
Translating C to Rust:
Better, cheaper, faster

Per Larsen, Immunant, Inc.
HCSS: AI and Models in the Software Development Lifecycle

May 14, 2025, Annapolis, Maryland

X

Chromium's Rule of Two

https://chromium.googlesource.com/chromium/src/+/master/docs/security/rule-of-2.md

Code operating
on untrusted

inputs

Code written
 in an unsafe

language

Code not run
in sandbox

DON’T DO THIS

https://chromium.googlesource.com/chromium/src/+/master/docs/security/rule-of-2.md

The Multi-Billion Line Problem - Why Bother?

● Legacy C code is everywhere:
○ Critical infrastructure, operating systems, embedded

systems, web browsers, vehicles, etc.
○ Persistently plagued by memory vulnerabilities (buffer

overflows, use-after-free, etc.)
● Rust offers safety by design w/o performance sacrifices

○ Rewriting by hand? Very expensive & slow. Not scalable.
● How to migrate critical systems efficiently and safely?

Our Starting Point - c2rust

● Core capability (c2rust-transpile):
○ Automatically translate C to unsafe, C-like Rust
○ Structurally equivalent, functional parity

● Real-world uses:
○ serde_yaml wraps c2rust-transpiled code
○ rav1d port of high-performance dav1d AV1 decoder

● Inspired 10+ academic papers
● Only the first step:

○ Have: unsafe, unidiomatic starting point. All tests pass.
○ Want: safe, idiomatic Rust largely free of unsafe blocks.

https://crates.io/crates/serde_yaml
https://github.com/memorysafety/rav1d

https://crates.io/crates/serde_yaml
https://github.com/memorysafety/rav1d

● Goal: extend the c2rust pipeline to automate more
● Key technical challenges

○ C is implicit where Rust is explicit
■ C pointers (void*, char*) hide a lot.
■ Rust is explicit about ownership, borrowing, lifetimes,

nullability.
○ Idiomatic gaps:

■ C does not limit mutation and aliasing
■ Rust enforces the “aliasing XOR mutability” rule
■ (also…memory management, concurrency, macros, etc.)

Next Steps: From Unsafe to Safe Rust

● Strategy: Combine static & dynamic analysis to inform automated code rewriting
● Static Analysis:

○ Infer ptr permissions (read, write, free), nullability, uniqueness (for &mut T), etc.
● Dynamic Analysis:

○ Instrument code to observe pointers at runtime (is ptr ever NULL in practice?)
● Code Rewriter:

○ Consumes analysis results and transforms raw pointers (*mut T) into safe Rust
types (&T, &mut T , Box<T>).

○ Replaces unsafe libc calls (malloc, memcpy) with safe Rust equivalents

Our pre-AI Approach: Analysis & Rewriting

● Success:
○ lighttpd algo_md5 module (fully safe),
○ lighttpd buffer module (partially safe)

● Sobering results:
○ Low conversion rate for large projects such as lighttpd
○ Symbolic/rule-based approaches (even with dynamic

analysis hints) hit a complexity ceiling
○ Adding rules doesn’t scale for “long tail” of C idioms

Analysis & Rewriting in Action: Promising but …

● The bottleneck: Traditional approach struggles with non-structural
transformations, intent, and idioms.

● LLMs:
○ Excellent at pattern recognition, context, and code generation
○ Prone to “hallucinate” which can introduce subtle bugs

● Our experiments:
○ LLMs can do complex refactors (remove c2rust state machines)
○ Open AI o1 can do rewrites that take hours by hand
○ … not a magic bullet; verification & guidance still needed.

Why AI is the Missing Piece

Why AI is the Missing Piece (cont’d) - Syzygy

https://arxiv.org/pdf/2412.14234
https://syzygy-project.github.io/

● Observation: LLMs struggle to infer semantic information
directly from source code
○ Idea: mine nullability, aliasing, sizes, types, etc. via dynamic

analysis
○ Idea: generate tests to detect incorrect LLM translations

https://arxiv.org/pdf/2412.14234
https://syzygy-project.github.io/

● Observation: LLMs struggle to infer semantic information
directly from source code
○ Idea: mine nullability, aliasing, sizes, types, etc. via dynamic

analysis
○ Idea: generate tests to detect incorrect LLM translations

● Results:
○ Translated Zopfli (a ~3000 LoC C compression library) to

~7000 LoC safe, test-validated Rust.
○ Inference took ~15 hours and cost ~$2500.
○ Rust code runs substantially slower than C (1.47-3.67x).

Why AI is the Missing Piece (cont’d) - Syzygy

● “You can’t improve what you can’t measure”
● CRUST-Bench

○ 100 C repos with manually-written safe Rust interfaces &
tests

○ SOTA LLM (o1) solves 15% tasks w/o repair
○ SOTA LLM (o1) solves 37% tasks w/repair

New Benchmarks Needed

https://arxiv.org/abs/2504.15254

https://arxiv.org/abs/2504.15254

● “You can’t improve what you can’t measure”
● CRUST-Bench

○ 100 C repos with manually-written safe Rust interfaces &
tests

○ SOTA LLM (o1) solves 15% tasks w/o repair
○ SOTA LLM (o1) solves 37% tasks w/repair

● LLM code often fails to compile due to typing errors
○ “These errors suggest that models often struggle to reason

precisely about lifetimes, mutability, and type compatibility”

New Benchmarks Needed

The Vision: A Hybrid Approach is Key

● c2rust provides baseline to test rewrites (automatic or manual) against
● symbolic analysis surfaces knowledge about pointer usage, control flow, etc.
● dynamic analysis surfaces additional program properties at runtime
● LLMs suggests complex refactorings

○ to remove unsafety
○ to bridge semantic gaps
○ to make the code idiomatic
○ … using analysis results to guide the generated code
○ … subject to testing and formal verification to counter hallucinations

● rigorous benchmarking to measure progress and detect shortcomings

Conclusions

● We have to follow the rule of two; migration key part of the solution.
● Migration only feasible if we can increase efficiency by an order of magnitude.
● Program analysis and rewriting approaches show limited scalability
● Hybrid approaches (LLM + program analysis) show a lot of promise!

Thank you for listening!

Get in touch: perl@immunant.com & miked@galois.com
Code: github.com/immunant/c2rust
Try: c2rust.com & godbolt.org

X

mailto:perl@immunant.com
mailto:miked@galois.com
http://github.com/immunant/c2rust
http://c2rust.com
http://godbolt.org

