
• MDPs are a general framework for sequential decision making under uncertainty
• A solution is a policy, or a function that maps states to optimal actions

• Finding a policy called planning, or controller synthesis, or learning
• Discrete states transition to other discrete states probabilistically

• Transition function 𝑝𝑝(𝑠𝑠′|𝑠𝑠, 𝑎𝑎) governs how states transition to a new state 𝑠𝑠′ given an action
• Cost function 𝑐𝑐(𝑠𝑠, 𝑎𝑎) describes that immediate cost of a state-action pair

• Costly states may still have high value—paying an initial up-front cost might be optimal
• Exact problem can be solved with iterative procedures like value iteration or directly with a linear program

• Value iteration finds the value function 𝑣𝑣 𝑠𝑠 = min
𝑎𝑎

𝑐𝑐 𝑠𝑠, 𝑎𝑎 + 𝛾𝛾𝔼𝔼𝑠𝑠′𝑣𝑣(𝑠𝑠′)
• The value function describes the long-term cost of being in a particular state
• Implicitly describes the optimal policy: 𝜋𝜋∗ 𝑠𝑠 = argmin𝑎𝑎 𝑐𝑐 𝑠𝑠, 𝑎𝑎 + 𝛾𝛾𝔼𝔼𝑠𝑠′𝑣𝑣(𝑠𝑠′)

• MDPs can be solved via the following linear programs :

• The dual variables are flow function that that describe the expected number of times the system will perform action a in 
state s: 𝑓𝑓𝑎𝑎 𝑠𝑠 = ∑𝑡𝑡=0∞ 𝛾𝛾𝑡𝑡𝑃𝑃(𝑠𝑠𝑡𝑡 = 𝑠𝑠, 𝑎𝑎𝑡𝑡 = 𝑎𝑎)

• Also  implicitly describe the optimal policy: 𝜋𝜋∗ 𝑠𝑠 = argmax𝑎𝑎 𝑓𝑓𝑎𝑎 𝑠𝑠
• All linear programs can be expressed as LCPs; this is the MDP LCP:

• General purpose MDP solvers work on discrete state-spaces
• Can model continuous physical systems (e.g. robotic control, plant control) by discretizing dynamics

• State-space may be huge; many important MDPs are intractable to solve exactly
• D-dimensional continuous physical system with N points per dimension has 𝑁𝑁𝐷𝐷 states.
• This is usually intractable for 𝑁𝑁 ≥ 5 (depends on smoothness of dynamics)
• Called the “curse of dimensionality”

• Approximation solution methods, like least-squares policy iteration, policy search, and fitted value iteration are necessary to 
tackle many real-world planning problems

• Our approach approximations both the value and flow functions via a projective LCP
• Can use both approximate value and flow functions together via an actor-critic RL method, like Monte Carlo Tree Search

Approximate planning, controller synthesis, and anomaly
detection through variational inequalities and 
linear complementarity problems

Application: policy synthesis via Markov Decision Processes (MDPs)

Application: classification via support vector machines (SVMs)

• Support vector machines (SVMs) are a machine learning model useful for classification and regression
• SVMs find hyperplanes (in some features space) that do a good job of splitting positively labeled data from negatively 

labeled data
• Using different feature spaces leads to decision boundaries that can appear highly non-linear

• Fitting the (hard margin) SVM model can be done with a quadratic program that maximizes the margin between positive 
and negative points.

• Y is a diagonal matrix of the labels
• 𝑋𝑋 be an 𝑁𝑁 × 𝑑𝑑 feature matrix.
• w is the normal vector; want a normal vector with small magnitude

• The dual program, after some rearrangement, is a simply constrained cone-constrained problem:

• 𝑦𝑦 ∘ 𝛼𝛼 is the weight for each point in a decision function:

• This can be simply written as an LCP where M = 𝑌𝑌𝑌𝑌𝑋𝑋⊤𝑌𝑌 and 𝑞𝑞 = −1
• Our approach approximates the symmetric, monotone SVM LCP using a projective LPC
• Good approximation tends to smooth out the 𝛼𝛼

• Exact SVMs have sparse 𝛼𝛼; points corresponding to non-zero components of 𝛼𝛼 are called support vectors
• This smoothing behavior seems to have nice statistical properties

• Limits how precisely a single point’s weights can be set
• Approximation can make the SVM fit more robust to label noise
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• Variational inequalities represent important conditions that occur frequently in equilibrium and optimization problems.
• Based on an operator F and a subset C:  

𝑦𝑦 − 𝑥𝑥, 𝐹𝐹𝐹𝐹 ≥ 0, ∀𝑦𝑦 ∈ 𝐶𝐶
• First order sufficient conditions for minimizing a proper convex function f over a convex set C is an important example

𝑦𝑦 − 𝑥𝑥, 𝜕𝜕𝜕𝜕(𝑥𝑥) ≥ 0, ∀𝑦𝑦 ∈ 𝐶𝐶
• Any feasible direction 𝑦𝑦 − 𝑥𝑥 must have a non-negative first-order variation, increasing the function value

• Application areas include: 
• Optimization; in particular this encompasses planning, reinforcement learning, control synthesis, classification, and anomaly detection
• Equilibria finding in engineering including traffic equilibria and structural equilibria
• Equilibria finding in game theory; sufficient conditions for the Nash equilibrium can be expressed as a variational inequality
• Physical simulation; especially those involving non-penetration constraints

• LCPs are a restricted class of VIs where the operator is affine and the subset is a cone
𝐾𝐾 ∋ 𝑥𝑥 ⊥ 𝑦𝑦 = 𝑀𝑀𝑀𝑀 + 𝑞𝑞 ≥ 𝑥𝑥 ∈ 𝐾𝐾∗

• The KKT system for quadratic programs are LCPs:

• Our work is on solving monotone LCPs approximately, by solving a projective LCP that approximates the above system within the span of some basis Φ
• An operator F is monotone over set C if 

𝐹𝐹𝐹𝐹 − 𝐹𝐹𝐹𝐹, 𝑥𝑥 − 𝑦𝑦 ≥ 0, ∀𝑥𝑥, 𝑦𝑦 ∈ 𝐶𝐶
• Monotone operators are related to convex problems: the KKT operator associated with convex problems are monotone

N = ΠΦ𝑀𝑀 + Π⊥, 𝑟𝑟 = ΠΦq, 0 ≤ 𝑥𝑥 ⊥ ΠΦ𝑀𝑀𝑀𝑀 + Π⊥𝑥𝑥 + ΠΦ𝑞𝑞 ≥ 0
• Developed a fast interior point solver that works with projective LCPs in time that is 𝑂𝑂 𝑛𝑛𝑘𝑘2 per iteration, rather than 𝑂𝑂 𝑛𝑛2+𝜖𝜖 , a huge saving if 𝑘𝑘 ≪ 𝑛𝑛
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Our method fits the blue curve 
200x faster than the looser red 
curve. Black is ground truth.

1500 examples; Gaussian 
kernel; Chebyshev basis.

Simple four point SVM 
example. Illustrates 
the margin, and the 
SVM LCP.
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