High Confidence Software and Systems (HCSS) Conference

March 12, 2025

NEURO-SYMBOLIC TECHNIQUES FOR LLM-BASED CODE GENERATION, TRANSLATION AND AUTO-FORMALIZATION

PRITHWISH JANA & VIJAY GANESH

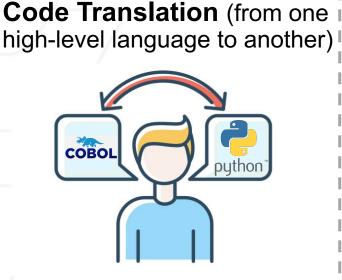
School of Computer Science, Georgia Tech, Atlanta, USA

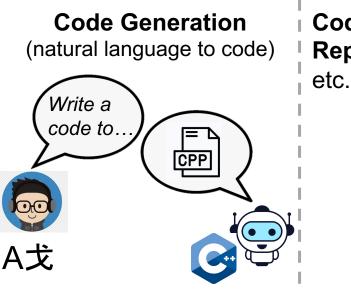
: pjana7@gatech.edu, vganesh@gatech.edu

INTRODUCTION

Neuro-Symbolic Techniques for LLM-based Code Generation, Translation and Auto-Formalization P. Jana, V. Ganesh

MOTIVATION: AI FOR SOFTWARE ENGINEERING (SE)





Al is already being used to automate various SE tasks:

■ Pro Software > Development

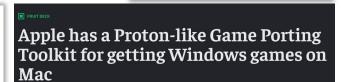
DARPA wants to accelerate translation of C code to Rust – and it's relying on AI to do it

The TRACTOR program from DARPA will help ditch legacy code and accelerate the translation to memory-safe languages such as Rust

Google's Duet Al targets legacy software revolution

Google is hoping to eliminate the pain involved in refactoring code in legacy software into more modern programming languages

By Ross Kelly published August 30, 2023



Code Repair,

Subscribe 🔻 📿

generative AI to analyze, refactor, transform and validate legacy applications. Published Aug. 22, 2023 Matt Ashare

Senior Reporter

IBM trains its LLM to

read, rewrite COBOL apps The new watsonx Code Assistant for Z

eases mainframe modernization, using

DIVE BRIEF

MOTIVATION: AI FOR MATHEMATICAL REASONING

Computer-Verifiable Proofs: rigorous, machine-checkable verification without ambiguity

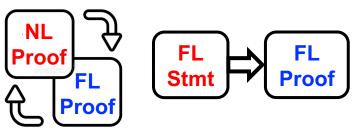
- Formal mathematical languages facilitate *computer-verifiable proofs* E.g., Lean4, Peano, Metamath, HOL Light, Isabelle, Coq
- Formal proof vs. Natural Language proof
 - Uses strict syntactic rules and symbolic logic
- Challenges of Writing Proofs in a Formal Language (FL)
 - Formalizing proofs requires significant time, can be difficult even for experienced mathematicians

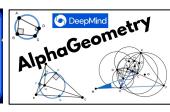
Emerging research to simplify writing proofs in FL

- Auto-Formalization
 - Translates natural language (NL) proofs into formal language (FL) proofs
- Automated Formal Proof Synthesis (aFPS)
 - Generates formal proofs directly from statements (conjectures) in FL

Al being used to automate various formalization tasks:

- Reduces human effort
- Enables non-experts to use formal methods
- Discover new theorems beyond intuition

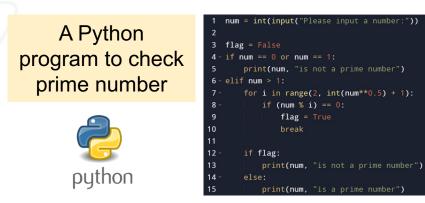




WHAT'S COMMON? FORMAL LANGUAGE TASKS

Formal Language (FL)

- Well-formed, strict & unambiguous; specific set of rules (formal grammar)
- Designed for applications in maths, computer science, and logic
- E.g., Programming languages (C++, Java, Python), First- or higher-order logic (Lean, Isabelle, Coq)



theorem	transitive	(x y z: Nat)
(h1 :	x = y) (h2	: y = z) :
$\mathbf{x} = \mathbf{z}$:= by	
rewrite	[h1]	
rewrite	[h2]	
rfl		
TIL		

A Lean4 proof for transitive property of equality for natural numbers

Issues faced when prompting LLMs to generate codes/proofs

- Syntactic/semantic errors
- Wrong API (unavailable APIs or hallucinate with similar APIs)
- Introduce 'subtle bugs' in the code
- Overall, LLMs unable to abide by strict rules of a FL

OBJECTIVE: LLMs FOR FORMAL LANGUAGES

) LLMs strong in language understanding

- LLMs excel in natural language tasks
 - Sentiment analysis, Text summarization, etc.
 - Approximate results oftentimes good enough
 - E.g., "I am a student" and "I am student" both sound fine

LLMs weak in adhering to syntax, performing logical reasoning

- LLMs face challenges in formal language tasks
 - Formal grammar: well-formed, strict, unambiguous
 - Tasks like code translation, theorem proving, etc.
 - SoTA prioritized scaling-up LLM size \Rightarrow data \uparrow , resources \uparrow

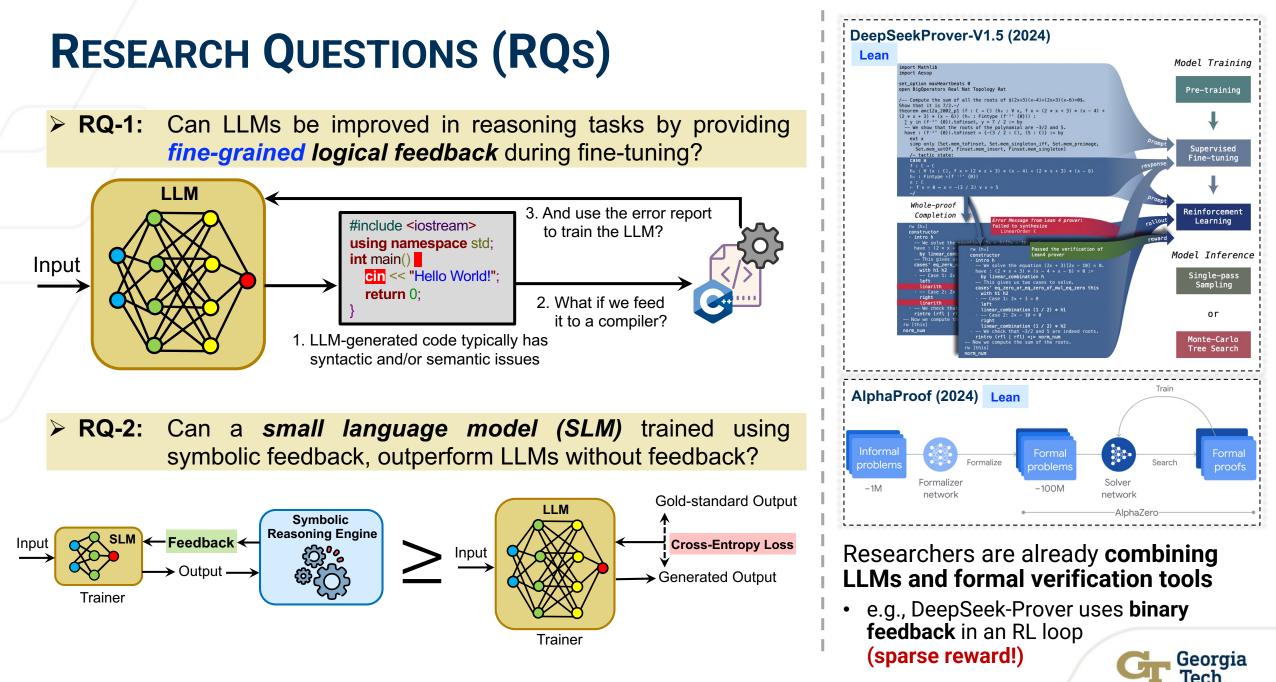
 Not a sustainable solution



Transformer^[1] architectures (LLMs) trained on next-token prediction over large text corpora

[1] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł. and Polosukhin, I., 2017. Attention is All You Need. *Advances in Neural Information Processing Systems*, *30*.

6



8 Neuro-Symbolic Techniques for LLM-based Code Generation, Translation and Auto-Formalization Prithwish Jana, Vijay Ganesh

RLSF: Reinforcement Learning via Symbolic Feedback (under submission)

 CoTran: An LLM-based Code Translator using RL with Feedback from Compiler & Symbolic Exec. (ECAI-2024)

- Automated Proof Synthesis and Auto-Formalization using LLMs + LEAN
- NeuroSymbolic LLM for Mathematical Reasoning & Software Engg. (IJCAI-2024)

REST OF THE TALK

with 2024)

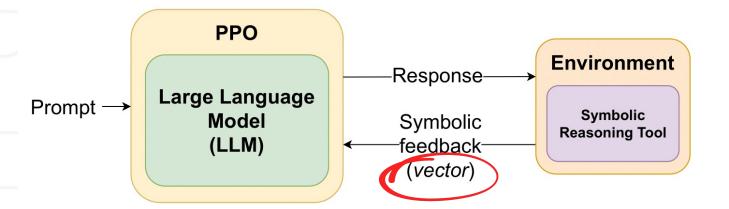
RLSF: REINFORCEMENT LEARNING VIA SYMBOLIC FEEDBACK

Piyush Jha, Prithwish Jana, Pranavkrishna Suresh, Arnav Arora, Vijay Ganesh

Georgia Institute of Technology, USA

RLSF: Reinforcement Learning via Symbolic Feedback P. Jha, P. Jana, P. Suresh, A. Arora, V. Ganesh

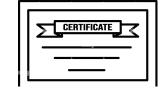
REINFORCEMENT LEARNING VIA SYMBOLIC FEEDBACK (RLSF) OVERVIEW



- New fine-tuning paradigm for LLMs
- LLM acts as the **RL agent**
- The environment is enhanced with sound symbolic tools (e.g., solvers, provers) for accurate feedback

- Symbolic reasoning tools generate poly-sized certificates specifying errors.
- Certificates transformed to Fine-Grained (Vectorized) Token-Level Feedback, rather than relying on sparse scalar rewards.

We demonstrated success of RLSF in challenging tasks like **program synthesis**, **molecule generation**, and **mathematical problem-solving**.



WHAT OTHERS HAVE TRIED?

Supervised Fine-Tuning:

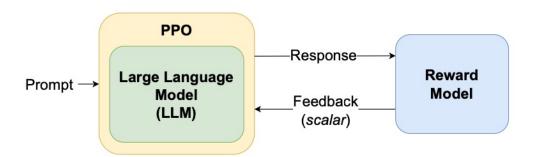
• Using cross-entropy loss to fine-tune LLMs for specific tasks, requires differentiable loss.

RLHF Approaches:

- Using human-generated feedback to align LLM to preferred responses.
 - Black-Box Reward Models: Existing RLHF methods use *unsound* models → fail to capture the nuances of reasoning tasks.
 - Sparse Scalar Rewards: Difficulty in obtaining detailed feedback.
 - **Data Collection:** Challenges in collecting largescale, high-quality preference data for fine-tuning.

• Neuro-symbolic AI:

 Integrations of NNs with symbolic reasoning tools, typically within RL agent rather than environment



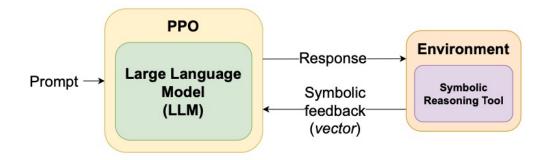


Figure 1: **Contrasting RLHF with RLSF:** The image depicts two distinct fine-tuning paradigms. (Left) RLHF operates within an environment governed by a black-box reward model, typically offering scalar feedback. (Right) By contrast, the environment in RLSF leverages sound symbolic reasoning tools and also provides fine-grained token-level vector feedback that is, in turn, based on poly-sized certificates produced by these symbolic tools.

RLSF ALGORITHM

Algorithm 1 Reinforcement Learning via Symbolic Feedback (RLSF)

Input: Number of epochs N_{epochs} , pre-trained model *Model*, symbolic reasoning tool *SymbolicReasoner*, reward function *RewardFunc*, prompt dataset *D* **Output**: Fine-tuned model *Model'*

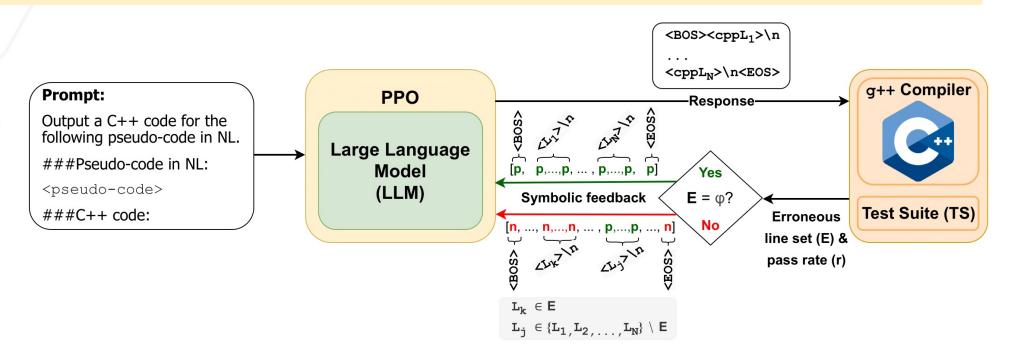
1: for epoch in $1, 2, \ldots, N_{epochs}$ do

- 2: for $batch_i$ in D do
- 3: $response_i \sim Model(batch_i)$
- 4: $cert_i \leftarrow SymbolicReasoner(batch_i, response_i)$
- 5: $vector_i \leftarrow RewardFunc(cert_i)$
- 6: $Model' \leftarrow ppo_{step}(Model, batch_i, response_i, vector_i)$
- 7: $Model \leftarrow Model'$
- 8: end for
- 9: end for

I. RLSF FOR CODE GENERATION: LLM WITH VERIFIER FEEDBACK

Code Generation Learning Problem

Learn $f: NL \rightarrow PL$, which when provided with a NL pseudo-code produces a PL-program



- Given a generated C++ code (with N lines), the symbolic environment uses the g++ compiler to detect erroneous lines (E) and compute pass rate r
- Accordingly, the environment provides fine-grained symbolic feedback for fine-tuning the LLM

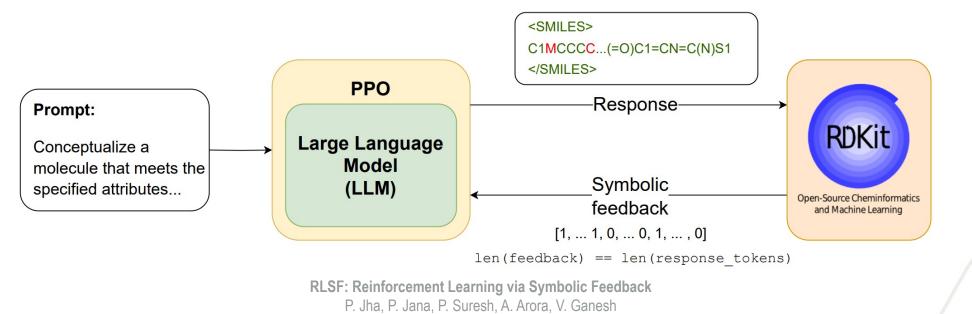
II. RLSF FOR CHEMISTRY: LLM WITH DOMAIN KNOWLEDGE OF CHEMISTRY

Task 1: Molecule Generation:

- Generating chemical structures from natural language descriptions.
- Task 2: Forward Synthesis:
 - Predicting the product of chemical reactions given reactants.
- Task 3: Retrosynthesis:
 - Identifying reactants required to produce a specific molecule.
- Feedback Mechanism:

14

• Uses RDKit to identify syntax errors (e.g., invalid molecule strings) and applies the first law of chemistry for semantic validation.



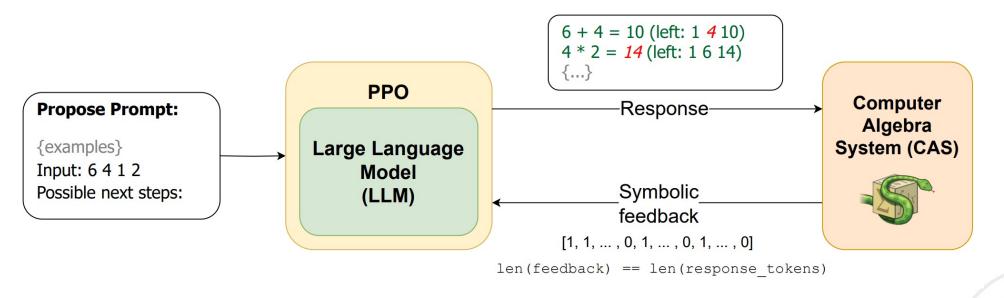
III. RLSF FOR LOGIC PUZZLES: LLM WITH COMPUTER ALGEBRA SYSTEMS (CAS)

• Game of 24:

• Solving a mathematical puzzle by finding a sequence of operations to reach the number 24 from four given numbers.

Feedback Mechanism:

• Uses symbolic math tools (e.g., Computer Algebra System i.e., CAS) to verify the correctness of solutions, providing precise feedback for token-level corrections.



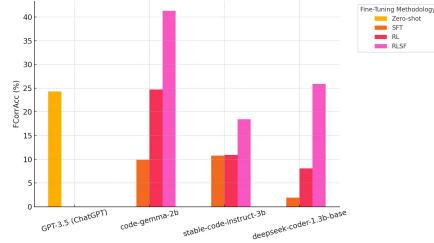
RLSF: Reinforcement Learning via Symbolic Feedback P. Jha, P. Jana, P. Suresh, A. Arora, V. Ganesh

EXPERIMENTAL RESULTS: RLSF FOR CODE GENERATION

	LLM	Configuration	CompAcc (%)	FCorrAcc (%)	Pass@1 (%)
SchatGPT	GPT-3.5 (Achiam et al., 2023)	Zero-shot (no fine-tuning)	29.13	24.29	20.98
		Zero-shot (no fine-tuning)	0.00	0.00	0.00
	code-gemma-2b (CodeGemma-Team) 2024)	SFT (with cross-entropy loss)	11.31	9.87	9.00
₩¥¥	Code-genuia-20 CodeOennia-Tean, 2024)	SFT + RL (with Boolean scalar f/b)	54.89	24.71	12.77
CodeGemma		SFT + RLSF (with token-level f/b)	63.95	41.30	28.80
		Zero-shot (no fine-tuning)	0.00	0.00	0.00
	stable-code-instruct-3b (Pinnaparaju et al. 2024)	SFT (with cross-entropy loss)	12.04	10.78	9.96
stability.ai	stable-code-instruct-sb (Filiaparaju et al. 2024)	SFT + RL (with Boolean scalar f/b)	48.43	10.91	9.22
		SFT + RLSF (with token-level f/b)	54.27	18.44	16.09
		Zero-shot (no fine-tuning)	0.00	0.00	0.00
	deepseek-coder-1.3b-base (Guo et al. 2024)	SFT (with cross-entropy loss)	2.19	1.90	1.63
deepseek	deepseek-coder-1.3b-base (Guo et al. 2024)	SFT + RL (with Boolean scalar f/b)	19.97	8.07	3.88
coder		SFT + RLSF (with token-level f/b)	38.92	25.89	14.51

Natural Language Pseudo-code to Code Translation: FCorrAcc Only (Adjusted)

- Compared to GPT-3.5, RLSF-tuned Google's CodeGemma-2b (a 100× smaller model)
 - improved compilation accuracy by +34.82%
 - improved functional correctness by +17.01%



Georgia Tech

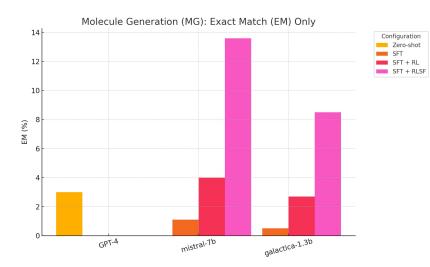
EXPERIMENTAL RESULTS: RLSF FOR CHEMISTRY

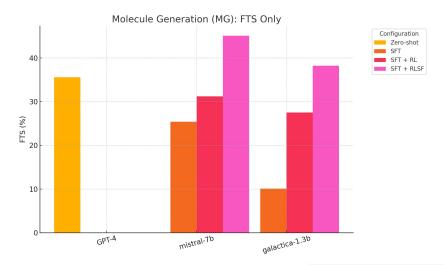
Table 2: Chemistry Tasks Results: Performance comparison over different LLMs for three chemistry tasks - Molecule Generation (MG), Forward synthesis (FS), and Retrosynthesis (RS)

					Т	ask & Metr	ic			
LLM	Configuration	Molecu	ıle Generati	on (MG)	Forw	ard synthes	is (FS)	Retr	osynthesis	(RS)
		EM (%)	FTS (%)	Valid (%)	EM (%)	FTS (%)	Valid (%)	EM (%)	FTS (%)	Valid (%)
GPT-4 (Achiam et al., 2023)	Zero-shot	3.0	35.6	90.0	0.4	37.5	93.1	0.8	31.7	88.2
	Zero-shot	0.0	$\bar{0.0}$	$\bar{0}.\bar{0}$	0.0	49.8	14.4	0.0	46.4	13.5
mistral-7b (Jiang et al., 2023)	SFT	1.1	25.4	51.9	7.2	54.2	93.0	23.3	62.1	98.0
miscrai - 70 (Jiang et al., 2023)	SFT + RL w/ scalar f/b	4.0	31.2	62.8	10.4	56.1	94.2	28.5	64.6	98.0
	SFT + RLSF (token-level f/b)	13.6	45.1	89.1	21.3	59.7	98.3	32.1	65.8	99.1
	Zero-shot	0.0	0.0		0.0	44.8	2.2	0.0	43.2	0.2
relection 1 2h (Teylor et al. 2022)	SFT	0.5	10.1	23.1	8.0	56.3	97.7	22.3	59.2	96.3
galactica-1.3b (Taylor et al., 2022)	SFT + RL w/ scalar f/b	2.7	27.5	75.4	11.7	56.8	98.8	26.1	62.7	99.0
	SFT + RLSF (token-level f/b)	8.5	38.2	81.4	19.8	60.3	99.8	34.5	64.4	99.5

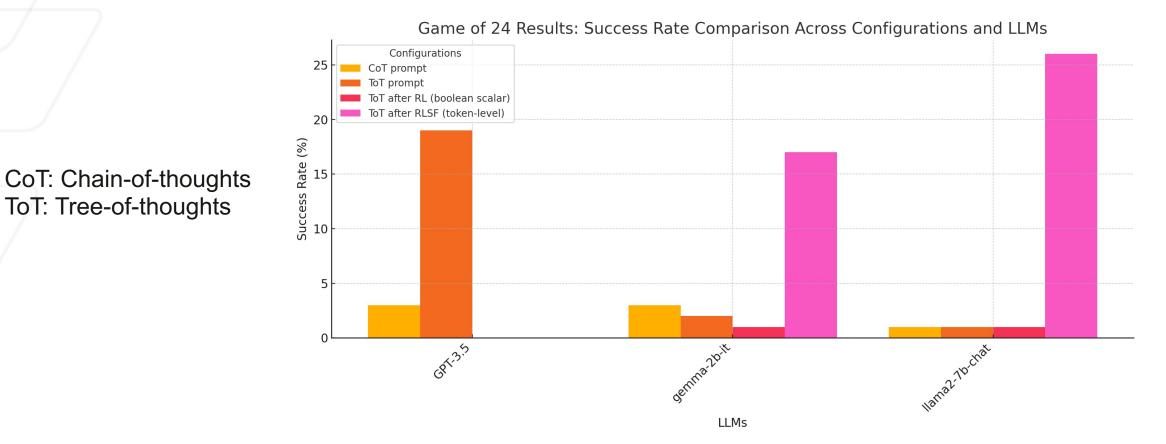
• Molecule Generation:

- RLSF improved exact match by +8% and validity by +58% over SFT using Meta's Galactica-1.3b, also surpassing GPT-4 (~1000× larger).
- Forward and Retrosynthesis:
 - RLSF increased exact match by +19.4% for forward synthesis and +33.7% for retrosynthesis, significantly outperforming **GPT-4** (~1000× larger).

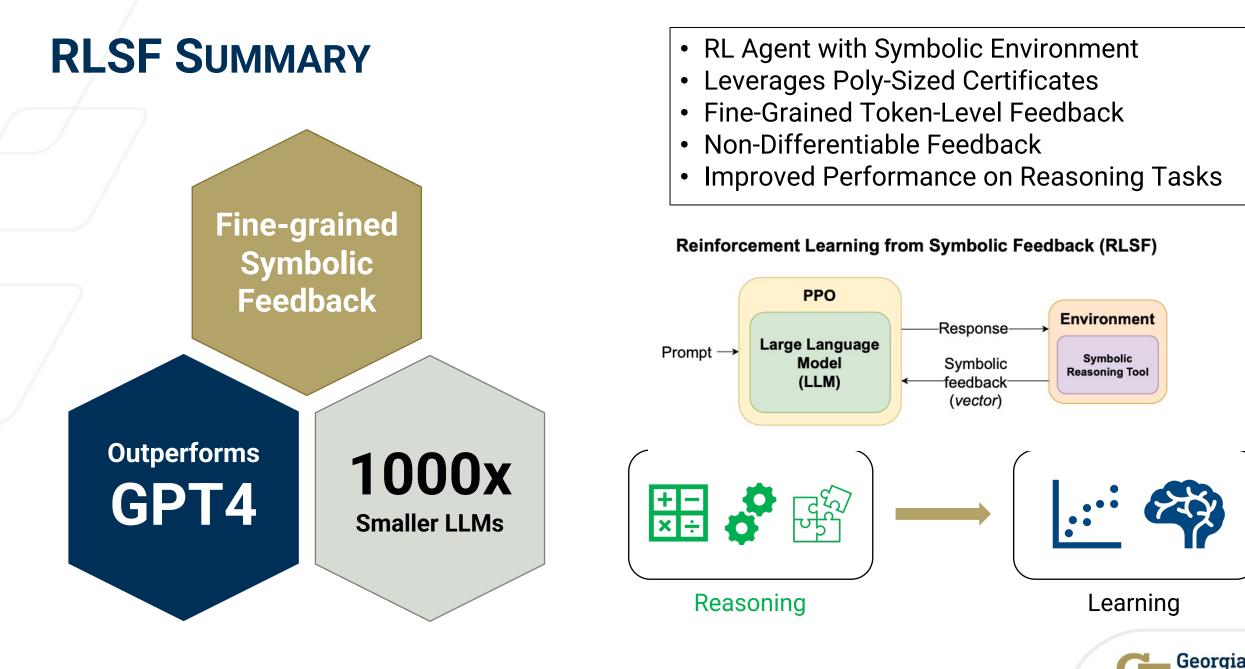




EXPERIMENTAL RESULTS: RLSF FOR GAME OF 24



RLSF boosted success rates by +25% on **Meta's Llama2-7b** compared to traditional methods, also surpassing **GPT-3.5 (25× larger)** with +7% improvement.



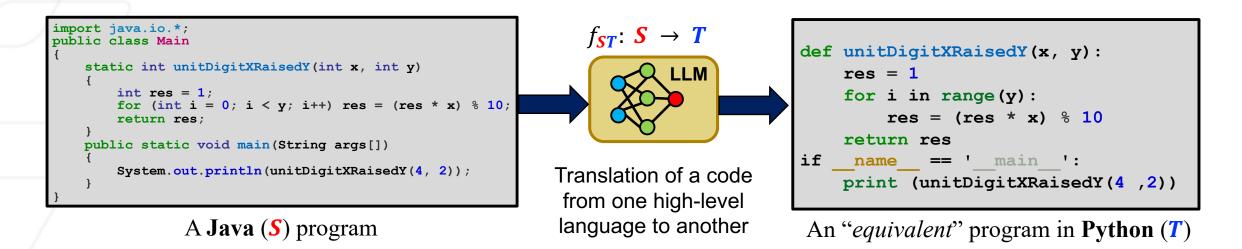
COTRAN: AN LLM-BASED CODE TRANSLATOR USING RL WITH FEEDBACK FROM COMPILER AND SYMBOLIC EXECUTION

Prithwish Jana^a, Piyush Jha^a, Haoyang Ju^b, Gautham Kishore^c, Aryan Mahajan^d, Vijay Ganesh^a

^a Georgia Institute of Technology, USA
 ^b University of Toronto, Canada
 ^c UC San Diego, USA
 ^d Columbia University, USA

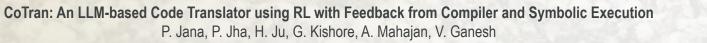
27TH EUROPEAN CONFERENCE ON AI 19-24 OCTOBER, 2024 SANTIAGO DE COMPOSTELA, SPAIN

PROBLEM STATEMENT: LLM FOR WHOLE-PROGRAM TRANSLATION



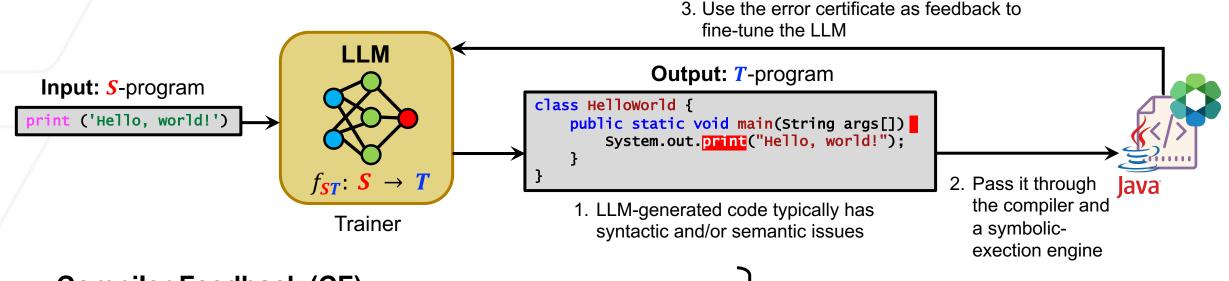
- Let *S* = source language (e.g., Java) and *T* = target language (e.g., Python)
- Code Translation Learning Problem
 - Learn f_{ST} : $S \rightarrow T$, which when provided with a S-program produces a T-program that is
 - syntactically correct (as per the grammar of T) and
 - functionally equivalent (w.r.t. a test suite) to the input S-program

PROPOSED METHODOLOGY



AN OVERVIEW OF THE PROPOSED IDEA

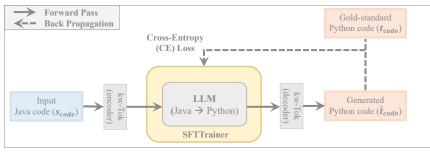
Improve LLM by providing logical feedback during fine-tuning (neuro-symbolic approach)



- Compiler Feedback (CF)
 - How close the *T*-program is to being perfectly compilable
- Symbolic-Execution Feedback (SF)
 - How closely the *T*-program is 'equivalent' to *S*-program
- Scalar, but fine-grained feedback $\in [0,1]$

• We use RL + Supervised Fine-tuning (SFT) interleaved training to incorporate feedback

COTRAN + COMPILER FEEDBACK (CF)



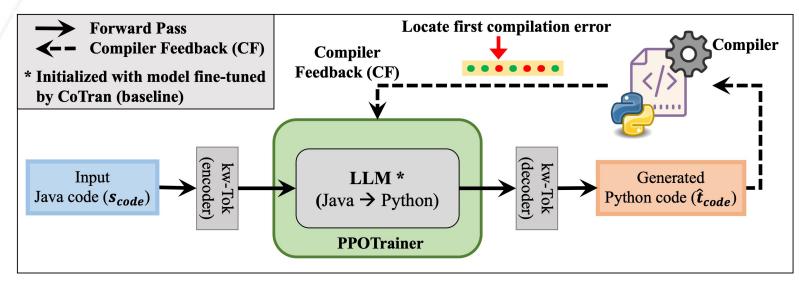
$$\mathcal{L}_{CE}^{ heta_f}\left(\mathbf{t}, \widehat{\mathbf{t}}
ight) = -rac{1}{\ell} \sum_{i=1}^{\ell} \sum_{j=1}^{|V|} \mathbb{1}_{ij} \log P_{ij}^{ heta_f}$$

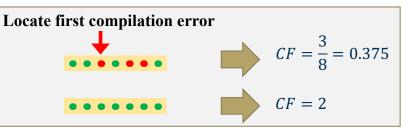
Issue with Cross-Entropy Lossbased approach:

Cross-Entropy loss **does not penalize** based on **wrong syntax** of generated code

The baseline CoTran (using Supervised Fine-Tuning i.e., SFT)

RL-based fine-tuning of LLM using PPO, to maximize Compiler Feedback (CF)



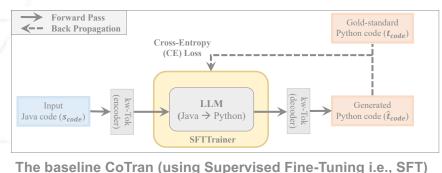


Guides the LLM into determining how far it is from producing a perfectly compilable code

 Cue: The first error token's position (the deeper it is, the closer to perfect compilation)

٠

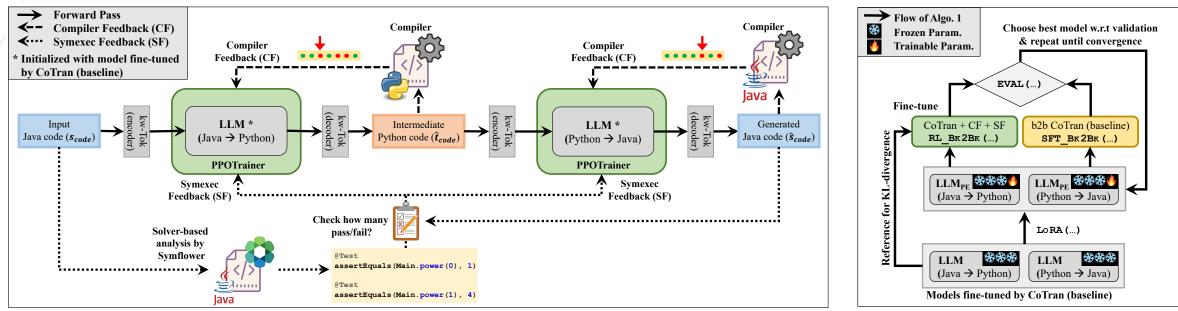
COTRAN + CF + SYMBOLIC-EXECUTION FEEDBACK (SF)



Forward Pass Compiler Feedback (CF) * Initialized with model fine-tuned by CoTran (baseline) Input Java code (s_{code}) \rightarrow \overrightarrow{cr} \overrightarrow

CoTran + CF (using RL-based fine-tuning by PPO algorithm)

Issue with CoTran+CF: CF loss **does not penalize** based on **inequivalence** of generated and input codes



CoTran + CF + SF (using RL-based fine-tuning on back-to-back LLMs)

RL + SFT Interleaved Training Loop

CoTran: An LLM-based Code Translator using RL with Feedback from Compiler and Symbolic Execution P. Jana, P. Jha, H. Ju, G. Kishore, A. Mahajan, V. Ganesh

EXPERIMENTAL RESULTS

CoTran: An LLM-based Code Translator using RL with Feedback from Compiler and Symbolic Execution P. Jana, P. Jha, H. Ju, G. Kishore, A. Mahajan, V. Ganesh

PERFORMANCE COMPARISON FOR J2P AND P2J TRANSLATION

	Mathed / Teal	Madal		Java	a to Pyth	on (J2P)				Pytho	on to Ja	va (P2J)		
	Method / Tool	Model	FEqAcc	CompAcc	$errPos_{1^{st}}$	CodeBLEU	BLEU	EM	FEqAcc	CompAcc	$errPos_{1^{\text{st}}}$	CodeBLEU	BLEU	EM
{ <mark>s</mark>	Transpilers	java2python [Melhase <i>et al.</i> , 2016] TSS CodeConv [TSS, 2023] py2java [Fomin, 2019]	3.32 0.46 -	41.46 58.30	28.62 54.26	20.31 41.87	17.54 24.44 -	0 0 -	- - 0	- - 0	- - 1.61	41.56	- - 48.59	- - 0
S	Recent competing tools (unsupervised training)	TransCoder [Roziere <i>et al.</i> , 2020] TransCoder-DOBF [Lachaux <i>et al.</i> , 2021] TransCoder-ST [Roziere <i>et al.</i> , 2022]	0.46 0.46 0.46	88.09 63.00 91.58	63.57 47.10 74.68	35.07 39.98 40.04	32.07 33.84 37.30	0 0 0	0 0 0	0 0 0	4.57 3.11 4.67	35.02 33.33 29.88	35.06 32.72 28.15	0 0 0
{ S	ChatGPT	GPT-3.5-turbo [OpenAI, 2023]	76.06	95.36	90.88	52.11	53.19	0.29	21.65	24.97	30.86	54.08	55.58	0
S	Recent competing tools (supervised training on AVATAR-TC)	CodeBERT [Feng et al., 2020] GraphCodeBERT [Guo et al., 2021] CodeGPT [Lu et al., 2021] CodeGPT-adapted [Lu et al., 2021] PLBART-base [Ahmad et al., 2021a] CodeT5-base [Wang et al., 2021] PPOCoder [Shojaee et al., 2023]	12.31 10.88 24.86 24.17 38.55 40.95 44.27	84.77 85.05 78.92 76.75 91.47 92.84 93.47	79.57 79.78 89.21 89.31 90.79 93.76 91.44	46.00 45.53 38.38 36.84 54.77 55.34 55.16	48.10 47.26 38.64 37.36 59.34 60.03 59.51	0.46 0.57 1.49 1.55 1.32 2.41 1.89	0.74 0.46 13.40 20.50 38.26 33.79 37.11	96.79 <u>89.75</u> 45.13 52.00 75.77 68.84 59.62	99.51 <u>98.05</u> 94.50 97.60 96.64 98.02 96.77	26.10 23.72 40.51 41.46 55.96 57.64 55.04	19.62 16.21 37.96 38.15 59.24 60.16 58.52	0 0 0.52 1.03 0.97 0.86 0.52
ſ	Our tool	CoTran (baseline)	44.52	96.12	92.07	55.44	58.71	2.11	40.41	73.63	92.16	59.11	61.12	1.66
	Our tool with compiler feedback only	CoTran + CF (RL-based training) CoTran + CF (RL+SFT interleaved training)	47.02 49.83	96.56 <u>96.79</u>	91.58 92.08	56.10 56.07	60.59 <u>60.61</u>	<u>2.23</u> <u>2.23</u>	42.78 <u>45.93</u>	74.80 75.77	96.91 96.89	58.55 58.28	<u>61.26</u> 61.21	<u>1.60</u> <u>1.60</u>
con	Our tool (b2b) with mpiler & symexec feedback	CoTran + CF + SF (RL-based training) CoTran + CF + SF (RL+SFT interleaved training)	50.45 <u>53.89</u>	<u>96.79</u> 97.14	92.15 <u>92.73</u>	<u>56.17</u> 56.24	60.60 60.69	<u>2.23</u> 2.29	43.92 48.68	75.14 76.98	96.93 96.93	<u>58.59</u> 58.38	61.28 61.19	<u>1.60</u> <u>1.60</u>

ABBREVIATIONS (ALL IN [0,100], HIGHER BETTER)

FEqAcc:Functional Equivalence AccuracyCompAcc:Compilation AccuracyerrPos1st:Average First Error PositionEM:Exact Match

We compare our proposed tool (**P**) CoTran with the following SoTAs:

Gr Georgia Tech

UC San Diego

ORONTO

S1. Rule-based transpilers

S2. Recent unsupervised LLM-based approaches

S3. ChatGPT (gpt-3.5-turbo)

S4. Recent supervised LLM-based approaches

CoTran: An LLM-based Code Translator using RL with Feedback from Compiler and Symbolic Execution

P. Jana, P. Jha, H. Ju, G. Kishore, A. Mahajan, V. Ganesh

J2P AND P2J TRANSLATION PERFORMANCE: FINDINGS

				Java	a to Pvtł	non (J2P			Ī	Pythe	on to Ja	va (P2J)	┣───	
	Method / Tool	Model	FEqAcc	CompAcc	•	CodeBLEU	BLEU	EM	FEqAcc	CompAcc	-	CodeBLEU	BLEU	EM
<	S3 ChatGPT	GPT-3.5-turbo [OpenAI, 2023]	76.06	95.36	90.88	52.11	53.19	0.29	21.65	24.97	30.86	54.08	55.58	0
	S4 Recent competing tools (supervised training on AVATAR-TC)	CodeBERT [Feng <i>et al.</i> , 2020] GraphCodeBERT [Guo <i>et al.</i> , 2021] CodeGPT [Lu <i>et al.</i> , 2021] CodeGPT-adapted [Lu <i>et al.</i> , 2021] PLBART-base [Ahmad <i>et al.</i> , 2021a] CodeT5-base [Wang <i>et al.</i> , 2021] PPOCoder [Shojaee <i>et al.</i> , 2023]	12.31 10.88 24.86 24.17 38.55 40.95 44.27	84.77 85.05 78.92 76.75 91.47 92.84 93.47	79.57 79.78 89.21 89.31 90.79 93.76 91.44	46.00 45.53 38.38 36.84 54.77 55.34 55.16	48.10 47.26 38.64 37.36 59.34 60.03 59.51	0.46 0.57 1.49 1.55 1.32 2.41 1.89	0.74 0.46 13.40 20.50 38.26 33.79 37.11	96.79 <u>89.75</u> 45.13 52.00 75.77 68.84 59.62	99.51 <u>98.05</u> 94.50 97.60 96.64 98.02 96.77	26.10 23.72 40.51 41.46 55.96 57.64 55.04	19.62 16.21 37.96 38.15 59.24 60.16 58.52	0 0.52 1.03 0.97 0.86 0.52
ſ	Our tool	CoTran (baseline)	44.52	96.12	92.07	55.44	58.71	2.11	40.41	73.63	92.16	59.11	61.12	1.66
ł	Our tool with compiler feedback only	CoTran + CF (RL-based training) CoTran + CF (RL+SFT interleaved training)	47.02 49.83	96.56 <u>96.79</u>	91.58 92.08	56.10 56.07	60.59 <u>60.61</u>	<u>2.23</u> <u>2.23</u>	42.78 <u>45.93</u>	74.80 75.77	96.91 96.89	58.55 58.28	<u>61.26</u> 61.21	<u>1.60</u> <u>1.60</u>
l	Our tool (b2b) with compiler & symexec feedback	CoTran + CF + SF (RL-based training) CoTran + CF + SF (RL+SFT interleaved training)	50.45 <u>53.89</u>	<u>96.79</u> 97.14	92.15 <u>92.73</u>	<u>56.17</u> 56.24	60.60 60.69	<u>2.23</u> 2.29	43.92 48.68	75.14 76.98	96.93 96.93	<u>58.59</u> 58.38	61.28 61.19	<u>1.60</u> <u>1.60</u>

CoTran (P) improves upon CodeT5 (S4)

 Compared to CodeT5-base, in J2P and P2J respectively, CoTran + CF + SF gets +12.94% in J2P and +14.89% on FEqAcc

Incorporating compiler and symexec feedback (CF, SF) during fine-tuning significantly improves LLM performance

CoTran vs. state-of-the-art similar-sized LLMs (P vs. S4)

 On FEqAcc, CoTran gets +9.62% (vs. PPOCoder) in J2P and +10.42% (vs. PLBART- base) in P2J

CoTran outperforms all other SoTA tools of similar size for both J2P, P2J

CoTran vs. ChatGPT (P vs. S3)

- ChatGPT, a 1000× larger model
- In P2J, CoTran gets +27.03% in FEqAcc, +52.01% in CompAcc

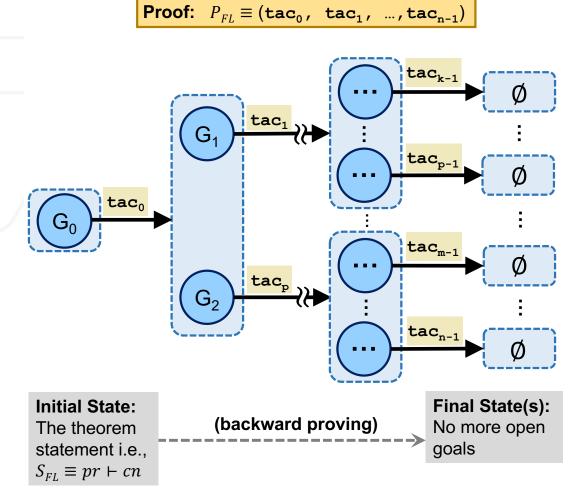
A smaller model trained with symbolic feedback outperforms a larger model without it.

Cr Georgia Tech. UC San Diego

AUTOMATED PROOF SYNTHESIS & AUTO-FORMALIZATION USING LLMS + LEAN

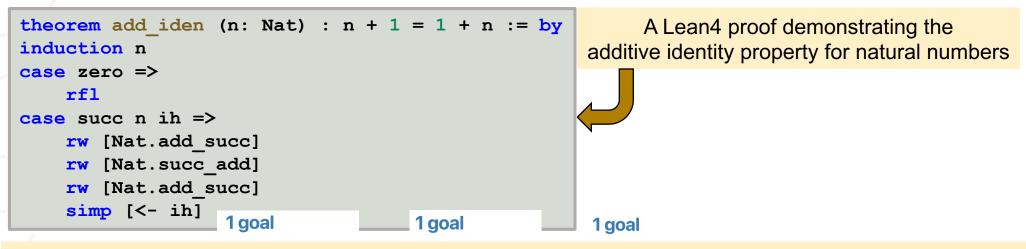
TACTIC-STYLE PROOFS IN LEAN4

- An imperative and procedural approach; proofs constructed backward from goal to premises
- Proof represented as a directed acyclic graph (DAG) of proof states and tactics



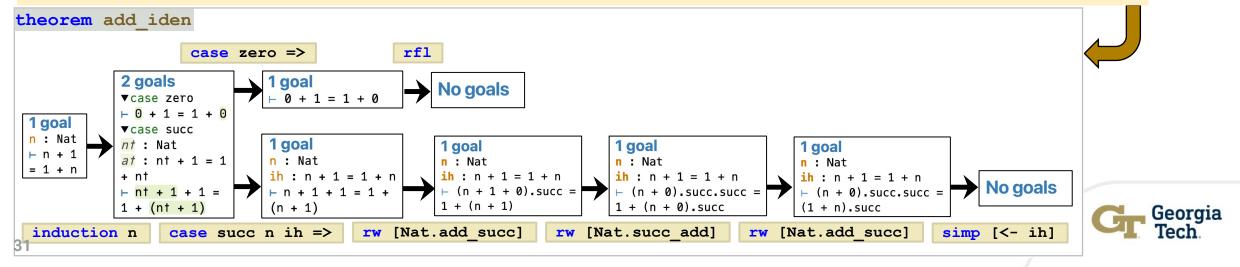
- Each <u>proof state</u> $S_i \equiv [G_1, \dots, G_n]$ (dotted boxes) consists of a sequence of zero or more *open goals*.
 - Initial state S_0 has only one goal, $S_{FL} \equiv pr \vdash cn$
 - Final proof states have no open goal
- Each <u>open goal</u> $G_i \equiv pr_i \vdash cn_i$ (circles) of a proof state represents a proposition.
- Each <u>tactic</u> tac_i (directed edges) represents a proof step.
 - A high-level command (rooted in metaprogramming) applied to an open goal G_i, producing a new proof state with zero or more sub-goals.
 - If a tactic results in a proof state with no open goal, it directly resolves the current goal.
 - Parent goal gets resolved once all subgoals resolved.

EXAMPLE OF TACTIC-STYLE PROOF IN LEAN4



DAG representations of the example proof:

- Each **proof state** $S_i \equiv [G_1, \dots, G_n]$ is a sequence of zero or more open goals
- Each **open goal** $G_i \equiv pr_i \vdash cn_i$ contains proposition cn_i to be proven, given pr_i .
- The final proof state(s) has no open goals.
- Each tactic (directed edge) is a proof step, a high-level command transforming an open goal to a new proof state.



LLM FOR AUTOMATED PROOF SYNTHESIS

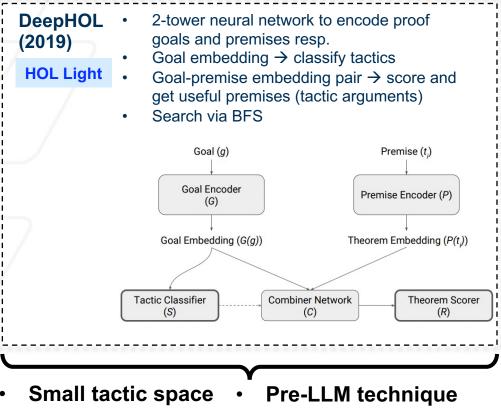
Next Tactic (Proof-step) generation

- Given a current state, LLM predicts the subsequent tactic
- **Pro**: more reliable, can verify tactic using the formal verifier to obtain updated information about the current tactic state, often utilizing tree search techniques to construct valid proofs
- Con: relatively slower than whole-proof generation

Whole-proof generation

- Given a theorem statement, LLM produces an entire proof code
- **Pro**: computationally efficient, requires less communication budget to coordinate between the LLM and the LEAN verifier
- **Con**: sequential nature introduces the risk of compounding errors i.e. a single wrong step can lead to significant deviations from a valid proof path.

EARLY AI/ML-ONLY APPROACHES TO PROOF SYNTHESIS



41 tactics

- Can't 'generate' arbitrary formulas as tactic parameters
- [1] Bansal, K., Loos, S., Rabe, M., Szegedy, C., & Wilcox, S. (2019). HoList: An Environment for Machine Learning of Higher Order Logic Theorem Proving. In ICML (pp. 454-463). PMLR.
- [2] Polu, S., & Sutskever, I. (2020). Generative Language Modeling for Automated Theorem Proving. arXiv preprint arXiv:2009.03393.
- [3] Jiang, A. Q., Li, W., Han, J. M., & Wu, Y. (2021). LISA: Language models of ISAbelle proofs. In 6th Conference on AITP (pp. 378-392).
- [4] Han, J. M., Rute, J., Wu, Y., Ayers, E. W., & Polu, S. (2021). Proof Artifact Co-training for Theorem Proving with Language Models. arXiv preprint arXiv:2102.06203.

Isabelle PACT (2022)	• Similar to GPT-f, spe GOAL <tacticstate></tacticstate>	ecific for Lean
Isabelle		
L-Isa (202	21) • Same as GPT-f, spe	ecific for Isabelle
		le 32 tactics, apply valid es, prioritize by cumulative st-first search
	Input	Output
MetaMath	GOAL <goal> PROOF</goal>	STEP <proofstep><eot></eot></proofstep>
(2020)	Proofstep objective PROOFSTEP given a	: LLM asked to generate the a GOAL

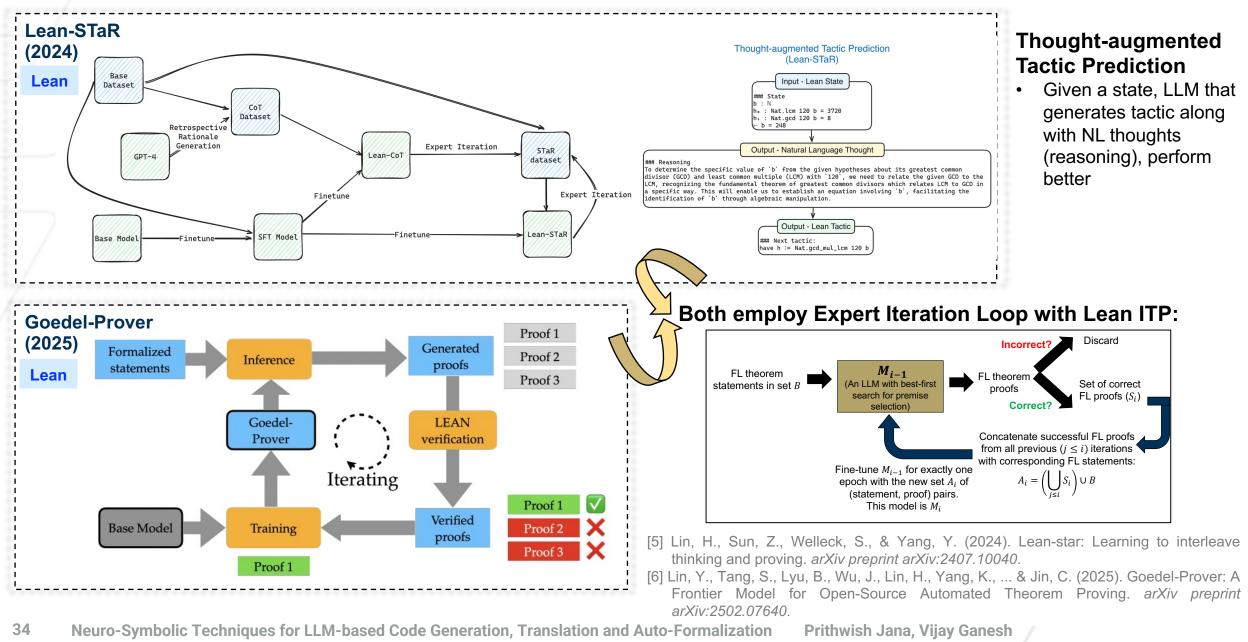
- All these LLM-based tools use Best-first Search
 - Relies solely on the confidence of fine-tuned LLM to predict the next proof step (tactic)
 - No guarantee that following the LLM's suggestions will lead to a successful or faster proof

Recent methods use neuro-symbolic Al

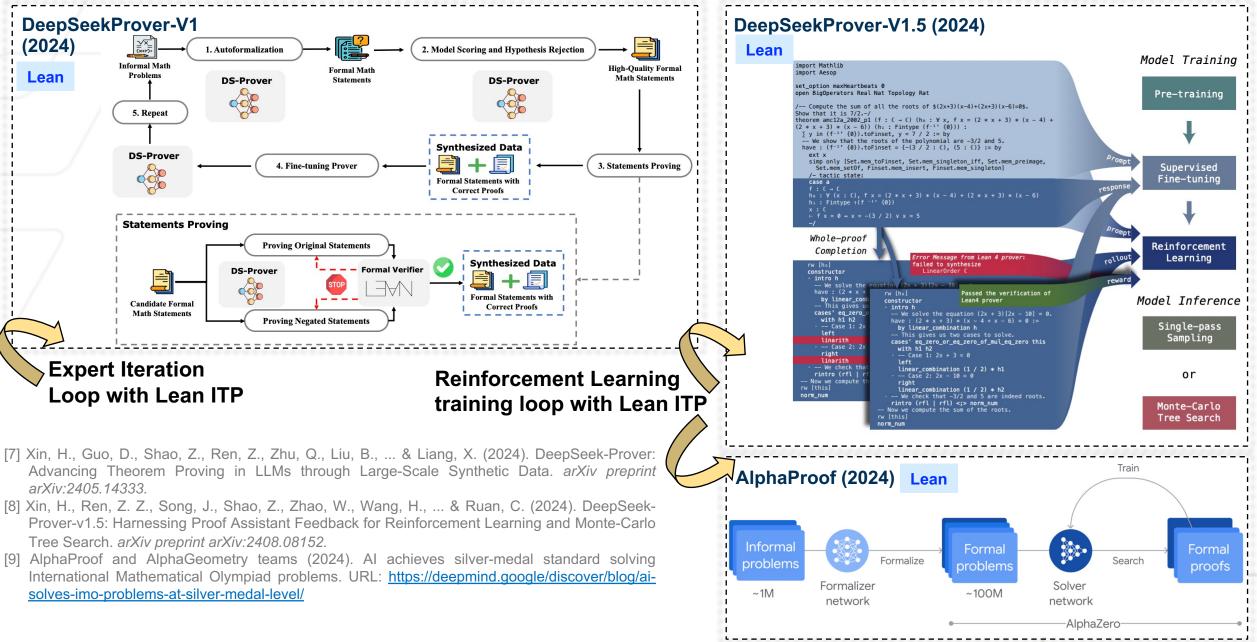
Formal symbolic reasoning (Interactive Theorem Prover) with the LLM in a loop

33 Neuro-Symbolic Techniques for LLM-based Code Generation, Translation and Auto-Formalization

NEURO-SYMBOLIC AI SYSTEMS FOR PROOF SYNTHESIS



NEURO-SYMBOLIC AI SYSTEMS FOR PROOF SYNTHESIS (CONTD...)



35 Neuro-Symbolic Techniques for LLM-based Code Generation, Translation and Auto-Formalization P

Prithwish Jana, Vijay Ganesh

CONCLUDING REMARKS

CONCLUSION & FUTURE DIRECTIONS

- Integrate dense fine-grained feedback from formal verification tools via RLSF during LLM training/fine-tuning/in-context for both normal + reasoning tokens
 - Software engineering (e.g., code synthesis, code translation and code repair)
 - Mathematical reasoning (e.g., proof synthesis and auto-formalization)
 - To develop specialized **neuro-symbolic** small language models (SLMs) \rightarrow perform better than LLMs
- Future directions: Using LLMs in different formal math settings
 - Solving International Mathematics Olympiad problems
 - Populate mathlib library for currently un-formalized fields like cryptography and proof complexity
 - and more hard problems...

THANK YOU!

