Translating C to Rust:
Better, cheaper, faster

Per Larsen, Immunant, Inc.

HCSS: Al and Models in the Software Development Lifecycle
May 14, 2025, Annapolis, Maryland

Smunant x | galois|

Chromium's Rule of Two

ode operating
on untrusted

DON’T DO THIS

Code written
in an unsafe \
language \

~ \Is
I
|
\

https://chromium.googlesource.com/chromium/src/+/master/docs/security/rule-of-2.md

https://chromium.googlesource.com/chromium/src/+/master/docs/security/rule-of-2.md

The Multi-Billion Line Problem - Why Bother?

e Legacy C code is everywhere:
o Critical infrastructure, operating systems, embedded
systems, web browsers, venhicles, etc.
o Persistently plagued by memory vulnerabilities (buffer
overflows, use-after-free, etc.)
e Rust offers safety by design w/o performance sacrifices
o Rewriting by hand”? Very expensive & slow. Not scalable.
e How to migrate critical systems efficiently and safely?

Our Starting Point - c2rust

Core capability (c2rust-transpile):

o Automatically translate C to unsafe, C-like Rust

o Structurally equivalent, functional parity

Real-world uses:

o serde_yaml wraps c2rust-transpiled code

o ravld port of high-performance dav1d AV1 decoder
Inspired 10+ academic papers

Only the first step:

o Have: unsafe, unidiomatic starting point. All tests pass.
o Want: safe, idiomatic Rust largely free of unsafe blocks.

https://crates.io/crates/serde yaml
https://github.com/memorysafety/ravid

https://crates.io/crates/serde_yaml
https://github.com/memorysafety/rav1d

{_ Compiler Explorer

C 25 godbolt.org w 3 0

C E)?M.QI%EE Add...~ More ~ Templates Share ~ Policies'& ~ Other~

C source #1 ¢ C2Rust (master) (Editor #1) < X
A~ @ +- v Cc C2Rust (master) 2 ©

de <stdio.h> A~ ®Output..~ VFilter..~ @ Libraries / Overrides + Addnew..~ ” Addtool...~

main() { 1 #l![allow(

rintf ("Hello, 1d!\n");
p : ("Hello, wor n") ; dead_code,

return 0;
mutable transmutes,

non_camel case_types,
non_snake case,
non_upper_ case_globals,
unused_assignments,
unused_mut

rn "C" {
fn printf(_: *const std::ffi::c_char

insafe fn main 0() -> std::ffi::c
printf(b"Hello, world!\n\0" as *const uB as *const std::ffi::c
1 0 as std::ffi::c
}
pub fn main() {
unsafe { ::std::process::exit(main 0() as

C HEOutput (/6) C2Rust (master) j -cached (4708) =

Next Steps: From Unsafe to Safe Rust

e Goal: extend the c2rust pipeline to automate more
e Key technical challenges
o C is implicit where Rust is explicit
m C pointers (void¥*, char¥*) hide a lot.
m Rust is explicit about ownership, borrowing, lifetimes,
nullability.
o |diomatic gaps:
m C does not limit mutation and aliasing
m Rust enforces the “aliasing XOR mutability” rule
m (also...memory management, concurrency, macros, etc.)

Our pre-Al Approach: Analysis & Rewriting

e Strategy: Combine static & dynamic analysis to inform automated code rewriting
e Static Analysis:

o Infer ptr permissions (read, write, free), nullability, uniqueness (for &mut T), etc.
e Dynamic Analysis:

o Instrument code to observe pointers at runtime (is ptr ever NULL in practice?)
e Code Rewriter:

o Consumes analysis results and transforms raw pointers (*mut T) into safe Rust

types (&T, &mut T, Box<T>).
o Replaces unsafe 1ibc calls (malloc, memcpy) with safe Rust equivalents

Analysis & Rewriting in Action: Promising but ...

® Success:

O

O

lighttpd algo_md5 module (fully safe),
lighttpd buffer module (partially safe)

e Sobering results:

O

O

Low conversion rate for large projects such as lighttpd
Symbolic/rule-based approaches (even with dynamic
analysis hints) hit a complexity ceiling

Adding rules doesn'’t scale for “long tail” of C idioms

Why Al is the Missing Piece

e The bottleneck: Traditional approach struggles with non-structural
transformations, intent, and idioms.

o LLMs:
o Excellent at pattern recognition, context, and code generation
o Prone to “hallucinate” which can introduce subtle bugs

e Our experiments:
o LLMs can do complex refactors (remove c2rust state machines)
o Open Al 01 can do rewrites that take hours by hand
o ... not a magic bullet; verification & guidance still needed.

Why Al is the Missing Piece (cont'd) - Syzygy

e Observation: LLMs struggle to infer semantic information
directly from source code
o ldea: mine nullability, aliasing, sizes, types, etc. via dynamic
analysis
o ldea: generate tests to detect incorrect LLM translations

SyzvGy: Dual Code-Test C to (safe) Rust Translation using
LLMs and Dynamic Analysis

MANISH SHETTY *, University of California, Berkeley, USA _

NAMAN JAIN *, University of California, Berkeley, USA https://arxw.orq/pdf/24 1_2' 1 42_34
ADWAIT GODBOLE *, University of California, Berkeley, USA https://syzygy-project.qithub.io/
SANJIT A. SESHIA T, University of California, Berkeley, USA

KOUSHIK SEN T, University of California, Berkeley, USA

https://arxiv.org/pdf/2412.14234
https://syzygy-project.github.io/

Why Al is the Missing Piece (cont'd) - Syzygy

e Observation: LLMs struggle to infer semantic information
directly from source code
o |dea: mine nullability, aliasing, sizes, types, etc. via dynamic
analysis
o |dea: generate tests to detect incorrect LLM translations
e Results:
o Translated Zopfli (a ~3000 LoC C compression library) to
~7000 LoC safe, test-validated Rust.
o Inference took ~15 hours and cost ~$2500.
o Rust code runs substantially slower than C (1.47-3.67x).

New Benchmarks Needed

e “You can’t improve what you can't measure”
e CRUST-Bench
o 100 C repos with manually-written safe Rust interfaces &
tests
o SOTALLM (o1) solves 15% tasks w/o repair
o SOTALLM (o1) solves 37% tasks w/repair

CRUST-Bench: A Comprehensive Benchmark for C-to-safe-
Rust Transpilation

Anirudh Khatry® Robert Zhang® Jia Pan® Ziteng Wang®’ https://arxiv.org/abs/2504.15254
Qiaochu Chen" Greg Durrett Isil Dillig*
The University of Texas at Austin ¥ New York University

akhatry@cs.utexas.edu

https://arxiv.org/abs/2504.15254

New Benchmarks Needed

e “You can’t improve what you can't measure”
e CRUST-Bench
o 100 C repos with manually-written safe Rust interfaces &
tests
o SOTALLM (o1) solves 15% tasks w/o repair
o SOTALLM (o1) solves 37% tasks w/repair
e LLM code often fails to compile due to typing errors
o “These errors suggest that models often struggle to reason
precisely about lifetimes, mutability, and type compatibility”

The Vision: A Hybrid Approach is Key

c2rust provides baseline to test rewrites (automatic or manual) against
symbolic analysis surfaces knowledge about pointer usage, control flow, etc.
dynamic analysis surfaces additional program properties at runtime

LLMs suggests complex refactorings

to remove unsafety

to bridge semantic gaps

to make the code idiomatic

... using analysis results to guide the generated code

o ... subject to testing and formal verification to counter hallucinations

e rigorous benchmarking to measure progress and detect shortcomings

o O O O

Conclusions

We have to follow the rule of two; migration key part of the solution.

Migration only feasible if we can increase efficiency by an order of magnitude.
Program analysis and rewriting approaches show limited scalability

Hybrid approaches (LLM + program analysis) show a lot of promise!

Thank you for listening!

Get in touch: perl@immunant.com & miked@aalois.com
Code: github.com/immunant/c2rust
Try: c2rust.com & godbolt.org

Smunant x | galois|

mailto:perl@immunant.com
mailto:miked@galois.com
http://github.com/immunant/c2rust
http://c2rust.com
http://godbolt.org

