13193916?type=check_update&version=1

Electronics 2024, 13, 3916 2 of 15

all others. OvA is computationally less intensive, but its performance is low when trained
with imbalanced datasets.

The main goal of this study is to perform a comparative analysis of the OvO and
OvA strategies in classifying attack tactics on network logs. By leveraging the UWF-
ZeekDataFall22 dataset labeled with the help of the MITRE ATT&CK framework [3], we
intend to evaluate these strategies’ effectiveness in accurately classifying various types
of cyber attacks. We will use the following performance metrics: accuracy, precision,
recall, F1-score, and confusion matrix, provided by Scikit-learn [4], to assess and compare
the models.

This research contributes to cybersecurity by providing an overview of the strengths
and limitations of different SVM-based multi-class classification strategies. The findings
will inform the development of more robust and efficient intrusion detection systems,
ultimately enhancing organizations’ ability to defend against sophisticated cyber threats.

The rest of this paper is organized as follows: Section 2 reviews related works, focusing
on approaches to multi-class classification and handling imbalanced datasets. Section 3
introduces the UWF-ZeekDataFall22 dataset and its key characteristics. Section 4 describes
the preprocessing steps used to improve model performance. Section 5 details the im-
plementation of the multi-class SVM algorithms, specifically the One-vs.-One (OvO) and
One-vs.-All (OvA) strategies. Section 6 presents the experimental results, including perfor-
mance metrics and comparisons. Section 7 discusses the findings and their implications.
Finally, Section 8 concludes the paper and suggests directions for future work.

2. Related Works

Multi-class classification using SVMs has been extensively studied. Table 1 provides
an overview of various approaches to addressing multi-class problems and handling
imbalanced datasets.

However, an emerging direction in Intrusion Detection Systems (IDS) research focuses
on detecting unknown threats through unsupervised learning techniques. Unlike super-
vised methods like SVM, which rely on labeled data for training, unsupervised methods
are designed to identify novel or previously unseen attacks without the need for predefined
attack labels.

Mirsky et al. (2018) propose Kitsune, an ensemble of autoencoders, for online network
intrusion detection [5]. This unsupervised method uses a collection of autoencoders to
learn the normal behavior of network traffic. When an anomaly arises, Kitsune can detect
deviations from learned patterns, making it effective for identifying previously unknown
threats. This is a significant advantage over traditional SVM-based approaches, which
require labeled data for training and may struggle with novel attack types. Kitsune’s ability
to adapt to new attacks in real time demonstrates the power of unsupervised learning for
zero-day attack detection.

Similarly, Bovenzi et al. (2023) explore deep-learning-based anomaly detection in
Internet of Things (IoT) environments [6]. Their comparison of various deep learning
architectures highlights the robustness of unsupervised models in detecting anomalies
in network traffic. Specifically, their study reveals that these models can outperform
traditional classifiers in terms of robustness and generalizability when faced with previously
unseen data. The use of deep learning techniques, such as autoencoders and Generative
Adversarial Networks (GANs), allows for a more flexible and scalable approach to IDS,
addressing the challenges posed by dynamic and evolving cyber threats.

The CMSVM algorithm proposed by Shi Dong et al. [7] uses active learning to assign
weights dynamically to applications. This algorithm can manage imbalanced datasets,
which is crucial for security and network monitoring applications. Compared to traditional
methods, CMSVM reduces computation costs, improves classification accuracy, and solves
the imbalance problem in network traffic identification. This approach benefits applications
using dynamic unknown port numbers, masquerading, and encryption techniques.

Electronics 2024, 13, 3916 3 of 15

Table 1. Summary of Related Works.

Study Technique Focus/Objective Key Contribution

Shi Dong [7] CMSVM Active learning to manage
imbalanced datasets

Improved classification
accuracy and reduced
computation costs for network
traffic identification

Chih-Wei Hsu and Chih-Jen
Lin [8] SVM (OvA, OvO, DAGSVM) Multi-class classification using

SVM extensions

Comparison of different
SVM-based approaches for
computational efficiency and
classifier performance

Bagui et al. [9] BSMOTE
Resampling techniques for
imbalanced network
intrusion datasets

Optimized classification rates
for rare attack identification

Kamil et al. [10] Deep Learning
Intrusion detection using
convolutional neural
networks (CNN)

Enhanced detection of
complex attack patterns using
CNN architectures

Roy and Singh [11] Random Forest
Multi-class classification for
anomaly detection in
network traffic

Utilized ensemble learning to
improve detection accuracy in
large-scale datasets

Mirsky et al. [5] Autoencoders Online detection of unknown
attacks in real time

Developed Kitsune ensemble
to detect zero-day attacks in
network traffic without
labeled data

Bovenzi et al. [6] Deep Learning
(Unsupervised)

Anomaly detection in
IoT environments

Comparative analysis
showing the robustness of
unsupervised deep learning
models in detecting
unknown threats

According to Hsu and Lin [8], Support Vector Machines can be extended with the
following methods: one-against-all, one-against-one, and directed acyclic graph SVM
(DAGSVM). One-Against-All (OvA) trains a separate binary classifier for each class against
all others, resulting in a number of classifiers equal to the number of classes. One-against-
one (OvO) trains a binary classifier for each pair of classes, resulting in multiple classifiers
for the pairs. Directed Acyclic Graph SVM (DAGSVM) uses a directed acyclic graph to struc-
ture the binary classifiers. During prediction, the graph is traversed from the root to a leaf
node, reducing the number of comparisons needed and enhancing computational efficiency.

Additionally, Bagui et al. (2023) focus on identifying rare attacks in imbalanced net-
work intrusion datasets by exploring different ratios of oversampled to undersampled data,
finding that random undersampling before splitting yields better classification rates, while
undersampling after oversampling with BSMOTE allows for lower ratios of oversampled
data [9].

Kamil et al. [10] present a deep learning approach using convolutional neural networks
(CNN) for intrusion detection. Their work focuses on enhancing the detection of complex
attack patterns, showing that CNN architectures can effectively capture intricate features
in network traffic data, leading to improved classification performance.

Roy and Singh [11] explore the use of Random Forest for multi-class classification
in anomaly detection within network traffic. Their research demonstrates how ensemble
learning techniques can be utilized to improve detection accuracy in large-scale datasets,
making Random Forest a viable alternative to traditional SVM-based methods for certain
types of network intrusion detection tasks.

Together, these studies underscore the versatility and effectiveness of multi-class SVMs
in various applications, particularly in network security. They highlight the importance of
combining SVMs with active learning to manage large datasets efficiently and the critical

Electronics 2024, 13, 3916 4 of 15

role of kernel selection in optimizing classifier performance. The continuous development
and application of these techniques are essential for advancing the field of network traffic
and log file classification, providing robust solutions for cybersecurity challenges. Hence,
this paper provides a comparison of binary and multi-class SVMs in classifying attack
tactics in the newly created UWF-ZeekDataFall22 dataset.

3. Dataset

UWF-ZeekDataFall22 contains Zeek Conn logs collected from the Cyber Range at the
University of West Florida (UWF). The dataset was labeled using the MITRE ATT&CK
framework [3]. The dataset contains 700,340 logs with eleven categories. Of the eleven
categories, ten are common tactics used in network cyberattacks.

In addition to containing a wide range of logs, the dataset represents various stages
of network traffic, which are useful in detecting specific types of malicious behavior.
This makes the dataset highly valuable for understanding and classifying cyberattacks,
providing insights for network security applications. To provide a more comprehensive
understanding of the dataset, we performed a detailed statistical analysis of its contents,
summarized in Tables 2 and 3.

Table 2. Feature overview.

Feature Description

Duration The connection time in seconds.
Orig_bytes The number of bytes sent by the originator.
Resp_bytes The number of bytes sent by the responder.
Orig_pkts The number of packets sent by the originator.
Resp_pkts The number of packets sent by the responder.
Proto The protocol used (TCP, UDP, etc.).
Service The service requested (HTTP, FTP, etc.).
Conn_state The connection state.
Label_tactic The label corresponding to the MITRE ATT&CK tactic category.

Table 3. Descriptive statistics for numeric features.

Feature Mean Median Std Dev Min Max

Duration 0.751 s 0.000016 s 10.83 s 0.000001 s 3560.86 s
Orig_bytes 123.58 102.00 1180.84 0 218,820
Resp_bytes 110.23 0.00 10,702.38 0 2,174,312
Orig_pkts 1.94 2.00 24.68 0 10,040
Resp_pkts 0.60 0.00 24.79 0 10,040
Src_port_zeek 47,435.10 47,125.00 9047.25 3 65,535
Dest_port_zeek 13,395.93 53.00 19,938.01 0 65,535
Missed_bytes 0.13 0.00 39.76 0 19,090
Orig_ip_bytes 133.43 134.00 2328.26 0 959,736
Resp_ip_bytes 89.77 0.00 11,678.85 0 4,870,648

These values reflect the skewed nature of network traffic, where a small subset of
connections accounts for much larger or smaller values, significantly influencing the mean.

As observed in Table 4, tactics like Initial Access and Execution dominate the dataset,
while categories such as Collection and Command and Control are underrepresented. This
imbalance is critical when analyzing the dataset, as it may introduce challenges in obtaining
accuracy in our models.

Electronics 2024, 13, 3916 5 of 15

Table 4. Distribution of label_tactic categories.

Tactic Count Percentage

Resource Development 262,408 61.45%
None 117,242 27.46%
Reconnaissance 28,344 14.29%
Discovery 16,025 11.43%
Defense Evasion 2894 2.86%
Execution 29 1.43%
Initial Access 18 0.76%
Command and Control 14 0.57%
Lateral Movement 10 0.14%
Persistence 5 0.14%
Collection 1 0.14%

Figure 1 presents a tabular presentation of the eleven categories identified in the
dataset. The categories are found in the column label_tactic. It can be noted that the dataset
contains imbalanced classes. Our research will concentrate on the following categories:
Resource Development, Reconnaissance, Discovery, and Defense Evasion. These categories
contain a reasonable number of samples that can be used for effective model training.

Figure 1. Distribution of label_tactic.

4. Preprocessing

Effective data preprocessing is crucial for ensuring the success of tactic classification.
In this work, this process involved cleaning the data, reducing dimensionality, handling
missing values, and balancing the dataset to achieve optimal performance when training

Electronics 2024, 13, 3916 6 of 15

the Support Vector Machine Classifiers. The data in this dataset were in multiple Parquet
files, which were loaded into dataframes using the Pandas library [12].

Duplicate rows were removed to prevent bias and overfitting in the model. To address
missing data, we applied a backfilling method, propagating the next valid observation
backward to fill the gaps. This approach helps maintain the dataset’s continuity without
introducing additional bias.

The label_binary column contained string values ‘True’ and ‘False’, which were
converted to integers (1 and 0, respectively). This conversion was necessary to make the
data suitable for machine learning algorithms, which typically require numerical input.

The tactics (or attack categories) with extremely few samples were dropped from
the dataset. These categories are as follows: ‘Execution’, ‘Initial Access’, ‘Command and
Control’, ‘Lateral Movement’, ‘Persistence’, and ‘Collection’. By focusing on the most
relevant categories, we aimed to improve the model’s performance in the key classes
of interest.

To reduce dimensionality and noise, several non-essential columns were dropped.
The Random Forest classifier was used to perform feature selection. The Random Forest
classifier was trained on the preprocessed dataset to calculate feature importance [13]. Ran-
dom Forest is an ensemble learning method that constructs multiple decision trees during
training and outputs the class that is the mode of the classes of the individual trees [14].
One of the advantages of using Random Forest is its ability to estimate feature importance,
which helps in identifying the most relevant features for our classification task. Features
with an importance score below 0.05 were discarded, as they were considered less signifi-
cant to the model’s performance. This step reduced the dimensionality of the dataset and
enhanced the model’s interpretability and accuracy. Specifically, columns such as duration,
orig_bytes, resp_bytes, service, uid, ts, datetime, label_technique, community_id,
src_ip_zeek, and dest_ip_zeek were removed.

The selected features were scaled using StandardScaler to standardize the data distri-
bution [15]. Categorical columns such as conn_state, proto, history, and label_tactic
were encoded into numerical values using label encoding.

Stratified sampling was performed to ensure that each class in the dataset was propor-
tionally represented [16]. This technique helps maintain the representative samples, which
are important for the validity of the training and testing phases.

There was still class imbalance; therefore, the Synthetic Minority Over-Sampling
Technique (SMOTE) [16] was employed. SMOTE generates synthetic samples for the
minority classes by identifying the k-nearest neighbors and creating new samples along
the line segments between the original samples and their neighbors. This technique
helps balance the class distribution and improve the model’s generalization ability across
different classes.

After preprocessing, we performed k-fold cross-validation to evaluate the model’s
performance [17]. Additionally, manual hyperparameter tuning was conducted for the
SVM classifier to optimize its parameters, further enhancing the model’s accuracy and
robustness. By carefully executing these preprocessing steps, we ensured that the data were
in an optimal state for training the SVM classifier, leading to an improved performance in
tactic classification.

Figure 2 presents the final distribution of the data after preprocessing and resampling.
The dataset contains five distinct classes, which are the primary focus of our classification
task. These classes are Resource Development, None, Reconnaissance, Discovery, and
Defense Evasion. Each class represents a different type of network activity that is critical
for intrusion detection tasks in cybersecurity. None is non-attack data.

Electronics 2024, 13, 3916 7 of 15

Figure 2. Final distribution of label_tatic after balancing, reduced to the most critical classes for
intrusion detection.

5. Multi-Class SVM Algorithms
5.1. Suport Vector Machines (SVM)

Support vector machine (SVM) is a supervised machine learning algorithm, specially
designed for binary classification. It was initially introduced as a support-vector network
by Corinna Cortes and Vladimir Vapnik [18]; SVMs aim to find the optimal hyperplane
that will successfully separate data into two different classes while maximizing the margin
between the two classes. Mathematically, SVM is defined as an optimization problem:

min
w,b,ξ

1
2

w2 + C
n

∑
i=1

ξi, (1)

subject to

yi(w · xi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, 2, . . . , n (2)

where C represents the regularization factor, w is the weight vector defining the orientation
of the hyperplane, and b is the hyperplane’s intercept.

f (x) = sign

(
N

∑
i=1

aiyiK(xi, x) + b

)
(3)

where N is the number of support vectors, ai are the Lagrange multipliers, b is the bias term,
and K(xi, x) is the kernel function that computes the similarity between feature vectors xi
in a high-dimensional space [19].

After discussing the basic concepts behind Support Vector Machines (SVM), we can
now look at how the algorithm is implemented. The procedure is outlined in Algorithm 1,
which illustrates the key steps involved in training and using an SVM model.

Electronics 2024, 13, 3916 8 of 15

Algorithm 1 Support vector machine (SVM) procedure.

1: procedure INIT
2: lr← 0.001
3: λ← 0.01
4: n_iters← 1000
5: w← None
6: b← None
7: end procedure
8: procedure FIT(X, y)
9: n_samples, n_ f eatures← shape(X)

10: w← zeros(n_ f eatures)
11: b← 0
12: for _← 1 to n_iters do
13: for idx, xi in enumerate(X) do
14: condition← y[idx] · (dot(xi, w)− b) ≥ 1
15: if condition then
16: w← w− lr · (2 · λ · w)
17: else
18: w← w− lr · (2 · λ · w− dot(xi, y[idx]))
19: b← b− lr · y[idx]
20: end if
21: end for
22: end for
23: end procedure
24: procedure PREDICT(X)
25: approx ← dot(X, w)− b
26: return sign(approx)
27: end procedure

We aimed to find the optimal hyperplane with Support Vector Machines (SVM) to
maximize the margin between two classes. Our algorithm follows these steps:

5.1.1. Initialization

The SVM model is initialized with a learning rate (α), a regularization parameter (λ),
and the number of iterations for training. The weights (w) and bias (b) are initialized
to zero.

5.1.2. Training the Model

The training process involves iteratively updating the weights and bias using gradient
descent. For each sample i, the margin is calculated as follows:

margini = yi(w⊤xi − b) (4)

where yi is the true label of sample i and xi is the feature vector of sample i.
If the sample is correctly classified (margini ≥ 1), the weights are updated as follows:

w← w− α(2λw) (5)

If the sample is misclassified (margini < 1), the weights and bias are updated as follows:

w← w− α(2λw− yixi) (6)

b← b + αyi (7)

5.1.3. Making Predictions

The prediction for a new sample x is made by calculating the decision function:

Electronics 2024, 13, 3916 9 of 15

f (x) = w⊤x− b (8)

and taking the sign of the result as follows:

ŷ = sign(f (x)) (9)

5.2. One-vs.-One (OvO) Approach

This approach allows us to perform multi-class classification using SVMs. According
to Liu, Bi, and Fan [20], an n-class classification problem can be represented as a binary
classification problem. Multiple binary classifiers are trained for pairwise comparisons
between different classes in this approach.

The optimization problem for this approach can be formulated as follows:

min
wij ,bij ,ξij

1
2

N

∑
i=1

N

∑
j=i+1

w2
ij + C

N

∑
i=1

N

∑
j=i+1

n

∑
k=1

ξ
(k)
ij (10)

subject to:
yi(wij · xi + bij) ≥ 1− ξ

(k)
ij , for the kth sample of class i vs. j, (11)

yj(wij · xj + bij) ≥ 1− ξ
(k)
ij , for the kth sample of class j vs. i, (12)

ξ
(k)
ij ≥ 0, for i = 1, 2, . . . , N, j = i + 1, . . . , N, k = 1, 2, . . . , n (13)

Algorithm 2 outlines the implementation of the One-vs.-One (OvO) strategy for multi-
class SVM classification, where a binary SVM is trained for each pair of classes:

Algorithm 2 Multi-class SVM OvO
1: procedure INIT
2: lr← 0.001
3: λ← 0.01
4: n_iters← 1000
5: classifiers← dict()
6: end procedure
7: procedure FIT(X, y)
8: classes← unique(y)
9: for i← 1 to len(classes) do

10: for j← i + 1 to len(classes) do
11: classi, classj ← classes[i], classes[j]
12: X_pair ← X[(y == classi) ∨ (y == classj)]
13: y_pair ← y[(y == classi) ∨ (y == classj)]
14: y_pair ← where(y_pair == classi, 1,−1)
15: svm← SVM()
16: svm.Fit(X_pair, y_pair)
17: classifiers[(classi, classj)]← svm
18: end for
19: end for
20: end procedure
21: procedure PREDICT(X)
22: votes← zeros(X.shape[0], len(unique(list(classifiers.keys()))))
23: for (classi, classj), svm in classifiers.items() do
24: preds← svm.Predict(X)
25: votes[:, classi]← votes[:, classi] + (preds == 1)
26: votes[:, classj]← votes[:, classj] + (preds == −1)
27: end for
28: return argmax(votes, axis = 1)
29: end procedure

Electronics 2024, 13, 3916 10 of 15

5.2.1. Initialization

The OvO SVM model is initialized with a learning rate, a regularization parameter,
and the number of iterations for training. It also initializes a set of binary classifiers for
each pair of classes.

5.2.2. Training the Model

A binary SVM classifier is trained for each pair of classes (i, j). The training samples
are selected from the two classes, and their labels are converted to ±1 (1 for class i and −1
for class j). The SVM classifier is trained using the selected samples and labels.

5.2.3. Making Predictions

To predict the class of a new sample, each binary classifier votes for one of the two
classes it was trained on. The class with the most votes is chosen as the final prediction:

ŷ = arg max
k

∑
(i,j)∈pairs

1ŷij=k (14)

5.3. One-vs.-All (OvA) Approach

The One-vs.-All (OvA) approach helps us solve multi-classification problems with the
binary classifier SVM.

min
wi ,bi ,ξi

1
2

N

∑
i=1

w2
i + C

N

∑
i=1

N

∑
j ̸=i

n

∑
k=1

ξ
(k)
i (15)

subject to:

yi(wi · xi + bi) ≥ 1− ξ
(k)
i , for kth of class i, (16)

ξ
(k)
i ≥ 0, for i = 1, 2, . . . , N, k = 1, 2, . . . , n (17)

Algorithm 3 outlines the implementation of the One-vs.-All (OvA) strategy for multi-
class SVM classification, where a separate binary SVM is trained for each class against all
other classes.

Algorithm 3 Multi-class SVM OvA

1: procedure INIT
2: lr← 0.001
3: λ← 0.01
4: n_iters← 1000
5: classifiers← list()
6: end procedure
7: procedure FIT(X, y)
8: classes← unique(y)
9: for cls in classes do

10: binaryy ← where(y == cls, 1,−1)
11: svm← SVM()
12: svm.Fit(X, binaryy)
13: classifiers.append(svm)
14: end for
15: end procedure
16: procedure PREDICT(X)
17: predictions← zeros(X.shape[0], len(classifiers))
18: for i, svm in enumerate(classifiers) do
19: predictions[:, i]← svm.Predict(X)
20: end for
21: return argmax(predictions, axis = 1)
22: end procedure

Electronics 2024, 13, 3916 11 of 15

The One-vs.-All (OvA) approach involves training a binary SVM classifier for each
class against all other classes.

5.3.1. Initialization

The OvA SVM model is initialized with a learning rate, regularization parameter, and
the number of iterations for training. It also initializes a set of binary classifiers, one for
each class.

5.3.2. Training the Model

A binary SVM classifier is trained for each class k. The training samples are labeled
as 1 if they belong to class k and −1 otherwise. The SVM classifier is trained using these
binary labels.

5.3.3. Making Predictions

To predict the class of a new sample, each binary classifier outputs a score indicating
the likelihood of the sample belonging to the respective class. The class with the highest
score is chosen as the final prediction:

ŷ = arg max
k

fk(x) (18)

where fk(x) is the decision function for class k.

6. Results

The performance of the Support Vector Machine (SVM) models was evaluated using
multiple metrics, including accuracy, precision, recall, and F1-score. Below is a brief
description of each metric:

• Accuracy: The ratio of correctly predicted instances to the total instances. This mea-
sures the overall effectiveness of the classifier.

• Precision: The proportion of true positives (correctly predicted positive cases) out
of all predicted positives (true positives + false positives). Precision indicates how
reliable the classifier’s positive predictions are.

• F1-Score: The harmonic mean of precision and recall, providing a balance between the
two metrics. This is useful when dealing with imbalanced datasets.

• Confusion Matrix: A table that describes the performance of the classifier by showing
the counts of true positives, true negatives, false positives, and false negatives for each
class.

1. Cross-Validation Accuracy

A five-fold cross-validation was used to assess the model performance and its consis-
tency across different data splits. The accuracy scores obtained from each fold are shown in
Table 5.

Table 5. Cross-Validation Accuracy Scores.

Fold Accuracy

Fold 1 0.9679
Fold 2 0.9668
Fold 3 0.9664
Fold 4 0.9667
Fold 5 0.9633

Mean Accuracy 0.9662

These results indicate high consistency and reliability in the model’s performance, 284
with a mean cross-validation accuracy of 0.96622 and a standard deviation of approximately

Electronics 2024, 13, 3916 12 of 15

285, 0.0017. The standard deviation indicates that the model’s performance is stable across
286 different subsets of the data. The resulting accuracy scores reflect the effectiveness of
our 287 preprocessing steps, feature selection, and handling of class imbalance.

2. Hyperparameter Tuning

Hyperparameter tuning was manually conducted for both the One-vs.-One (OvO) and
One-vs.-All (OvA) SVM classifiers. The same optimal parameters were identified for both
classifiers, as shown below:

Learning rate: 0.01

Regularization parameter (λλ): 0.01

Number of iterations: 2000

These parameters were chosen to ensure a balance between model complexity and the
ability to generalize to unseen data. Proper tuning helped improve classification accuracy
and prevent overfitting.

3. Performance Comparison Between OvO and OvA SVM Models

The performance metrics of the OvO and OvA SVM models are summarized in Table 6.
The results show that the OvO model outperformed the OvA model in terms of accuracy
and F1-score, with both models showing similar precision.

Table 6. Performance Metrics for OvO and OvA SVM Models.

Metric OvO OvA

Accuracy 0.8284 0.7715
Precision 0.8578 0.8582
Recall 0.8264 0.7689
F1-Score 0.7823 0.7295

The OvO model achieved an accuracy of 82.84% and an F1 Score of 78.23%, while
the OvA model recorded an accuracy of 77.15% and an F1 Score of 72.95%. Although the
precision was similar for both models, the OvO model showed better recall, indicating
superior performance in identifying positive instances.

4. Confusion Matrices

Figures 3 and 4 display the confusion matrices for the OvO and OvA models. The
OvO model demonstrated a stronger ability to differentiate between similar classes, such as
’Reconnaissance’ and ’Discovery’, whereas the OvA model showed more misclassifications.

The OvO model’s confusion matrix (Figure 3) shows fewer misclassifications across
classes, while the OvA model (Figure 4) exhibited more confusion between similar classes,
particularly between ’Defense Evasion’ and ’Reconnaissance’.

While the OvA classifier achieved a slightly lower accuracy of 77.15% compared to the
OvO classifier, it maintained a high precision of 85.82%, reflecting strong reliability in its
positive predictions. The recall was 76.89%, indicating a robust ability to identify positive
instances. The F1-score of 72.95% suggests a balanced performance between precision and
recall, though slightly lower than that of the OvO classifier.

Electronics 2024, 13, 3916 13 of 15

Figure 3. Confusion Matrix for OvO.

Figure 4. Confusion Matrix for OVA.

7. Discussion

The results of previous studies using the binary SVM classifier on this dataset have
not been very consistent [3] and the multi-class SVM has not been applied to this dataset
before. This study shows that SVM is effective for multi-class classification in network

Electronics 2024, 13, 3916 14 of 15

intrusion detection, particularly when handling complex, imbalanced datasets like UWF-
ZeekDataFall22. However, several challenges were identified.

A major challenge was the class imbalance, with tactics like ’Initial Access’ and ’Com-
mand and Control’ underrepresented. SMOTE helped improve performance for these
minority classes, though it introduced some overfitting.

The OvO method performed better overall, with higher F1-scores and fewer misclassi-
fications, while the OvA approach, though computationally cheaper, struggled more with
class imbalance and similar classes, such as ’Reconnaissance’ and ’Discovery’.

Overlapping patterns in network traffic data made it difficult to distinguish between
attack types like ’Defense Evasion’ and ’Discovery’. This suggests that more advanced
feature engineering or time-series analysis could enhance classification.

Scalability is another challenge, especially for large datasets. The computational cost
of training multiple binary classifiers in OvO is high. Future work could explore distributed
computing frameworks like Apache Spark to improve scalability.

Despite noise-reduction efforts, residual noise in the network traffic logs likely im-
pacted classification. More advanced noise-reduction techniques could further improve
model robustness.

In summary, while SVMs are powerful for multi-class classification in intrusion de-
tection, addressing class imbalance, overlapping data patterns, and scalability will be
critical for future research. Ensemble learning or deep learning could provide further
improvements for handling the complexities of network security.

8. Conclusions

The results demonstrate the efficacy of this study’s preprocessing pipeline, feature
selection, and class imbalance handling techniques. The OvO classifier outperformed the
OvA classifier in terms of overall accuracy and F1-score, suggesting that the OvO approach
may be more suitable for the multi-class classification of network log data, even after
balancing the classes. Both classifiers, however, exhibited high precision, indicating strong
reliability in positive predictions.

The consistent and high cross-validation accuracy highlight the robustness and re-
liability of the preprocessing and feature selection pipeline. The minimal variance in
accuracy scores across different folds indicates that the model generalizes well to unseen
data, providing insight into the possible outcomes if it is applied to real-world scenarios.

These findings provide a strong foundation for further enhancements and applications
in network log analysis and cyberattack detection that requires multi-class classification.
Future work could explore advanced techniques such as ensemble learning, deep learning
approaches, or the further optimization of hyperparameters to improve classifier perfor-
mance further.

Author Contributions: Conceptualization, R.K. and S.S.B.; methodology, R.K.; software, R.K.; val-
idation, S.S.B., D.M. and S.C.B.; formal analysis, R.K.; investigation, R.K.; resources, S.S.B., D.M.
and S.C.B.; data curation, R.K., S.S.B., D.M. and S.C.B.; writing—original draft preparation, R.K.;
writing—review and editing, S.S.B., D.M. and S.C.B.; visualization, R.K.; supervision, S.S.B.; project
administration, S.S.B., D.M. and S.C.B.; funding acquisition, S.S.B., D.M. and S.C.B. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Centers of Academic Excellence in Cybersecurity,
NCAE-C-002: Cyber Research Innovation Grant Program, Grant Number: H98230-21-1-0170. This
work was partially supported by the Askew Institute at The University of West Florida.

Data Availability Statement: The datasets are available at https://datasets.uwf.edu/ (accessed on
20 August 2023).

Acknowledgments: We would also like to thank the Askew Institute at University of West Florida
for partially supporting this grant.

https://datasets.uwf.edu/

Electronics 2024, 13, 3916 15 of 15

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals
OVO One versus One
OVA One Versus All
SVM Support Vector Machines
UWF University of West Florida
GAN Generative Adversial Networks
IDS Intrusion Detection Systems
CNN Convolutional Neural Network
DAGSVM Directed Acrylic Graph SVM
SMOTE Synthetic Minority Over-sampling Technique
BSMOTE Boderline SMOTE Algorithm

References
1. UWF-ZeekData22 Dataset. Available online: https://datasets.uwf.edu/ (accessed on 10 March 2024).
2. MITRE ATT&CK. Available online: https://attack.mitre.org/ (accessed on 10 March 2024).
3. Bagui, S.S.; Mink, D.; Bagui, S.C.; Madhyala, P.; Uppal, N.; McElroy, T.; Plenkers, R.; Elam, M.; Prayaga, S. Introducing the

UWF-ZeekDataFall22 Dataset to Classify Attack Tactics from Zeek Conn Logs Using Spark’s Machine Learning in a Big Data
Framework. Electronics 2023, 12, 5039. [CrossRef]

4. Scikit-Learn. Available online: https://scikit-learn.org/ (accessed on 10 June 2024).
5. Mirsky, Y.; Doitshman, T.; Elovici, Y.; Shabtai, A. Kitsune: An ensemble of autoencoders for online network intrusion detection.

arXiv 2018, arXiv:1802.09089.
6. Bovenzi, G.; Aceto, G.; Ciuonzo, D.; Pescape, A. Network anomaly detection methods in IoT environments via deep learning: A

fair comparison of performance and robustness. Comput. Secur. 2023, 128, 103167. [CrossRef]
7. Dong, S. Multi class SVM algorithm with active learning for network traffic classification. Expert Syst. Appl. 2021, 176, 114885.

[CrossRef]
8. Hsu, C.-W.; Lin, C.-J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 2002, 13,

415–425. [PubMed]
9. Bagui, S.S.; Mink, D.; Bagui, S.C.; Subramaniam, S.; Wallace, D. Resampling Imbalanced Network Intrusion Datasets To Identify

Rare Attacks. Future Internet 2023, 15, 130. [CrossRef]
10. Kamil, W.F.; Mohammed, I.J. Deep learning model for intrusion detection system utilizing convolution neural network. Open Eng.

2023, 13, 20220403. [CrossRef]
11. Roy, A. and Singh, K.J. Multi-classification of UNSW-NB15 Dataset for Network Anomaly Detection System. In Proceedings of

International Conference on Communication and Computational Technologies, Jaipur, India, 30–31 August 2019; Algorithms for Intelligent
Systems; Springer: Singapore, 2021. [CrossRef]

12. Pandas-Parquet. Available online: https://pandas.pydata.org/docs/reference/api/pandas.read_parquet.html (accessed on 10
March 2024).

13. Feature Importances with a Forest of Trees. Available online: https://scikit-learn.org/stable/auto_examples/ensemble/plot_
forest_importances.html (accessed on 15 July 2024).

14. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
15. Preprocessing Data. Available online: https://scikit-learn.org/stable/modules/preprocessing.html (accessed on 20 April 2024).
16. Imbalanced-Learn Documentation. Available online: https://imbalanced-learn.org/stable/index.html (accessed on 25 July 2024).
17. Cross-Validation. Available online: https://scikit-learn.org/stable/modules/cross_validation.html (accessed on 29 July 2024).
18. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
19. Shawe-Taylor, J.; Cristianini, N. Kernel Methods for Pattern Analysis; Cambridge University Press: Cambridge, UK, 2004.
20. Liu, Y.; Bi, J.-W.; Fan, Z.-P. A method for multi-class sentiment classification based on an improved one-vs.-one (OVO) strategy

and the support vector machine (SVM) algorithm. Inf. Sci. 2017, 394–395, 38–52. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://datasets.uwf.edu/
https://attack.mitre.org/
http://doi.org/10.3390/electronics12245039
https://scikit-learn.org/
http://dx.doi.org/10.1016/j.cose.2023.103167
http://dx.doi.org/10.1016/j.eswa.2021.114885
http://www.ncbi.nlm.nih.gov/pubmed/18244442
http://dx.doi.org/10.3390/fi15040130
http://dx.doi.org/10.1515/eng-2022-0403
http://dx.doi.org/10.1007/978-981-15-5077-5_40
https://pandas.pydata.org/docs/reference/api/pandas.read_parquet.html
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
http://dx.doi.org/10.1023/A:1010933404324
https://scikit-learn.org/stable/modules/preprocessing.html
https://imbalanced-learn.org/stable/index.html
https://scikit-learn.org/stable/modules/cross_validation.html
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1016/j.ins.2017.02.016

	Introduction
	Related Works
	Dataset
	Preprocessing
	Multi-Class SVM Algorithms
	Suport Vector Machines (SVM)
	Initialization
	Training the Model
	Making Predictions

	One-vs.-One (OvO) Approach
	Initialization
	Training the Model
	Making Predictions

	One-vs.-All (OvA) Approach
	Initialization
	Training the Model
	Making Predictions

	Results
	Discussion
	Conclusions
	References

