
Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Software Understanding for National Security
SUNS Partnership Forum 2025 (SPF-25) Report

h t t p s : / / s u n s . s a n d i a . g o v /
s u n s @ s a n d i a . g o v

Douglas Ghormley
Christopher Harrison
Sandia National Laboratories
May 13, 2025

SAND2025-05642PE

2

Introductions

Dr. Christopher Harrison, Sandia National Laboratories

Distinguished Member of the Technical Staff

Dr. Douglas Ghormley, Sandia National Laboratories
Senior Scientist

Mission Challenges from Software
3

The widespread use of software that cannot be adequately characterized
places our society at immeasurable risk and degrades our integrated deterrence.

Unintentional Supply Chain Scenario

Example: CrowdStrike Outage

Software Challenge: A new configuration file triggered an existing,
undiscovered parsing bug in a widely deployed component.

Impact: The bug caused the system to crash, resulting in major
disruption across multiple sectors including financial, health care,
emergency services, airlines, and government.

Intentional Supply Chain Scenario

Example: SolarWinds Attack

Software Challenge: Malicious code was inserted in a software
update of a popular IT administration platform.

Impact: the malicious update was distributed to over 18,000
customers across the globe, infecting key industry (e.g., Microsoft) and
USG entities.

National Security Scenario

Example: DOD’s F22 Crossing the Dateline

Software Challenge: Unexpected software behavior caused in-flight
failure of navigation, fuel, and communications systems.

Impact: F22’s aborted the mission and followed fully other functioning
aircraft back to base.

Critical Infrastructure Scenario

Example: Salt Typhoon

Software Challenge: Gains initial access to its victim networks by
targeting external-facing assets using known vulnerabilities.

Impact: Affecting major telecom companies and resulting in the theft
of sensitive correspondence data, including metadata and call details.

4

Full Scope of the Problem

… …
Examples are entirely notional, for illustration purposes only.

5

Full Scope of the Problem

… …

……

Examples are entirely notional, for illustration purposes only.

6

Full Scope of the Problem

… …

……

Examples are entirely notional, for illustration purposes only.

7

Full Scope of the Problem

… …

……

Can my ship’s
location

be tracked?

Is there hidden,
triggered behavior in

my weapon’s targeting
systems?

Is this software
vulnerable to attack

XYZ?

Could sensitive
communications be
relayed to others?

Could our sensitive
data be leaked?

Does this software
have hidden

ransomware?

Does this software
have a backdoor?

Could my propulsion
systems be controlled

from off-ship?

Could false
commands be
issued by this

software?

Is there a kill switch
hidden in this crane

software?

Could this mission
critical data be

changed without
authorization?

Can my secure comms
software send
unencrypted

messages?

Examples are entirely notional, for illustration purposes only.

8

Full Scope of the Problem

… …

……

Can my ship’s
location

be tracked?

Is there hidden,
triggered behavior in

my weapon’s targeting
systems?

Is this software
vulnerable to attack

XYZ?

Could sensitive
communications be
relayed to others?

Could our sensitive
data be leaked?

Does this software
have hidden

ransomware?

Does this software
have a backdoor?

Could my propulsion
systems be controlled

from off-ship?

Could false
commands be
issued by this

software?

Is there a kill switch
hidden in this crane

software?

Could this mission
critical data be

changed without
authorization?

Can my secure comms
software send
unencrypted

messages?

Examples are entirely notional, for illustration purposes only.

Ideally, mission owners would be able to routinely analyze
any mission critical software to answer any mission question.

Full Scope of the Problem

Can my ship’s
location

be tracked? Could false
commands be
issued by this

software?

Is there hidden,
triggered behavior in

my weapon’s targeting
systems?

Is this software
vulnerable to attack

XYZ?

Could sensitive
communications be
relayed to others?

Is there a kill switch
hidden in this crane

software?

Could this mission
critical data be

changed without
authorization?

Could our sensitive
data be leaked?

Does this software
have hidden

ransomware?

Does this software
have a backdoor?

Could my propulsion
systems be controlled

from off-ship?

Can my secure comms
software send
unencrypted
messages?

… …

……

But, capabilities to routinely analyze mission-critical software do not exist today.

We place software-controlled systems into use without adequately understanding them.

Ergo, we operate our critical missions blind to the risks.

9

Examples are entirely notional, for illustration purposes only.

Ideally, mission owners would be able to routinely analyze
any mission critical software to answer any mission question.

The Software Understanding Gap
10

Examples are entirely notional, for illustration purposes only.

Ca
pa

bi
lit

y Software
Production

1986: Fred
Brooks “No
Silver Bullet”

1994: DEFSEC
Perry GOTS to
COTS Memo

1995: Phrack Article,
“Smashing the Stack
for Fun and Profit”

1996-Present: Software complexity
far outstrips the ability to analyze it

Software
Understanding

The software understanding gap will
continue to grow exponentially until a

concerted effort is established to
addresses it.

Society’s ability to produce software has far outstripped our ability to understand it –
this gap drives the inscrutability of software behavior that imperils our missions.

Time

AI generated code is the
latest innovation driving
this gap ever wider.

11

Full Scope of the Problem

… …
Examples are entirely notional, for illustration purposes only.

……

These proxies have positive utility but are insufficient for the assurance needs of
national security and critical infrastructure systems.

Does the supplier certify that they
use secure development practices?

(Attestation)

Do we run tests on the software
before use?

(Testing)

Does the software have patterns of
code known to be malicious?

(Signatures)

What software components does
the supplier attest to?

(Software Bill of Materials)

Do we trust the supplier of the
software?

(Provenance)

Do we use software that observes
the software under scrutiny?

(Monitoring)

We replace mission questions with easily assessed proxies.

12

Software Understanding: Taxonomy

Software
Assurance

Forensic
Analysis

Vulnerability
Analysis

What new
vulnerabilities

does this
dependency
introduce?

What protocol
does this binary

use for command
and control?

What inputs will
trigger specific

behavior?

Is there a
reachable
backdoor?

What
indicators of
compromise

does this
malware

have?

Does the system crash if
the parser reads invalid

data?

13

Software Understanding: Taxonomy

Software
Assurance

Forensic
Analysis

Vulnerability
Analysis

What new
vulnerabilities

does this
dependency
introduce?

What protocol
does this binary

use for command
and control?

Is there a
reachable
backdoor?

What
indicators of
compromise

does this
malware

have?

Does the system crash if
the parser reads invalid

data?

Software Dependability

Cloud Telemetry Analysis

Log Analysis

Malware Analysis

Reverse Engineering

Network and Host Forensics

Indicator Extraction

Risk and Vulnerability Assessment

Red Teaming

Secure Development Guidance

Remote Pen Testing

Software Acquisition
Guidance

Vulnerability Scanning

Critical Product Evaluation

And More…

What inputs will
trigger specific

behavior?

14

Software Understanding: Taxonomy

Software Dependability

Cloud Telemetry Analysis

Log Analysis

Malware Analysis

Reverse Engineering

Network and Host Forensics

Indicator Extraction

All these activities share a common need to reason about software—“software understanding.”

Risk and Vulnerability Assessment

Red Teaming

Secure Development Guidance

Remote Pen Testing

Software Acquisition
Guidance

Vulnerability Scanning

Critical Product Evaluation

And More…

Software Understanding
What behaviors does this

software-controlled system have?

15

Software Understanding: Definition

“Software Understanding”

The practice of constructing or assessing software-controlled systems
to verify or characterize their behaviors across all conditions –

normal, abnormal, and hostile.

16

Software Understanding: Decomposed

Requirements Specification Design Build Release Deploy Operate

Intent Reality

Prevent Undesirable Behavior Discover Undesirable Behavior

Abstract Complex

Reverse Understanding

The practice of assessing of software-
controlled systems to characterize its

behaviors.

The practice of constructing of
software-controlled systems to verify

its behaviors.

Forward Understanding

17

Full Scope of the Problem

Can my ship’s
location

be tracked? Could false
commands be
issued by this

software?

Is there hidden,
triggered behavior in

my weapon’s targeting
systems?

Is this software
vulnerable to attack

XYZ?

Could sensitive
communications be
relayed to others?

Could this mission
critical data be

changed without
authorization?

Could our sensitive
data be leaked?

Does this software
have hidden

ransomware?

Does this software
have a backdoor?

Could my propulsion
systems be controlled

from off-ship?

Can my secure comms
software send
unencrypted

messages?

… …

……

Today, an agency needing to analyze one software package to answer a
mission question can fund an effort to do that analysis.

$$$

Is there a kill switch
hidden in this crane

software?

Examples are entirely notional, for illustration purposes only.

18

Full Scope of the Problem

Can my ship’s
location

be tracked? Could false
commands be
issued by this

software?

Is there hidden,
triggered behavior in

my weapon’s targeting
systems?

Is this software
vulnerable to attack

XYZ?

Could sensitive
communications be
relayed to others?

Could this mission
critical data be

changed without
authorization?

Could our sensitive
data be leaked?

Does this software
have hidden

ransomware?

Does this software
have a backdoor?

Could my propulsion
systems be controlled

from off-ship?

Can my secure comms
software send
unencrypted

messages?

… …
Examples are entirely notional, for illustration purposes only.

Today, an agency needing to analyze one software package to answer a
mission question can fund an effort to do that analysis.

……

Is there a kill switch
hidden in this crane

software?

$$$
$$$

19

Full Scope of the Problem

Can my ship’s
location

be tracked? Could false
commands be
issued by this

software?

Is there hidden,
triggered behavior in

my weapon’s targeting
systems?

Is this software
vulnerable to attack

XYZ?

Could sensitive
communications be
relayed to others?

Could this mission
critical data be

changed without
authorization?

Could our sensitive
data be leaked?

Does this software
have hidden

ransomware?

Does this software
have a backdoor?

Could my propulsion
systems be controlled

from off-ship?

Can my secure comms
software send
unencrypted

messages?

… …

……

Today, an agency needing to analyze one software package to answer a
mission question can fund an effort to do that analysis.

$$$
$$$

Is there a kill switch
hidden in this crane

software?

$$$

$$$

Examples are entirely notional, for illustration purposes only.

20

Full Scope of the Problem

Can my ship’s
location

be tracked? Could false
commands be
issued by this

software?

Is there hidden,
triggered behavior in

my weapon’s targeting
systems?

Is this software
vulnerable to attack

XYZ?

Could sensitive
communications be
relayed to others?

Could this mission
critical data be

changed without
authorization?

Could our sensitive
data be leaked?

Does this software
have hidden

ransomware?

Does this software
have a backdoor?

Could my propulsion
systems be controlled

from off-ship?

Can my secure comms
software send
unencrypted

messages?

Today, an agency needing to analyze one software package to answer a
mission question can fund an effort to do that analysis.

… …

……

$$$
$$$

Is there a kill switch
hidden in this crane

software?

Could false
commands be
issued by this

software?

$$$

$$$

Examples are entirely notional, for illustration purposes only.

21

Full Scope of the Problem

Can my ship’s
location

be tracked? Could false
commands be
issued by this

software?

Is there hidden,
triggered behavior in

my weapon’s targeting
systems?

Is this software
vulnerable to attack

XYZ?

Could sensitive
communications be
relayed to others?

Could this mission
critical data be

changed without
authorization?

Could our sensitive
data be leaked?

Does this software
have hidden

ransomware?

Does this software
have a backdoor?

Could my propulsion
systems be controlled

from off-ship?

Can my secure comms
software send
unencrypted

messages?

… …
Examples are entirely notional, for illustration purposes only.

……

Today, an agency needing to analyze one software package to answer a
mission question can fund an effort to do that analysis.

$$$
$$$

Is there a kill switch
hidden in this crane

software?

$$$

$$$

$$$

Could false
commands be
issued by this

software?

$$$

Today, an agency needing to analyze one software package to answer a
mission question can fund an effort to do that analysis.

22

Technical Opportunity

Can my ship’s
location

be tracked? Could false
commands be
issued by this

software?

Is there hidden,
triggered behavior in

my weapon’s targeting
systems?

Is this software
vulnerable to attack

XYZ?

Could sensitive
communications be
relayed to others?

Could this mission
critical data be

changed without
authorization?

Could our sensitive
data be leaked?

Does this software
have hidden

ransomware?

Does this software
have a backdoor?

Could my propulsion
systems be controlled

from off-ship?

Can my secure comms
software send
unencrypted

messages?

… …
Examples are entirely notional, for illustration purposes only.

……

$$$
$$$

Is there a kill switch
hidden in this crane

software?

$$$

$$$

Could false
commands be
issued by this

software?

$$$

This is, in effect, the current approach—uncoordinated, duplicated effort.

The entire GDP of the nation is insufficient to meet the national need with this approach.

However, there is considerable potential commonality in the
technical foundations across these examples.

A coordinated, collaborative strategy could create radically improved
capabilities with a positive return on investment.

SUNS History: Overview
23

The USG has been wrestling with software understanding challenges for decades.
Recently, efforts have focused on defining challenges, needs, and opportunities.

Defines a call to action for
the U.S. government to take
decisive and coordinated
action to close the software
understanding gap.

Presents a technical
research, development, and
engineering roadmap to
enable the U.S. government
to achieve greater software
understanding.

Outlines the challenges of
software understanding for
NS&CI missions, discusses
the shortcomings of
traditional investment
approaches, documents the
outcomes of the SUNS 2023
Workshop and concludes
with recommendations.

SUNS Workshop
(March 2023)

SUNS Technical
Exchange Meeting

(March 2024)

SUNSEC Founders
Meeting

(July 2024)

SUNS RD&E Roadmap
(December 2024)

Closing the Software
Understanding Gap

(January 2025)

The National Need for
Software Understanding

(March 2025)

20
23

20
24

20
25

These documents are available at https://suns.sandia.gov/

Software Understanding for
National Security –
Partnership Forum

(March 2025)

The forum served as the
“launch event” for the
“Closing the Software
Understanding
Gap” whitepaper.

Technical RD&E Roadmap: Overview
24

The RD&E roadmap outlines technical exploration options toward achieve a greater
reverse understanding of software within NS&CI mission spaces.

Areas of Research in the Roadmap
1. Formal Foundations for Software Reasoning
2. Analysis Architectures and Automated Tool Synthesis
3. Software Execution Modeling
4. Model Generation Techniques
5. Analysis Tool Ecosystem
6. Semantic Knowledge Interference
7. Hierarchical Question Decomposition and Evidence

Composition
8. Datasets, Benchmarks, and Ground Truth

This document is available at https://suns.sandia.gov/

Closing the Software Understanding Gap
25

This report is a call to action for the US Government to take decisive and coordinated
action to close the software understanding gap.

Call to Action

1. Policy Action: Reconsider policy to accelerate the development and
adoption of software understanding capabilities and cultivate
software understanding as a critical national resource.

2. Technology Procurement: Reimagine acquisition of software to
drive risk lower by empowering the U.S. government to foster and
incentivize the widespread adoption of ever-advancing capabilities.

3. Technical Solutions: Establish coordinated foundational and applied
R&D efforts to invest in common solutions that advance national
capabilities more broadly and cost-effectively.

Closing the Software
Understanding Gap

25

2025 SUNS Partnership Forum (SPF)
26

The SUNS Partnership Forum 2025 (SPF-25) served as a launch event for the
“Closing the Software Understanding Gap” report.

SPF-25 Goals

1. Engagement: Engage academia, industry, and government on the software
understanding problem.

2. Perspective: Gather perspectives on the problem, challenges, and potential
solutions.

3. Action: Identify actions that the SUNS partners can each take.

The event brought together the communities below to foster engagement, explore solutions,
and promote collaboration in closing the software understanding gap.

2025 SPF: Structure
27

Each breakout session had 3 groups with a mix of industry, academia, and former government individuals.

The National
Problem

Discussion Questions

• What are your thoughts on
the national need in software
understanding as described?

• What gaps in the software
understanding problem, are
most important to prioritize?

Breakout 1

The Non-Technical
Solution Space

Discussion Questions

• What prevents us from
making progress toward
adequately addressing the
national software
understanding problem?

• What investments are needed
to address this problem
adequately, including
resources, types of resources,
timeframe?

Breakout 2

The Technical
Solution Space

Discussion Questions

• What technical domains need
to be involved in developing
the solutions?

• What age-old but under-
funded techniques need a
boost of investment? What
underexplored novel
techniques should be
prioritized?

Breakout 3

Next Steps
for the Nation

Discussion Questions

• Can the software
understanding problem be
addressed short of a national
effort, and if so, how?

• Given the pervasiveness and
seriousness of the problem,
what type of national effort
might be best suited to
address this problem?

Breakout 4

SPF-25 was structured to be a combination of keynotes, panels, and breakout group
discussions to maximize interaction.

2025 SPF: Outcomes and Key Takeaways
28

Key Takeaways

•Agreement Across Academia and Industry: Broad agreement on the national-
level challenge and scope.

•Software Understanding to Drive Solutions: Broad agreement on Software
Understanding as a powerful concept in elucidating the opportunity cost of the
current approach and the commonality that could drive solutions.

•Lack of National Level Efforts: There was no alternative identified to a national
level effort in software understanding.

•Government Has A Key Role in Discussions: The absence of the government
during discussions was notably impactful, particularly in certain policy areas, such
as acquisition.

5/15/25

SPF outlined the significance of the software understanding challenge from academic,
industry, and government viewpoint – while highlighting the needed next steps.

Proposed Next Steps

1. Engagement with DOD (OUSD R&E,
A&S, DARPA) – in particular, multiple
participants favored a new DARPA
program focused on Software
Understanding.

2. Producing and providing a Software
Understanding technical packet to
the Congressional Research Service.

3. Engagement with NITRD, the
National Academies, CAE
Symposium, HCSS, and other venues.

4. Engagement with the administration
(ONCD, OSTP, OMB, NSC, etc.).

