
NEURO-SYMBOLIC TECHNIQUES FOR
LLM-BASED CODE GENERATION, 
TRANSLATION AND AUTO-FORMALIZATION

PRITHWISH JANA & VIJAY GANESH
School of Computer Science, 
Georgia Tech, Atlanta, USA

*: pjana7@gatech.edu, vganesh@gatech.edu

High Confidence Software and 
Systems (HCSS) Conference

March 12, 2025



INTRODUCTION

Neuro-Symbolic Techniques for LLM-based Code Generation, Translation and Auto-Formalization
P. Jana, V. Ganesh



MOTIVATION: AI FOR SOFTWARE ENGINEERING (SE)
Code Translation (from one 
high-level language to another) 

A戈

Code Generation 
(natural language to code)

Write a 
code to…

3

• AI is already being used to automate various SE tasks:

Neuro-Symbolic Techniques for LLM-based Code Generation, Translation and Auto-Formalization        Prithwish Jana, Vijay Ganesh

Code 
Repair, 
etc. 



MOTIVATION: AI FOR MATHEMATICAL REASONING

• Computer-Verifiable Proofs: rigorous, machine-checkable verification without ambiguity
• Formal mathematical languages facilitate computer-verifiable proofs 

E.g., Lean4, Peano, Metamath, HOL Light, Isabelle, Coq
• Formal proof vs. Natural Language proof

• Uses strict syntactic rules and symbolic logic

• Challenges of Writing Proofs in a Formal Language (FL)
• Formalizing proofs requires significant time, can be difficult even for experienced mathematicians

• Emerging research to simplify writing proofs in FL
• Auto-Formalization

• Translates natural language (NL) proofs into formal language (FL) proofs
• Automated Formal Proof Synthesis (aFPS)

• Generates formal proofs directly from statements (conjectures) in FL
zz

NL
Proof

FL
Proof

FL
Stmt

FL
Proof

4

• Reduces human effort
• Enables non-experts to use formal methods
• Discover new theorems beyond intuition

• AI being used to automate various formalization tasks:

Neuro-Symbolic Techniques for LLM-based Code Generation, Translation and Auto-Formalization        Prithwish Jana, Vijay Ganesh



WHAT’S COMMON? FORMAL LANGUAGE TASKS

5

• Formal Language (FL)
• Well-formed, strict & unambiguous; specific set of rules (formal grammar)
• Designed for applications in maths, computer science, and logic
• E.g., Programming languages (C++, Java, Python), 

First- or higher-order logic (Lean, Isabelle, Coq)

theorem add_iden (n: Nat) : n + 1 = 1 + n := by
induction n
case zero => 

rfl
case succ n ih =>

rw [Nat.add_succ]
rw [Nat.succ_add]
rw [Nat.add_succ]
simp [<- ih]

theorem transitive (x y z: Nat) 
(h1 : x = y) (h2 : y = z) :
x = z := by

rewrite [h1]
rewrite [h2]
rfl

A Lean4 proof for
transitive property of 

equality for natural numbers

A Python 
program to check 

prime number

…

Issues faced when prompting LLMs to generate codes/proofs 
• Syntactic/semantic errors
• Wrong API (unavailable APIs or hallucinate with similar APIs)
• Introduce ‘subtle bugs’ in the code
• Overall, LLMs unable to abide by strict rules of a FL

Neuro-Symbolic Techniques for LLM-based Code Generation, Translation and Auto-Formalization        Prithwish Jana, Vijay Ganesh



OBJECTIVE: LLMS FOR FORMAL LANGUAGES

ENCODERS DECODERS

je suis étudiant

I am a student

Input

Output

• LLMs excel in natural language tasks
• Sentiment analysis, Text summarization, etc.
• Approximate results oftentimes good enough

E.g., “I am a student” and “I am student” both sound fine

• LLMs face challenges in formal language tasks
• Formal grammar: well-formed, strict, unambiguous
• Tasks like code translation, theorem proving, etc.
• SoTA prioritized scaling-up LLM size ⟹ data ↑, resources ↑

LLMs strong in language understanding

LLMs weak in adhering to syntax, performing logical reasoning
Transformer[1] architectures (LLMs) 

trained on next-token prediction 
over large text corpora

Not a 
sustainable

solution

[1] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł. and Polosukhin, I., 2017. 
Attention is All You Need. Advances in Neural Information Processing Systems, 30.

6 Neuro-Symbolic Techniques for LLM-based Code Generation, Translation and Auto-Formalization        Prithwish Jana, Vijay Ganesh



RESEARCH QUESTIONS (RQS)

7

Ø RQ-1: Can LLMs be improved in reasoning tasks by providing
fine-grained logical feedback during fine-tuning?

Ø RQ-2: Can a small language model (SLM) trained using
symbolic feedback, outperform LLMs without feedback?

≥

Input

LLM
#include <iostream>
using namespace std;
int main() d

cin << "Hello World!";
return 0;

}

1. LLM-generated code typically has 
syntactic and/or semantic issues

2. What if we feed 
it to a compiler?

3. And use the error report 
to train the LLM? 

Input

Trainer

Output

SLM
Symbolic 

Reasoning EngineFeedback
Input

Trainer

LLM

Generated Output

Gold-standard Output

Cross-Entropy Loss

AlphaProof (2024) Lean

DeepSeekProver-V1.5 (2024)
Lean

Researchers are already combining 
LLMs and formal verification tools
• e.g., DeepSeek-Prover uses binary 

feedback in an RL loop
(sparse reward!)

Neuro-Symbolic Techniques for LLM-based Code Generation, Translation and Auto-Formalization        Prithwish Jana, Vijay Ganesh



• RLSF: Reinforcement Learning via Symbolic Feedback (under submission)

• CoTran: An LLM-based Code Translator using RL with 
Feedback from Compiler & Symbolic Exec. (ECAI-2024)

• Automated Proof Synthesis and Auto-Formalization
using LLMs + LEAN

REST OF THE TALK

AI for 
Software 
Engineering

AI for 
Mathematics

8

• NeuroSymbolic LLM for Mathematical Reasoning 
& Software Engg. (IJCAI-2024)

Neuro-Symbolic Techniques for LLM-based Code Generation, Translation and Auto-Formalization        Prithwish Jana, Vijay Ganesh



RLSF: REINFORCEMENT LEARNING VIA
SYMBOLIC FEEDBACK

Piyush Jha, Prithwish Jana, Pranavkrishna Suresh, 
Arnav Arora, Vijay Ganesh

Georgia Institute of Technology, USA 

RLSF: Reinforcement Learning via Symbolic Feedback
P. Jha, P. Jana, P. Suresh, A. Arora, V. Ganesh



RLSF: Reinforcement Learning via Symbolic Feedback
P. Jha, P. Jana, P. Suresh, A. Arora, V. Ganesh

REINFORCEMENT LEARNING VIA SYMBOLIC FEEDBACK (RLSF) OVERVIEW

• Symbolic reasoning tools generate poly-sized certificates specifying errors.

• Certificates transformed to Fine-Grained (Vectorized) Token-Level Feedback, rather
than relying on sparse scalar rewards.

• New fine-tuning paradigm for LLMs
• LLM acts as the RL agent
• The environment is enhanced with

sound symbolic tools (e.g., solvers,
provers) for accurate feedback

10

We demonstrated success of RLSF in challenging tasks like program synthesis, 
molecule generation, and mathematical problem-solving.



• Supervised Fine-Tuning:
• Using cross-entropy loss to fine-tune LLMs for

specific tasks, requires differentiable loss.

• RLHF Approaches:
• Using human-generated feedback to align LLM

to preferred responses.
• Black-Box Reward Models: Existing RLHF

methods use unsound models à fail to capture
the nuances of reasoning tasks.

• Sparse Scalar Rewards: Difficulty in obtaining
detailed feedback.

• Data Collection: Challenges in collecting large-
scale, high-quality preference data for fine-tuning.

• Neuro-symbolic AI:
• Integrations of NNs with symbolic reasoning tools,

typically within RL agent rather than environment
11

WHAT OTHERS HAVE TRIED?

RLSF: Reinforcement Learning via Symbolic Feedback
P. Jha, P. Jana, P. Suresh, A. Arora, V. Ganesh



12

RLSF ALGORITHM

RLSF: Reinforcement Learning via Symbolic Feedback
P. Jha, P. Jana, P. Suresh, A. Arora, V. Ganesh



I. RLSF FOR CODE GENERATION: LLM WITH VERIFIER FEEDBACK

RLSF: Reinforcement Learning via Symbolic Feedback
P. Jha, P. Jana, P. Suresh, A. Arora, V. Ganesh

• Given a generated C++ code (with N lines), the symbolic environment uses the g++ compiler 
to detect erroneous lines (E) and compute pass rate r

• Accordingly, the environment provides fine-grained symbolic feedback for fine-tuning the LLM

13

Code Generation Learning Problem
Learn 𝑓:𝑵𝑳 → 𝑷𝑳, which when provided with a 𝑵𝑳 pseudo-code produces a 𝑷𝑳-program 



14

II. RLSF FOR CHEMISTRY: LLM WITH DOMAIN KNOWLEDGE OF CHEMISTRY

• Task 1: Molecule Generation:
• Generating chemical structures from natural language descriptions.

• Task 2: Forward Synthesis:
• Predicting the product of chemical reactions given reactants.

• Task 3: Retrosynthesis:
• Identifying reactants required to produce a specific molecule.

• Feedback Mechanism:
• Uses RDKit to identify syntax errors (e.g., invalid molecule strings) and applies the first law of chemistry

for semantic validation.

RLSF: Reinforcement Learning via Symbolic Feedback
P. Jha, P. Jana, P. Suresh, A. Arora, V. Ganesh



15

III. RLSF FOR LOGIC PUZZLES: LLM WITH COMPUTER ALGEBRA SYSTEMS (CAS)

• Game of 24:
• Solving a mathematical puzzle by finding a sequence of operations to reach

the number 24 from four given numbers.

• Feedback Mechanism:
• Uses symbolic math tools (e.g., Computer Algebra System i.e., CAS) to verify the correctness of

solutions, providing precise feedback for token-level corrections.

RLSF: Reinforcement Learning via Symbolic Feedback
P. Jha, P. Jana, P. Suresh, A. Arora, V. Ganesh



EXPERIMENTAL RESULTS: RLSF FOR CODE GENERATION

RLSF: Reinforcement Learning via Symbolic Feedback
P. Jha, P. Jana, P. Suresh, A. Arora, V. Ganesh

• Compared to GPT-3.5, RLSF-tuned Google’s 
CodeGemma-2b (a 100× smaller model) 

• improved compilation accuracy by 
+34.82%

• improved functional correctness by 
+17.01%

16



• Molecule Generation: 
• RLSF improved exact match by +8% and validity by +58% over SFT using 

Meta's Galactica-1.3b, also surpassing GPT-4 (∼1000× larger).

• Forward and Retrosynthesis:
• RLSF increased exact match by +19.4% for forward synthesis and +33.7%

for retrosynthesis, significantly outperforming GPT-4 (∼1000× larger).

17

EXPERIMENTAL RESULTS: RLSF FOR CHEMISTRY

RLSF: Reinforcement Learning via Symbolic Feedback
P. Jha, P. Jana, P. Suresh, A. Arora, V. Ganesh



RLSF boosted success rates by +25% on Meta’s Llama2-7b compared to traditional methods, also 
surpassing GPT-3.5 (25× larger) with +7% improvement.

18

CoT: Chain-of-thoughts
ToT: Tree-of-thoughts

EXPERIMENTAL RESULTS: RLSF FOR GAME OF 24

RLSF: Reinforcement Learning via Symbolic Feedback
P. Jha, P. Jana, P. Suresh, A. Arora, V. Ganesh



1000x
Smaller LLMs

Outperforms

GPT4

Fine-grained
Symbolic
Feedback

LearningReasoning

19

• RL Agent with Symbolic Environment
• Leverages Poly-Sized Certificates
• Fine-Grained Token-Level Feedback
• Non-Differentiable Feedback
• Improved Performance on Reasoning Tasks

RLSF SUMMARY

RLSF: Reinforcement Learning via Symbolic Feedback
P. Jha, P. Jana, P. Suresh, A. Arora, V. Ganesh



COTRAN: AN LLM-BASED CODE TRANSLATOR
USING RL WITH FEEDBACK FROM COMPILER

AND SYMBOLIC EXECUTION

Prithwish Janaa, Piyush Jhaa, Haoyang Jub, 
Gautham Kishorec, Aryan Mahajand, Vijay Ganesha

a Georgia Institute of Technology, USA b University of Toronto, Canada
c UC San Diego, USA d Columbia University, USA 

27TH EUROPEAN CONFERENCE ON AI
19-24 OCTOBER, 2024

SANTIAGO DE COMPOSTELA, SPAIN



CoTran: An LLM-based Code Translator using RL with Feedback from Compiler and Symbolic Execution
P. Jana, P. Jha, H. Ju, G. Kishore, A. Mahajan, V. Ganesh

PROBLEM STATEMENT: LLM FOR WHOLE-PROGRAM TRANSLATION

• Let 𝑺 = source language (e.g., Java) and 𝑻 = target language (e.g., Python)

• Code Translation Learning Problem
• Learn 𝑓𝑺𝑻: 𝑺 → 𝑻, which when provided with a 𝑺-program produces a 𝑻-program that is 

• syntactically correct (as per the grammar of 𝑻) and 
• functionally equivalent (w.r.t. a test suite) to the input 𝑺-program

Translation of a code 
from one high-level 
language to anotherA Java (𝑺) program An “equivalent” program in Python (𝑻)

import java.io.*;
public class Main
{

static int unitDigitXRaisedY(int x, int y) 
{

int res = 1;
for (int i = 0; i < y; i++) res = (res * x) % 10;
return res;

}
public static void main(String args[])
{

System.out.println(unitDigitXRaisedY(4, 2));
}

}

def unitDigitXRaisedY(x, y):
res = 1
for i in range(y):

res = (res * x) % 10
return res 

if __name__ == '__main__':     
print (unitDigitXRaisedY(4 ,2))

LLM

𝑓𝑺𝑻: 𝑺 → 𝑻

21



PROPOSED METHODOLOGY

CoTran: An LLM-based Code Translator using RL with Feedback from Compiler and Symbolic Execution
P. Jana, P. Jha, H. Ju, G. Kishore, A. Mahajan, V. Ganesh



CoTran: An LLM-based Code Translator using RL with Feedback from Compiler and Symbolic Execution
P. Jana, P. Jha, H. Ju, G. Kishore, A. Mahajan, V. Ganesh

AN OVERVIEW OF THE PROPOSED IDEA

Input: 𝑺-program 
LLM

1. LLM-generated code typically has 
syntactic and/or semantic issues

2. Pass it through 
the compiler and 
a symbolic-
exection engine

3. Use the error certificate as feedback to 
fine-tune the LLM

Trainer

• Improve LLM by providing logical feedback during fine-tuning (neuro-symbolic approach)

print ('Hello, world!')
class HelloWorld {

public static void main(String args[]) d
System.out.print("Hello, world!"); 

} 
}

• Compiler Feedback (CF)
• How close the 𝑻-program is to being perfectly compilable

• Symbolic-Execution Feedback (SF)
• How closely the 𝑻-program is ‘equivalent’ to 𝑺-program 

• We use RL + Supervised Fine-tuning (SFT) interleaved training to incorporate feedback 

Output: 𝑻-program

𝑓𝑺𝑻: 𝑺 → 𝑻

Scalar, but fine-grained feedback ∈ [0,1]

23



CoTran: An LLM-based Code Translator using RL with Feedback from Compiler and Symbolic Execution
P. Jana, P. Jha, H. Ju, G. Kishore, A. Mahajan, V. Ganesh

COTRAN + COMPILER FEEDBACK (CF)

• RL-based fine-tuning of LLM using PPO, to maximize Compiler Feedback (CF)

Generated 
Python code (!"!"#$)

Cross-Entropy 
(CE) Loss

Input 
Java code (#!"#$)

kw
-Tok 

(encoder)

kw
-Tok 

(decoder)

Gold-standard 
Python code (!!"#$)

LLM
(Java à Python)

SFTTrainer

Forward Pass
Back Propagation

The baseline CoTran (using Supervised Fine-Tuning i.e., SFT)

Issue with Cross-Entropy Loss-
based approach:

Cross-Entropy loss does not 
penalize based on wrong syntax 
of generated code

.......
Locate first compilation error

!" = 3
8 = 0.375

....... !" = 2

Guides the LLM into determining 
how far it is from producing a 
perfectly compilable code
• Cue: The first error token's position 

(the deeper it is, the closer to 
perfect compilation)

24



CoTran: An LLM-based Code Translator using RL with Feedback from Compiler and Symbolic Execution
P. Jana, P. Jha, H. Ju, G. Kishore, A. Mahajan, V. Ganesh

COTRAN + CF + SYMBOLIC-EXECUTION FEEDBACK (SF)

Generated 
Python code (!"!"#$)

Cross-Entropy 
(CE) Loss

Input 
Java code (#!"#$)

kw
-Tok 

(encoder)

kw
-Tok 

(decoder)

Gold-standard 
Python code (!!"#$)

LLM
(Java à Python)

SFTTrainer

Forward Pass
Back Propagation

The baseline CoTran (using Supervised Fine-Tuning i.e., SFT)

Issue with CoTran+CF:
CF loss does not penalize 
based on inequivalence of 
generated and input codes

LLM *
(Java à Python)

Generated 
Python code (!"!"#$)

Compiler

Input 
Java code (#!"#$)

.......
Locate first compilation error

kw
-Tok 

(encoder)

kw
-Tok 

(decoder)

PPOTrainer

Compiler 
Feedback (CF)

Forward Pass
Compiler Feedback (CF)

* Initialized with model fine-tuned
   by CoTran (baseline)

CoTran + CF (using RL-based fine-tuning by PPO algorithm)

LLM *
(Java à Python)

Intermediate 
Python code (!"!"#$)

Compiler

Input 
Java code (#!"#$)

kw
-Tok 

(encoder)

kw
-Tok 

(decoder)

PPOTrainer

Compiler 
Feedback (CF)

LLM *
(Python à Java)

kw
-Tok 

(encoder)

kw
-Tok 

(decoder)

PPOTrainer

Generated 
Java code (#"!"#$)

Compiler

Compiler 
Feedback (CF)

Solver-based 
analysis by 
Symflower

Check how many 
pass/fail?

@Test
assertEquals(Main.power(0), 1)

@Test
assertEquals(Main.power(1), 4)

Symexec 
Feedback (SF)

Symexec 
Feedback (SF)

....... .......
Forward Pass
Compiler Feedback (CF)
Symexec Feedback (SF)

* Initialized with model fine-tuned
by CoTran (baseline)

LLMPE
(Java à Python)

LLMPE
(Python à Java)

CoTran + CF + SF 
RL_BK2BK(…)

b2b CoTran (baseline)
SFT_BK2BK(…)

LORA(…)

EVAL(…)

Fine-tune

Choose best model w.r.t validation
& repeat until convergence

 LLM
(Java à Python)

 LLM
(Python à Java)

❄❄❄"

Models fine-tuned by CoTran (baseline)

❄❄❄"

❄❄❄ ❄❄❄

            Flow of Algo. 1
            Frozen Param.
            Trainable Param.
❄

"

R
ef

er
en

ce
 fo

r K
L-

di
ve

rg
en

ce

CoTran + CF + SF (using RL-based fine-tuning on back-to-back LLMs) RL + SFT Interleaved Training Loop 

25



EXPERIMENTAL RESULTS

CoTran: An LLM-based Code Translator using RL with Feedback from Compiler and Symbolic Execution
P. Jana, P. Jha, H. Ju, G. Kishore, A. Mahajan, V. Ganesh



PERFORMANCE COMPARISON FOR J2P AND P2J TRANSLATION

ABBREVIATIONS (ALL IN [0,100], HIGHER BETTER)
FEqAcc : Functional Equivalence Accuracy
CompAcc : Compilation Accuracy
errPos1st : Average First Error Position
EM : Exact Match

Java to Python (J2P) Python to Java (P2J)

P

S1

S2

S3
S4

CoTran: An LLM-based Code Translator using RL with Feedback from Compiler and Symbolic Execution
P. Jana, P. Jha, H. Ju, G. Kishore, A. Mahajan, V. Ganesh

We compare our proposed tool (P) CoTran with the following SoTAs:
S1. Rule-based transpilers
S2. Recent unsupervised LLM-based approaches
S3. ChatGPT (gpt-3.5-turbo)
S4. Recent supervised LLM-based approaches

27



J2P AND P2J TRANSLATION PERFORMANCE: FINDINGS

CoTran: An LLM-based Code Translator using RL with Feedback from Compiler and Symbolic Execution
P. Jana, P. Jha, H. Ju, G. Kishore, A. Mahajan, V. Ganesh

CoTran (P) improves upon CodeT5 (S4)
• Compared to CodeT5-base, in J2P and 
P2J respectively, CoTran + CF + SF gets 
+12.94% in J2P and +14.89% on FEqAcc

Incorporating compiler and symexec
feedback (CF, SF) during fine-tuning 
significantly improves LLM performance

Java to Python (J2P) Python to Java (P2J)

P

CoTran vs. state-of-the-art 
similar-sized LLMs (P vs. S4)
• On FEqAcc, CoTran gets +9.62% 

(vs. PPOCoder) in J2P and +10.42% 
(vs. PLBART- base) in P2J

CoTran outperforms all other SoTA
tools of similar size for both J2P, P2J

CoTran vs. ChatGPT (P vs. S3)
• ChatGPT, a 1000× larger model
• In P2J, CoTran gets +27.03% in 

FEqAcc, +52.01% in CompAcc
A smaller model trained with 
symbolic feedback outperforms a 
larger model without it.

S3
S4

28



AUTOMATED PROOF SYNTHESIS & 
AUTO-FORMALIZATION
USING LLMS + LEAN

Neuro-Symbolic Techniques for LLM-based Code Generation, Translation and Auto-Formalization
P. Jana, V. Ganesh



TACTIC-STYLE PROOFS IN LEAN4
• An imperative and procedural approach; proofs constructed backward from goal to premises
• Proof represented as a directed acyclic graph (DAG) of proof states and tactics

G1

tac0

tac1

Final State(s):
No more open 
goals

(backward proving)

Proof:   !!" ≡ (tac0, tac1, …,tacn-1)

G2

G0

tacp

…

tack-1

tacp-1

tacm-1

tacn-1

…

…

…

…

…

…
…

≈
≈

Initial State:
The theorem 
statement i.e., 
#!" ≡ $% ⊢ '(

… …

∅

∅

∅

∅

• Each proof state 𝑺𝒊 ≡ [𝑮𝟏, ⋯ , 𝑮𝒏] (dotted boxes)  consists 
of a sequence of zero or more open goals. 

• Initial state 𝑺𝟎 has only one goal, 𝑺𝑭𝑳 ≡ 𝒑𝒓 ⊢ 𝒄𝒏
• Final proof states have no open goal

• Each open goal 𝑮𝒊 ≡ 𝒑𝒓𝒊 ⊢ 𝒄𝒏𝒊 (circles)  of a proof state 
represents a proposition. 

• Each tactic 𝒕𝒂𝒄𝒊 (directed edges) represents a proof step.
• A high-level command (rooted in metaprogramming) 

applied to an open goal 𝑮𝒊, producing a new proof 
state with zero or more sub-goals. 

• If a tactic results in a proof state with no open goal, it 
directly resolves the current goal. 

• Parent goal gets resolved once all subgoals resolved.

Neuro-Symbolic Techniques for LLM-based Code Generation, Translation and Auto-Formalization        Prithwish Jana, Vijay Ganesh30



EXAMPLE OF TACTIC-STYLE PROOF IN LEAN4
A Lean4 proof demonstrating the 

additive identity property for natural numbers
theorem add_iden (n: Nat) : n + 1 = 1 + n := by
induction n
case zero => 

rfl
case succ n ih =>

rw [Nat.add_succ]
rw [Nat.succ_add]
rw [Nat.add_succ]
simp [<- ih]

theorem transitive (x y z: Nat) 
(h1 : x = y) (h2 : y = z) :
x = z := by

rewrite [h1]
rewrite [h2]
rfl

induction n

case zero =>

case succ n ih =>

rfl

rw [Nat.add_succ] simp [<- ih]rw [Nat.succ_add] rw [Nat.add_succ]

rewrite [h1] rflrewrite [h2]

theorem add_iden

theorem transitive

31

DAG representations of the example proof:
• Each proof state 𝑺𝒊 ≡ [𝑮𝟏, ⋯ , 𝑮𝒏] is a sequence of zero or more open goals
• Each open goal 𝑮𝒊 ≡ 𝒑𝒓𝒊 ⊢ 𝒄𝒏𝒊 contains proposition 𝒄𝒏𝒊 to be proven, given 𝒑𝒓𝒊. 
• The final proof state(s) has no open goals.
• Each tactic (directed edge) is a proof step, a high-level command transforming an open goal to a new proof state.



LLM FOR AUTOMATED PROOF SYNTHESIS

• Next Tactic (Proof-step) generation
• Given a current state, LLM predicts the subsequent tactic
• Pro: more reliable, can verify tactic using the formal verifier to obtain updated information 

about the current tactic state, often utilizing tree search techniques to construct valid proofs
• Con: relatively slower than whole-proof generation

• Whole-proof generation
• Given a theorem statement, LLM produces an entire proof code 
• Pro: computationally efficient, requires less communication budget to coordinate between the 

LLM and the LEAN verifier
• Con: sequential nature introduces the risk of compounding errors i.e. a single wrong step can 

lead to significant deviations from a valid proof path.

Neuro-Symbolic Techniques for LLM-based Code Generation, Translation and Auto-Formalization        Prithwish Jana, Vijay Ganesh32



DeepHOL
(2019)

• Small tactic space 
• 41 tactics

• 2-tower neural network to encode proof 
goals and premises resp.

• Goal embedding à classify tactics 
• Goal-premise embedding pair à score and 

get useful premises (tactic arguments)
• Search via BFS

GPT-f 
(2020)

• Proofstep objective: LLM asked to generate the 
PROOFSTEP given a GOAL

• Proof search: Sample 32 tactics, apply valid 
and deduplicated ones, prioritize by cumulative 
log probability à best-first search

HOL Light MetaMath

L-Isa (2021) • Same as GPT-f, specific for Isabelle

Isabelle

PACT
(2022)

Lean

• All these LLM-based tools use Best-first Search
• Relies solely on the confidence of fine-tuned LLM to 

predict the next proof step (tactic)
• No guarantee that following the LLM’s suggestions 

will lead to a successful or faster proof

• Recent methods use neuro-symbolic AI
• Formal symbolic reasoning (Interactive 

Theorem Prover) with the LLM in a loop

------------------------------------- -----------------------------
Input                                     Output

------------------------------------- -----------------------------
Input                                     Output

• Similar to GPT-f, specific for Lean

EARLY AI/ML-ONLY APPROACHES TO PROOF SYNTHESIS

[1] Bansal, K., Loos, S., Rabe, M., Szegedy, C., & Wilcox, S. (2019). HoList: An
Environment for Machine Learning of Higher Order Logic Theorem Proving. In ICML
(pp. 454-463). PMLR.

[2] Polu, S., & Sutskever, I. (2020). Generative Language Modeling for Automated
Theorem Proving. arXiv preprint arXiv:2009.03393.

[3] Jiang, A. Q., Li, W., Han, J. M., & Wu, Y. (2021). LISA: Language models of ISAbelle
proofs. In 6th Conference on AITP (pp. 378-392).

[4] Han, J. M., Rute, J., Wu, Y., Ayers, E. W., & Polu, S. (2021). Proof Artifact Co-training
for Theorem Proving with Language Models. arXiv preprint arXiv:2102.06203.

• Pre-LLM technique 
• Can’t ‘generate’ arbitrary 

formulas as tactic parameters

Neuro-Symbolic Techniques for LLM-based Code Generation, Translation and Auto-Formalization        Prithwish Jana, Vijay Ganesh33



NEURO-SYMBOLIC AI SYSTEMS FOR PROOF SYNTHESIS
Lean-STaR
(2024)
Lean

Goedel-Prover 
(2025)
Lean

Thought-augmented
Tactic Prediction
• Given a state, LLM that 

generates tactic along 
with NL thoughts 
(reasoning), perform 
better

!!"#
(An LLM with best-first 

search for premise 
selection)

FL theorem 
statements in set $

FL theorem 
proofs

Discard

Set of correct 
FL proofs (%!)

Concatenate successful FL proofs 
from all previous (& ≤ ()	iterations 

with corresponding FL statements:

+! = -%!
"#!

∪ $
Fine-tune /!$% for exactly one 
epoch with the new set +! of 

(statement, proof) pairs.
This model is /!

Incorrect?

Correct?

Both employ Expert Iteration Loop with Lean ITP:

[5] Lin, H., Sun, Z., Welleck, S., & Yang, Y. (2024). Lean-star: Learning to interleave
thinking and proving. arXiv preprint arXiv:2407.10040.

[6] Lin, Y., Tang, S., Lyu, B., Wu, J., Lin, H., Yang, K., ... & Jin, C. (2025). Goedel-Prover: A
Frontier Model for Open-Source Automated Theorem Proving. arXiv preprint
arXiv:2502.07640.

Neuro-Symbolic Techniques for LLM-based Code Generation, Translation and Auto-Formalization        Prithwish Jana, Vijay Ganesh34



NEURO-SYMBOLIC AI SYSTEMS FOR PROOF SYNTHESIS (CONTD…)

[7] Xin, H., Guo, D., Shao, Z., Ren, Z., Zhu, Q., Liu, B., ... & Liang, X. (2024). DeepSeek-Prover:
Advancing Theorem Proving in LLMs through Large-Scale Synthetic Data. arXiv preprint
arXiv:2405.14333.

[8] Xin, H., Ren, Z. Z., Song, J., Shao, Z., Zhao, W., Wang, H., ... & Ruan, C. (2024). DeepSeek-
Prover-v1.5: Harnessing Proof Assistant Feedback for Reinforcement Learning and Monte-Carlo
Tree Search. arXiv preprint arXiv:2408.08152.

[9] AlphaProof and AlphaGeometry teams (2024). AI achieves silver-medal standard solving
International Mathematical Olympiad problems. URL: https://deepmind.google/discover/blog/ai-
solves-imo-problems-at-silver-medal-level/

DeepSeekProver-V1 
(2024)
Lean

AlphaProof (2024) Lean

Expert Iteration 
Loop with Lean ITP

Reinforcement Learning 
training loop with Lean ITP

DeepSeekProver-V1.5 (2024)
Lean

Neuro-Symbolic Techniques for LLM-based Code Generation, Translation and Auto-Formalization        Prithwish Jana, Vijay Ganesh35

https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/


CONCLUDING REMARKS

Neuro-Symbolic Techniques for LLM-based Code Generation, Translation and Auto-Formalization
P. Jana, V. Ganesh



CONCLUSION & FUTURE DIRECTIONS

37

Ø Integrate dense fine-grained feedback from formal verification tools via RLSF
during LLM training/fine-tuning/in-context for both normal + reasoning tokens
• Software engineering (e.g., code synthesis, code translation and code repair)
• Mathematical reasoning (e.g., proof synthesis and auto-formalization) 
• To develop specialized neuro-symbolic small language models (SLMs) à perform better than LLMs

Ø Future directions: Using LLMs in different formal math settings
• Solving International Mathematics Olympiad problems
• Populate mathlib library for currently un-formalized fields like cryptography and proof complexity 
• and more hard problems…

Neuro-Symbolic Techniques for LLM-based Code Generation, Translation and Auto-Formalization        Prithwish Jana, Vijay Ganesh



THANK YOU!

Neuro-Symbolic Techniques for LLM-based Code Generation, Translation and Auto-Formalization
P. Jana, V. Ganesh


