
User Expectations

in Mobile App Security

Tao Xie
Joint Work w/ Wesley Brooks, Wing Lam, Davis Li, David Yang, Carl Gunter, ChengXiang Zhai (Illinois)

Benjamin Andow, William Enck (NCSU)

Collaborating SoS Lablet PIs:

Sean Smith (Dartmouth), Ross Koppel (U Penn),

Jim Blythe (USC)

NSA SoS Lablet, NSF Medium CNS-1513939,

Google Faculty Research Award

Mobile App Markets

Apple App Store Google Play Microsoft Windows Phone

App Store beyond Mobile Apps!

+++++++++++++++++++++

++
• tempMobile apps can access a wealth

of sensitive data and sensors

Acknowledgment: Slide adapted from Haoyu Wang’s

“Conceptual” Model

5

APP DEVELOPERS

APP USERS

App

Functional

Requirements

App Security

Requirements

User

Functional

Requirements

User Security

Requirements

informal: app description, etc. permission list, etc.

App Code

App Code

Informal App Functional Requirements:

App Description

6

App

Code

App

Permissions

App Security Requirements:

Permission List

7

“Conceptual” Model

8

APP DEVELOPERS

APP USERS

App

Functional

Requirements

App Security

Requirements

User

Functional

Requirements

User Security

Requirements

informal: app description, etc. permission list, etc.

App Code

Example Andriod App: Angry Birds

9

It is NOT that People Don’t Care

http://www.businessinsider.com/app-permission-agreements-privacy-video-2015-2

http://www.businessinsider.com/app-permission-agreements-privacy-video-2015-2

“Conceptual” Model

11

APP DEVELOPERS

APP USERS

App

Functional

Requirements

App Security

Requirements

User

Functional

Requirements

User Security

Requirements

informal: app description, etc. permission list, etc.

App Code

oFocus on permission app descriptions

o permissions (protecting user understandable resources)

should be discussed

o What does the users expect (w.r.t. app functionalities)?

o GPS Tracker: record and send location

o Phone-Call Recorder: record audio during phone call

WHYPER: Text Analytics for Mobile Security

12

App Description Sentence
Permission

Linkage

Pandita et al. WHYPER: Towards Automating Risk Assessment of Mobile Applications. USENIX Security 2013

http://web.engr.illinois.edu/~taoxie/publications/usenixsec13-whyper.pdf

http://web.engr.illinois.edu/~taoxie/publications/usenixsec13-whyper.pdf

WHYPER Overview

Application
Market

WHYPER

DEVELOPERS

USERS 13Pandita et al. WHYPER: Towards Automating Risk Assessment of Mobile Applications. USENIX Security 2013

http://web.engr.illinois.edu/~taoxie/publications/usenixsec13-whyper.pdf

• Enhance user experience while installing apps

• Enforce functionality disclosure on developers

• Complement program analysis to ensure justifications

http://web.engr.illinois.edu/~taoxie/publications/usenixsec13-whyper.pdf

Natural Language Processing on App Description

14

• “Also you can share the yoga exercise to your friends via Email and SMS.”

– Implication of using the contact permission

– Permission sentences

• Confounding effects:

– Certain keywords such as “contact” have a confounding meaning

– E.g., “... displays user contacts, ...” vs “... contact me at abc@xyz.com”.

• Semantic inference:

– Sentences describe a sensitive action w/o referring to keywords

– E.g., “share yoga exercises with your friends via Email and SMS”

NLP + Semantic Graphs/Ontologies Derived from Android API Documents

mailto:abc@xyz.com

• Synonym analysis
• Ex non-permission sentence: “You can now turn recordings into

ringtones.”
• functionality that allows users to create ringtones from previously recorded

sounds but NOT requiring permission to record audio

• false positive due to using synonym: (turn, start)

• Limitations of Semantic Graphs
• Ex. permission sentence: “blow into the mic to extinguish the

flame like a real candle”
• false negative due to failing to associate “blow into” with “record”

• Automatic mining from user comments and forums

Challenges

15

Not All Malware Developers Are “Dumb” or “Lazy”

16

Example Malicious App

17

http://www.which.co.uk/consumer-rights/problem/im-being-charged-for-unwanted-premium-rate-text-messages

Example Malicious App

18

http://www.which.co.uk/consumer-rights/problem/im-being-charged-for-unwanted-premium-rate-text-messages

Example Malicious App

19

Not All Malware Developers Are “Dumb” or “Lazy”

Benign? Malicious?

Insight by Other Researchers

• Stealthy behaviors in Android apps

Premium rate

Phone number

Malicious Web

site

Send SMS to

Send request to

Respond with
malicious app

You didn’t

see me

Huang et al. AsDroid: Detecting Stealthy Behaviors in Android Applications by User Interface and Program Behavior Contradiction. ICSE 2014.

https://www.cs.purdue.edu/homes/xyzhang/Comp/icse14_2.pdf Acknowledgment: slide adapted from AsDroid authors’

https://www.cs.purdue.edu/homes/xyzhang/Comp/icse14_2.pdf

Motivation: Stealthy App Behaviors

• 52-64% of existing malwares send stealthy premium rate

SMS messages or make phone calls [Felt et al. SPSM’11, Zhou et

al. S&P’12]

• Stealthy HTTP requests are also very common

undesirable behaviors in malware [Felt et al. SPSM’11]

– A kind of malware making stealthy HTTP connections caused

8 million dollars loss in March 2010 in China [news in SINA.com]

Acknowledgment: slide adapted from AsDroid authors’

Motivating Example

public class RegLoginListener implements OnClickListener {

public void onClick(View view) {

String uid = ...;

String pass = ...;

if (pref. getBoolean("registered", false)) {

LoginTask.doLogin(uid, pass);

} else {

sendRegisterSms(getPhoneNumber());

doRegister(uid, pass);

...

}

}

}

Acknowledgment: slide adapted from AsDroid authors’

Motivating Example
public class RegLoginListener implements OnClickListener {

public void onClick(View view) {

String uid = ...;

String pass = ...;

if (pref. getBoolean("registered", false)) {

LoginTask.doLogin(uid, pass);

} else {

sendRegisterSms(getPhoneNumber());

doRegister(uid, pass);

...

}

}

private void sendRegisterSms(String phoneNum) {

String msg = String.format("Register Phone: %s",

phoneNum);

SmsManager sm = SmsManager.getDefault();

sm.sendTextMessage("106053", null, msg, null, null);

}

}

public class LoginTask extends AsyncTask {

protected String doInBackground(String... params) {

http.execute(get); // http & get are fields

}

public static void doLogin(String uid, String pass) {

LoginTask login = new LoginTask();

String[] params = new String[] { uid, pass };

login.execute(params);

}

}

RegLoginListener.onClick()

LoginTask.doLogin() sendRegisterSms()

LoginTask.execute()

SmsManager.sendTextMessage()

LoginTask.doInBackground()

indirect call

Acknowledgment: slide adapted from AsDroid authors’

HttpClient.execute()

AsDroid Approach

RegLoginListener.onClick()

HttpAccess

SendSms

Code
behaviors

Correlation Analysis

UI Text

HttpAccess

SendSms

Acknowledgment: slide adapted from AsDroid authors’

Our Own Insight

Different goals of benign apps vs. malware.

• Benign apps
– Meet requirements from users (as delivering utility)

• Malware
– Trigger malicious behaviors frequently (as maximizing profits)

– Evade detection (as prolonging lifetime)

26

Differentiating characteristics

Mobile malware (vs. benign apps)

– Frequently enough to meet the need: frequent occurrences
of imperceptible system events;

• E.g., many malware families trigger malicious behaviors via
background events.

– Not too frequently for users to notice anomaly: indicative
states of external environments

• E.g., Send premium SMS every 12 hours

Balance!!!

ActionReceiver.OnReceive()
Date date = new Date();

if(data.getHours>23 || date.getHours< 5){

ContextWrapper.StartService(MainService);

…

MainService.OnCreate()

DummyMainMethod()

SendTextActivity$4.onClick()
SplashActivity.OnCreate()

SmsManager.sendTextMessage()

long last = db.query(“LastConnectTime");

long current = System.currentTimeMillis();

if(current – last > 43200000){

SmsManager.sendTextMessage();

db.save(“LastConnectTime”, current);

…

SendTextActivity$5.run()
MainService.b()

ContextWrapper.StartService()

The app will send an SMS when

• user clicks a button in the app

Example of malicious app

SendTextActivity$4.onClick

SmsManager.sendTextMessage

ActionReceiver.OnReceive()
Date date = new Date();

if(data.getHours>23 || date.getHours< 5){

ContextWrapper.StartService(MainService);

…

MainService.OnCreate()

DummyMainMethod()

SendTextActivity$4.onClick()
SplashActivity.OnCreate()

SmsManager.sendTextMessage()

long last = db.query(“LastConnectTime");

long current = System.currentTimeMillis();

if(current – last > 43200000){

SmsManager.sendTextMessage();

db.save(“LastConnectTime”, current);

…

SendTextActivity$5.run()MainService.b()

ContextWrapper.StartService()

The app will send an SMS when

• phone signal strength changes

(frequent)

• current time is within 11PM-5 AM

(not too frequent, User not around)

Example of malicious app

if(data.getHours>23 || date.getHours< 5){

Android.intent.action.SIG_STR

ActionReceiver.OnReceive()

Date date = new Date();

if(data.getHours>23 || date.getHours< 5){

ContextWrapper.StartService(MainService);

…

MainService.OnCreate()

DummyMainMethod()

SendTextActivity$4.onClick()
SplashActivity.OnCreate()

SmsManager.sendTextMessage()

long last = db.query(“LastConnectTime");

long current = System.currentTimeMillis();

if(current – last > 43200000){

SmsManager.sendTextMessage();

db.save(“LastConnectTime”, current);

…

SendTextActivity$5.run()
MainService.b()

ContextWrapper.StartService()

The app will send an SMS when

• user enters the app (frequent)

• (current time – time when last msg

sent) >12 hours (not too frequent)

Example

if(current – last > 43200000){

AppContext

• Capture differentiating characteristics

with contexts of security-sensitive

behavior.

• Leverage contexts in machine

learning (classification) to differentiate

malware and benign apps.

Yang et al. AppContext: Differentiating Malicious and Benign Mobile App Behavior Under Contexts. ICSE 2015.

http://taoxie.cs.illinois.edu/publications/icse15-appcontext.pdf

http://taoxie.cs.illinois.edu/publications/icse15-appcontext.pdf

Different Insight by Other Researchers

Attackers like to piggyback the same attack

payload to different legitimate apps.

Chen et al. Finding Unknown Malice in 10 Seconds: Mass Vetting for New Threats at the Google-Play Scale. USENIX Security

2015. https://www.usenix.org/node/190925 Acknowledgment: slide adapted from Kai Chen’s

http://www.appomicsec.com

https://www.usenix.org/node/190925
http://www.appomicsec.com/

Results of Repackaging

Compare related apps,

check “different” code

Acknowledgment: slide adapted from Kai Chen’s

Results of Repackaging

Detect code intersection

in apps with unrelated

apps

Acknowledgment: slide adapted from Kai Chen’s

MassVet approach: DiffCom Analysis

Sim-View

Analysis

No

Yes Diff Analysis

Com Analysis

Suspicious?

Acknowledgment: slide adapted from Kai Chen’s

MassVet: Diff Analysis
• For apps having the same view and different signatures,

the different methods between the two apps may be
malicious

• Challenge 1: How to quickly compare two apps and find
the different methods?

• Challenge 2: Are the different methods malicious?

Chen et al. Finding Unknown Malice in 10 Seconds: Mass Vetting for New Threats at the Google-Play Scale. USENIX Security

2015. https://www.usenix.org/node/190925 Acknowledgment: slide adapted from Kai Chen’s

https://www.usenix.org/node/190925

MassVet: Com Analysis

• For the apps with different views, find the common code

• Challenge 1: Are the two apps really unrelated?

• Challenge 2: Is the common code really malicious?

Chen et al. Finding Unknown Malice in 10 Seconds: Mass Vetting for New Threats at the Google-Play Scale. USENIX Security

2015. https://www.usenix.org/node/190925 Acknowledgment: slide adapted from Kai Chen’s

https://www.usenix.org/node/190925

Putting Pieces Together

39

APP DEVELOPERS

APP USERS

App

Functional

Requirements

App Security

Requirements

User

Functional

Requirements

User Security

Requirements

informal: app description, etc. permission list, etc.

App Code

App Code

WHYPER

AsDroid

AppContext

MassVet

http://www.scmagazineuk.com/chinese-android-smartphones-now-shipping-

with-pre-installed-malware/article/436631/

Pre-Installed Apps/Malware

http://thehackernews.com/2015/09/android-smartphone-malware.html

Pre-Installed Apps/Malware: Middlemen

• “According to the G Data researchers, there is unlikely to have

been anything accidental about the malware it discovered pre-

installed on at least 26 different smartphones from

manufacturers including Huawei, Lenovo and Xiaomi.”

• “Which isn't to say the security firm thinks that the

manufacturers are the perpetrators here, far from it. In fact, G

Data reckons it is down to 'middlemen' in the distribution

chain who are looking to add to their revenue by making

"additional financial gains from stolen user data and enforced

advertising".”

http://www.scmagazineuk.com/chinese-android-smartphones-now-shipping-

with-pre-installed-malware/article/436631/

Pre-Installed Apps/Malware: Removal

http://www.gsmarena.com/samsung_lets_users_delete_preinstalled_apps_in_china_in_light_of_lawsuit-blog-13348.php

http://thehackernews.com/2015/09/android-smartphone-malware.html

Internet of Things Security: Mobile or Not

http://arstechnica.com/security/2016/01/how-to-search-the-internet-of-things-for-photos-of-sleeping-babies/

Internet of Things Security: Mobile or Not

• “The cameras are vulnerable because they use the Real Time

Streaming Protocol (RTSP, port 554) to share video but have

no password authentication in place. The image feed is

available to paid Shodan members at images.shodan.io. Free

Shodan accounts can also search using the filter port:554

has_screenshot:true.”

• “Shodan crawls the Internet at random looking for IP

addresses with open ports. If an open port lacks

authentication and streams a video feed, the new script takes

a snap and moves on.”

http://arstechnica.com/security/2016/01/how-to-search-the-internet-of-things-for-photos-of-sleeping-babies/

http://images.shodan.io/
https://www.shodan.io/search?query=port:554+has_screenshot:true

Internet of Things Security:

The curse of the minimum viable product

• “Tentler told Ars that webcam manufacturers are in a race to

bottom. Consumers do not perceive value in security and

privacy. As a rule, many have not shown a willingness to pay

for such things. As a result, webcam manufacturers slash

costs to maximize their profit, often on narrow margins. Many

webcams now sell for as little as £15 or $20.”

• “"The consumers are saying 'we're not supposed to know

anything about this stuff [cybersecurity]," he said. "The

vendors don't want to lift a finger to help users because it

costs them money."”

http://arstechnica.com/security/2016/01/how-to-search-the-internet-of-things-for-photos-of-sleeping-babies/

(Mobile) Privacy vs. Utility: A Balancing Act

• A likely scenario for a professor
– Student A: “May I record our 1-on-1 meeting so that I don’t miss anything?”

– Professor: “Hmmhh… OK… but please don’t post it on public domain or

redistribute it…”

– Hopefully….

• Mobile utility apps: app store management, Input method,

IME (input method editor)

– even non-mobile ones: medical devices, search engines, ….

• Assurance case for privacy policy compliance by app or

service providers

Sen et al. Bootstrapping Privacy Compliance in Big Data Systems, Oakland 2013.

http://research.microsoft.com/apps/pubs/default.aspx?id=208626

http://research.microsoft.com/apps/pubs/default.aspx?id=208626

User Expectations in Mobile App Security

47

APP DEVELOPERS

APP USERS

App

Functional

Requirements

App Security

Requirements

User

Functional

Requirements

User Security

Requirements

informal: app description, etc. permission list, etc.

App Code

App Code

WHYPER

AsDroid

AppContext

MassVet

User Expectations in Mobile App Security

48

APP DEVELOPERS

APP USERS

App

Functional

Requirements

App Security

Requirements

User

Functional

Requirements

User Security

Requirements

informal: app description, etc. permission list, etc.

App Code

App Code

WHYPER

AsDroid

AppContext

MassVet

taoxie@illinois.edu

NSA SoS Lablet, NSF Medium CNS-1513939,

Google Faculty Research Award

