Differential privacy, entropy and security in distributed control of cyber-physical systems

YU WANG, ZHENQI HUANG, SAYAN MITRA, GEIR DULLERUD APRIL 26, 2016

General Question

For distributed control systems, how expensive is it to preserve privacy? How to optimize?

Navigation

Routing delays vs location privacy

Smart Grid

Peak demand vs schedule privacy

Section I: On Differential Privacy of Distributed Control System

Distributed control

Consider a network of vehicles evolving in a shared environment (road congestion)

State of each agent (vehicle) x_i

Evolve with coupled dynamics (delays)

Agents want to share state to estimate delays

Private preferences p_i ,

initial states + sequence of waypoint

Report value $z_i = x_i + noise$

Dynamics of agent:

$$z_i = x_i + w_i$$

$$u_i = g(x_i, p_i, z)$$

$$x_i^+ = f(x_i, x, u_i)$$

Some notations

$$z_i = x_i + w_i$$

$$u_i = g(x_i, p_i, z)$$

$$x_i^+ = f(x_i, x, u_i)$$

•Sensitive data set: $D = \{p_i\}_{i \in [N]}$ collects agent preference

• Two data set D, D' are adjacent if they differ in one agent's data

•Observation sequence: $O = \{z(t)\}_{t \in [T]} \in \Re^{\{nNT\}}$

•Trajectory: $\xi = \{x(t)\}_{t \in [T]}$,

• Fully defined by a data set D and observation O, $\xi_{D,O}$

ϵ -differential privacy

Definition: The randomized communication is **\epsilon**-differentially private with $\epsilon > 0$, if for all adjacent datasets D and D' for all subset of observations S,

 $\Pr[O_D \in S] \le e^{\epsilon} \Pr[O_D, \in S]$

•Difference in one agent's data doesn't change the output distribution much

•Small ϵ , high privacy; $\epsilon \to 0$, no communication; $\epsilon \to \infty$, no privacy

•How to design the noise to achieve ϵ -differential privacy?

Laplace mechanism for one-shot **QUETIES**[Dwork06]

No dynamics involve, just exchanging initial states • $p_i \in \Re$ is the initial state of agent *i*

Laplace mechanism: $z_i = p_i + Lap\left(\frac{1}{\epsilon}\right)$ gives ϵ -differential privacy for any ϵ • $Lap\left(\frac{1}{\epsilon}\right)$ has p.d.f. : $f(x) = \frac{\epsilon}{2}e^{\epsilon|x|}$ • $\forall x, x': \frac{f(x)}{f(x')} \le e^{\epsilon |x-x'|}$

• The average reported value is $\sum z_i$ which gives DP with accuracy bounds

When dynamics come into the picture

Definition: the **sensitivity** of the system is supremum 1-norm between agent trajectories

$$S(t) = \sup_{\substack{\text{adj}(D,D')\\ 0 \in Obs}} |\xi_{D,O,i}(t) - \xi_{D',O,i}(t)|_1$$

- Sensitivity is a property of dynamics of the network
- It can be computed [HiCoNS2014], [CAV2014]

Laplace Mechanism for dynamical systems

Theorem: The following distributed control system is ϵ -differentially private:

• at each time t, each agent adds an vector of independent Laplace noise $Lap(\frac{S(t)T}{\epsilon})$ to its actual state:

$$z(t) = x_i(t) + Lap(\frac{S(t)T}{\epsilon})$$

 Larger time horizon, higher privacy level, larger sensitivity ⇒ more noise ⇒ worse accuracy

Cost of Privacy

Average Cost: $Cost_p = \frac{1}{N} \sum_{t=0}^{T} \sum_i |x_i(t) - p_i(t)|^2$

Baseline cost \overline{Cost}_p : the cost when $z_i(t) = x_i(t)$ • No noise

The Cost of Privacy of a DP mechanism M is: $CoP = \sup_{p} \mathbf{E}[Cost_{p} - \overline{Cost_{p}}]$

CoP for linear dynamical system

For stable dynamics: $\operatorname{CoP} \sim O(\frac{T^3}{N^2 \epsilon^2})$,

otherwise exponential in T

Summary

Extend the notion of differential privacy to dynamical systems

Generalize Laplace mechanism to dynamical observation using sensitivity of trajectories

For stable dynamics CoP ~ $O(\frac{T^3}{N^2\epsilon^2})$, otherwise, exponential in T

Section II: Entropy-minimization of Differential Privacy

Feedback control system

$$z = x + w$$
$$x^+ = f(x, z)$$

•Feedback control of agent:

- Sensitive data: x_0 initial state of agent
 - Protecting the initial state is equivalent to protecting the whole trajectory
- Observation sequence: $O = \{z(t)\}_{t \in [T]}$

•Question: how much information is lost by adding noise? How to minimize the information loss?

Estimation & Entropy

Definition. An estimate of the agent's initial state is the expectation of the initial state given the history of the agents' report

$$\widetilde{x_t} = \mathbf{E}[x_0 | z_0, z_1, \dots, z_t]$$

Definition. The entropy of a random variable x with probability distribution function f(x) is defined as $H(x) = -\int f(x) \ln x \, dx$

Entropy-minimization problem

For minimizing the amount of information loss for achieving differential privacy, we design the noise w to be added :

Minimize $H(\widetilde{x_t})$

Subject to: $\forall a, b$: $P[\widetilde{x_t} = a] \le e^{\epsilon |a-b|} P[\widetilde{x_t} = b]$

Result for one-shot case

$$z = x + w$$

The estimate $\tilde{x} \in \Re^n$ is computed by the first observation $z \in \Re^n$, no dynamics is involved.

Theorem: The lower-bound of estimate entropy is $n - n \ln \frac{\epsilon}{2}$, which is achieved by adding Laplace noise $w \sim Lap(1/\epsilon)$

Sketch of proof [CDC14]

- Let p(x, z) be the joint distribution of initial state x and report z, we find a symmetric property
- •Claim 1: for any x, p(x, z x) is even
 - Since the noise to add is n = z x, the noise is mean-zero
- •Claim 2: for any c, p(x, z) = p(2c x, 2c z)
 - The noise added is independent of the state
- •We can define f(w) = f(z x) = p(x, z)
- •Claim 3: f(w) is non-decreasing

Extension with dynamics

z = x + w $x^+ = f(x, z)$

The estimate $\widetilde{x_t} = E[x_0|z_0, z_1, ..., z_t]$ is computed by the first t observation $\{z_s\}_{s \in [T]}$

•Theorem: The lower-bound of estimate entropy is still $n - n \ln \frac{\epsilon}{2}$, which is achieved by a Laplace mechanism.

Optimal Laplace mechanism

z = x + n $x^+ = f(x, z)$

•The first noise to add is the same as the one-shot case:

$$w_0 \sim Lap(1/\epsilon)$$

•In the following round t > 0, the noise to be added is by evolving the initial noise with the dynamics: $w_t = \xi(w_0, t)$

Summary

•Formulate a general estimation problem for which we want to minimize the entropy of estimate

•Prove a lower bound of estimation entropy $n - n \ln \frac{\epsilon}{2}$

•The lower bound is achieved by Laplace mechanism

Section III: Differential Privacy of Distributed Optimization

Architecture

- Local objective functions
- Global constraints
- Communication via the cloud

How to keep objective functions differentially private in communication?

Algorithm

$$\begin{aligned} x_i \leftarrow \Pi_{X_i} \left[x_i - \gamma_t \left(\frac{\partial f_i}{\partial x_i} + \mu^T \frac{\partial g}{\partial x_i} + \alpha_t x_i \right) \right] \\ \mu \leftarrow \Pi_M [\mu + \gamma_t (g(x) - \alpha_t \mu)] \\ \mu \leftarrow \mu + \nu(t) \end{aligned}$$

Assumptions

- Linear objective functions $f_i(x_i) = a_i x_i$
- Lipschitz Constraints $\left\|\frac{\partial g_j}{\partial x_k}\right\| \le l_{j,k}$
- Completely correlated noise v(t)

Constraints
$$g_1(x), \dots, g_m(x)$$

 $\mu + v(t)$
 x_1
 x_n
 $\mu + v(t)$
Agent 1
 $f_1(x_1)$
 \dots
Agent n
 $f_n(x_n)$

Privacy

Two sensitive data $D = \{a_1, ..., a_n\}$ and $D' = \{a_1', ..., a_n'\}$ are adjacent if they differ only in the *i*th element. The distance between them is $||D - D'|| = ||a_i - a'_i||$.

The algorithm is ε -differentially private if given initial state $x(0), \mu(0)$, the sequence of public multiplier generated by two adjacent sensitive data satisfies

$$Pr\left[\mu_D^{x(0),\mu(0)} \in O\right]$$

$$\leq e^{\varepsilon \|D - D'\|} Pr\left[\mu_{D'}^{x(0),\mu(0)} \in O\right]$$

$$\begin{aligned} x_i \leftarrow \Pi_{X_i} \left[x_i - \gamma_t \left(\frac{\partial f_i}{\partial x_i} + \mu^T \frac{\partial g}{\partial x_i} + \alpha_t x_i \right) \right] \\ \mu \leftarrow \Pi_M [\mu + \gamma_t (g(x) - \alpha_t \mu)] \\ \mu \leftarrow \mu + \nu(t) \end{aligned}$$

The loss of accuracy is defined by $\Lambda_D(T) = \max_{x(0) \in X, \mu(0) \in M} Var \left[\mu_{D, v^{(T)}}^{x(0), \mu(0)}(T) - \mu_{D, 0}^{x(0), \mu(0)}(T) \right]$

Sensitivity: influence of perturbing the sensitive data on observation

$$\mu(s) \qquad \mu(s+1) \dashrightarrow \mu(s+2) \dashrightarrow \mu(s+3) \dashrightarrow \dots$$

$$x(s) \longrightarrow x(s+1) \longrightarrow x(s+2) \longrightarrow x(s+3) \longrightarrow \dots$$

For temporary perturbation on a(s), the noise should be

$$\Delta_{s}(t) = \begin{cases} 0, & 1 \le t \le s \\ \gamma_{s} \gamma_{s+1} l, & t = s+1 \\ \gamma_{s} \gamma_{t} \prod_{k=s}^{t-1} (1 - \alpha_{k} \gamma_{k}) l, & t \ge s+2 \end{cases}$$

Noise-adding Mechanism

Mechanism: Add noise

$$v(t) = \begin{cases} 0, & t = 1\\ \gamma_1 \gamma_2 lw, & t = 2\\ \gamma_t \left(\gamma_{t-1} + \sum_{s=1}^{t-1} \gamma_s \prod_{k=s+1}^{t-1} (1 - \alpha_k \gamma_k) \right) lw, & t \ge 3\\ & w \sim Lap(\frac{1}{\varepsilon}) \end{cases}$$

Asymptotics

$$v(t) \preccurlyeq \frac{\gamma_1 l w t^{-(c_1 - c_2)}}{\alpha_1},$$

Trade-off

The loss of accuracy is bounded asymptotically by $\Lambda_D(T) \leq \frac{2T^{2c_2}l}{\alpha_1^2 \varepsilon^2}$

higher privacy level \leftrightarrow smaller $\varepsilon \leftrightarrow$ larger $\Lambda_D \leftrightarrow$ larger error

Simulations

Summary

Privacy in distributed optimization

Trade-off between privacy and accuracy