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* Asolution is a policy, or a function that maps states to optimal actions
* Finding a policy called planning, or controller synthesis, or learning ,
e Discrete states transition to other discrete states probabilistically p(s'ls,a)

Variational inequalities (VIS), Iinear complementarity prOblemS (LCPS), and apprOXimation  Transition function p(s'|s, a) governs how states transition to a new state s’ given an action M

e Cost function c(s, a) describes that immediate cost of a state-action pair
e Costly states may still have high value—paying an initial up-front cost might be optimal c(s,a)
e Exact problem can be solved with iterative procedures like value iteration or directly with a linear program
* Value iteration finds the value function v(s) = mgn [c(s,a) + yE v(s")]

What are variational inequalities?
e Variational inequalities represent important conditions that occur frequently in equilibrium and optimization problems.
* Based on an operator F and a subset C:

e The value function describes the long-term cost of being in a particular state
 Implicitly describes the optimal policy: m*(s) = argming[c(s,a) + yE v (s")]
 MDPs can be solved via the following linear programs : A
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 The dual variables are flow function that that describe the expected number of times the system will perform action a in

state s: f,(s) = X2 Y P(sy = s,a; = a)
* Also implicitly describe the optimal policy: m*(s) = argmax, f,(s)

(y—x,Fx)>0,VyecC

e First order sufficient conditions for minimizing a proper convex function f over a convex set Cis an important example

(y —x,0f(x)) 2 0,vy e
* Any feasible direction y — x must have a non-negative first-order variation, increasing the function value
e Application areas include:
e Optimization; in particular this encompasses planning, reinforcement learning, control synthesis, classification, and anomaly detection
e Equilibria finding in engineering including traffic equilibria and structural equilibria
e Equilibria finding in game theory; sufficient conditions for the Nash equilibrium can be expressed as a variational inequality
e Physical simulation; especially those involving non-penetration constraints

v e Alllinear programs can be expressed as LCPs; this is the MDP LCP:
e LCPs are a restricted class of VIs where the operator is affine and the subset is a cone Plot of the three solution for LCP
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0 e Can model continuous physical systems (e.g. robotic control, plant control) by discretizing dynamics
Ax < b H —C 0 e State-space may be huge; many important MDPs are intractable to solve exactly
Cx <d « D-dimensional continuous physical system with N points per dimension has N states.
e This is usually intractable for N = 5 (depends on smoothness of dynamics)
* Called the “curse of dimensionality”

What is this project about?

e QOur work is on solving monotone LCPs approximately, by solving a projective LCP that approximates the above system within the span of some basis ® e Approximation solution methods, like least-squares policy iteration, policy search, and fitted value iteration are necessary to
* An operator Fis monotone over set C if tackle many real-world planning problems
—_ —_ e Our approach approximations bo e value and flow functions via a projective
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« Monotone operators are related to convex problems: the KKT operator associated with convex problems are monotone e Can use both approximate value and flow functions together via an actor-critic RL method, like Monte Carlo Tree Search
N = Hq)M + HJ_, r = Hq)q, 0<xL1l Hq)Mx + HJ_.X' + Hq)q >0 Reference primal ' Reference dual
« Developed a fast interior point solver that works with projective LCPs in time that is O(nk?) per iteration, rather than O(n?*€), a huge saving if k < n 6 Value o G ACoN 0 5 6 Value 1e-8 g |09 Action 0 .
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e Support vector machines (SVMs) are a machine learning model useful for classification and regression al -6 4
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