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Abstract— Proactive security reviews and test efforts are a 
necessary component of the software development lifecycle. 
Resource limitations often preclude reviewing the entire code 
base. Making informed decisions on what code to review can 
improve a team’s ability to find and remove vulnerabilities. 
Risk-based attack surface approximation (RASA) is a technique 
that uses crash dump stack traces to predict what code may 
contain exploitable vulnerabilities. The goal of this research is 
to help software development teams prioritize security efforts by 
the efficient development of a risk-based attack surface 
approximation. We explore the use of RASA using Mozilla 
Firefox and Microsoft Windows stack traces from crash dumps. 
We create RASA at the file level for Firefox, in which the 15.8% 
of the files that were part of the approximation contained 73.6% 
of the vulnerabilities seen for the product. We also explore the 
effect of random sampling of crashes on the approximation, as 
it may be impractical for organizations to store and process 
every crash received. We find that 10-fold random sampling of 
crashes at a rate of 10% resulted in 3% less vulnerabilities 
identified than using the entire set of stack traces for Mozilla 
Firefox. Sampling crashes in Windows 8.1 at a rate of 40% 
resulted in insignificant differences in vulnerability and file 
coverage as compared to a rate of 100%.  

Keywords- stack traces, attack surface, prediction models 

I. INTRODUCTION 

The attack surface of a system can be used to determine 
which parts of a system’s codebase could have exploitable 
security vulnerabilities. The Open Web Application Security 
Project (OWASP) defines the attack surface of a system as the 
paths in and out of a system, the data that travels those paths, 
and the code that protects the paths and the data.1 Items not on 
the attack surface of a system are unreachable by outside input, 
and, therefore, less likely to be exploited. If outside input 
cannot be passed to code containing a security vulnerability, 
engineering hours spent working on finding and fixing that 
vulnerability should be spent elsewhere. Vulnerability 
detection and removal techniques, such as security reviews 
and penetration testing, can therefore be prioritized to code 
attack surface, rather than being applied indiscriminately. 
Reducing the amount of code to be inspected may help 
improve the economics of security assessments and allow for 
more proactive reviews of potentially vulnerable code. 

Risk-based attack surface approximation (RASA) [1] is an 
approach to identifying code in a software system that is 

                                                           
1 https://www.owasp.org/index.php?title=Attack_Surface_Analysis_Cheat_S

heet&oldid=156006 

contained on the attack surface through crash dump stack trace 
analysis. Code that appears in stack traces caused by outside 
activity is at risk of having security vulnerabilities as well. For 
RASA, all code found in the stack traces from crash dumps is 
classified as being on the attack surface of a system. Mining 
crash dumps to determine what code is crashing may result in 
a useful metric for determining where security vulnerabilities 
are in code, because stack traces in crash dumps indicate what 
code was involved in a failure. Additionally, attackers may 
use stack traces from crash dumps to determine where flawed 
input handlers may be in a software system. From the 
attacker’s perspective, a repeatable crash could be exploited 
as a potential denial of service attack. 

The goal of this research is to help software development 
teams prioritize security efforts by approximating the attack 
surface of a software system via risk-based attack surface 
approximation. For some organizations, storing and analyzing 
every single crash seen internally and by customers may be 
infeasible, as some products can quickly generate hundreds of 
millions of crashes if popular. Therefore, we explore the effect 
of randomly sampling stack traces from crash dumps on the 
final RASA to determine of it is a viable strategy to make 
RASA more economical for practitioners. 

We explore the following research questions: 
 
• RQ1: How effective is risk-based attack surface 

approximation in predicting the location of security 
vulnerabilities? 

• RQ2: How does random sampling of crash dump 
stack traces affect the variability and effectiveness of 
the resulting risk-based attack surface approximation 
in predicting the location of security vulnerabilities? 
 

In this paper, we performed a RASA for Firefox and 
Microsoft Windows, based on stack traces collected from both 
products. To assess RASA, we compare the set of known 
security vulnerabilities from each product’s respective bug 
database against the files identified as part of the 
approximation. After generating the initial RASA, we then 
rerun the experiment using random samples of crashes from 
Firefox and Windows to determine how sampling may change 
the final result, compared to using the entire set of crashes. 
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We include the following as contributions in this paper: 
 
• An evaluation of the effectiveness of risk-based attack 

surface approximation for an open source application 
that corroborates with an earlier attack surface 
approximation study on a proprietary product [1]. 

• An analysis of the effect of random sampling of crash 
dump stack traces on the final result of risk-based 
attack surface approximation 

• An exploration of the amount of stack traces from 
crash dumps required for actionable results for risk-
based attack surface approximation. 
 

The rest of the paper is organized as follows: Section 2 
discusses background and related work, Section 3 presents our 
research methodology, Sections 4 and 5 present our case 
studies for Firefox and Windows, respectively, Sections 6 and 
7 discuss the results and why we ended up with them, Section 
8 presents limitations and threats to validity, and Section 9 
concludes and discusses future work. 

II. BACKGROUND AND RELATED WORK 

In this section, we provide a brief overview of related work 
and the previous study done in the area of attack surfaces and 
defect prediction. 

A. Attack Surface 

As mentioned previously, The Open Web Application 
Security Project (OWASP) defines the attack surface of a 
system as the paths into and out of a system, the data that 
travels those paths, and the code that protects the paths and the 
data. The OWASP attack surface definition also includes “the 
sum of all paths for data/commands into and out of the 
application.” Howard et al. [17] provided a definition of attack 
surface using three dimensions: 1) targets and enablers; 2) 
channels and protocols; and 3) access rights. Not all areas of 
a system may be directly or indirectly exposed to the outside. 
Some parts of a complex software system, e.g. Windows OS, 
may not be reachable or exploitable by an attacker. In Figure 
1, we present a graphical representation of what the attack 
surface of a system is. The nodes with the thick dark arrows 
pointing at them are the entry points into a system, showing 
where an outsider can pass input into a system. The remaining 
shaded nodes and arrows represent the path outside input takes 
through the system, with data eventually terminating in the 
center of the system. 

Manadhata et al. [33] describe how an attack surface might 
be approximated by looking at Application Program Interface 
(API) entry points. However, the Manadhata approach does 
not cover all exposed code, as the authors mention. 
Specifically, internal flow of data through a system was not 
identified. While the external points of a system are a useful 
place to start, they do not encompass the entirety of exposed 
code in the system. Internal points within the system could 
also contain security vulnerabilities that the reviewer should 
be aware of. Previous efforts to determine the attack surface 

                                                           
2 http://www.crashlytics.com/blog/its-finally-here-announcing-crashlytics-

for android/ 

of a system have used API scanning techniques [42], but these 
techniques have limitations in terms of how much code they 
can cover. Further, their approach to measuring attack 
surfaces required expert judgment of security professionals to 
determine if code is security relevant. 

In a previous RASA study [1], researchers found a 
correlation between binaries that appear on stack traces from 
crash dumps and code that contained at least one security 
vulnerability fix. The correlation could be useful to security 
professionals when targeting security reviews of codebases. 
By targeting security efforts to binaries in the RASA instead 
of the entire codebase, security professionals could save 
engineering hours. The researchers created the RASA by 
parsing stack traces from Windows 8 OS, and including any 
binaries involved in a stack trace in their approximation. They 
evaluated the effectiveness of their approach by comparing the 
approximation against the location of historical vulnerabilities 
in Windows 8 OS. In that study, 48.4% of shipped binaries 
seen in at least one crash dump stack trace in Windows 8 OS 
contained 94.8% of the vulnerabilities seen over the same time 
period [1]. 

However, the industrial study has a few limitations. First, 
the approximation was only performed at the binary level of 
the application. A single binary could contain thousands of 
files, making the metric difficult to act on. Second, the 
industrial study only looked at an operating system. To 
address these concerns, we constructed an RASA using stack 
traces at the file level instead of the binary level on an open 
source application instead of an operating system and report 
the results in this paper. 

B. Exploiting Crash Dumps 

 The use of crash dumps, including stack traces from the 
crashes, is becoming used more frequently for identifying 
defects and vulnerabilities2 [23][25]. Liblit and Aiken [18] 
introduced a technique automatically reconstructing complete 
execution paths using stack traces and execution profiles. 
Later, Manevich et al. [19] added data flow analysis 
information on Liblit and Aiken’s approach to explain 
program failures. Other studies use stack traces to localize the 
exact fault location [21][22][23]. An increasing number of 
empirical studies use bug reports and crash dumps to cluster 
bug reports according to their similarity and diversity, e.g. 

Figure 1. A visual representation of what an attack surface is for a 
system. The darker nodes represent the attack surface, where input flows 
through the system. Nodes represent individual binaries, files or 
functions in a target system. 
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Podgurski et al. [24] were among the first to take this 
approach. Other studies followed [25][26]. Not all crash 
dumps are precise enough to allow for clustering. Guo et al. 
[27] used crash dump information to predict which bugs will 
get fixed. Bettenburg et al. [28] assessed the quality of bug 
reports to suggest better and more accurate information for 
helping developers to fix bugs. 

With respect to vulnerabilities, Huang et al. [29] used 
crash dumps to generate new exploits while Holler et al. [30] 
used historic crash reports to mutate corresponding input data 
to find incomplete fixes. Kim et al. [31] analyzed security bug 
reports to predict “top crashes”—those few crashes that 
account for the majority of crash dumps—before new 
software releases. 

III. RESEARCH METHODOLOGY 

In this section, we discuss our research methodology to 
answer our three research questions. 

A. Risk-Based Attack Surface Approximation (RASA) 

To create the RASA for a target system, we first select a 
collection of stack traces from crash dumps from the software 
system we are analyzing. These stack traces are chosen from 
a set period of time. For each individual stack trace pulled 
from a crash dump, we isolate the binary, file, or function on 
each line of each stack trace, and record what code artifact was 
seen and how many times it has been seen in a stack trace. 
Each of the code artifacts from stack traces should then be 
mapped to a code artifact in the system. For example, if the 
file foo.cpp appears in a stack trace, the matching foo.cpp in 
system should be identified. A software system may have 
multiple foo.cpp files, so a method for identifying which 
foo.cpp was in the crash is required. A list of code artifacts in 
a software system could come from toolsets provided by the 
company maintaining the system or pulled directly from 
source control, in the case of open source projects. 

We have created a toolset to parse each individual stack 
trace in our target dataset in sequence, and extract the 
individual code artifacts that appear on each line. The tool 
then outputs the frequency in which each unique code artifact 
appears in a stack trace from the parsed set. For this particular 
study, we do not consider the number of times a code artifact 
appears; only that it appears at least once. The use of 
frequency as a potential metric for future RASA studies is 
discussed in section 9. To tie stack trace appearances to the 
codebase, we generate a list of all source code files from the 
system under inspection and combine that list with the list of 
appearances in stack traces. A flowchart detailing the process 
is shown in Figure 2. In addition to the list of files on the 
RASA, we count the number of artifacts that have security 
vulnerabilities. An example of a list of files with counts of 
appearances on crash dump stack traces is found in Figure 3. 
After we have the list of code that appears on at least one stack 
trace and the code that had at least one vulnerability fix, we 
calculate two RASA evaluation metrics: 

 
1. The percentage of code in the target software system 

that appears in at least one stack trace (or the Risk-
based Attack Surface Approximation), and 

2. The percentage of files with security vulnerabilities 
that appear in at least one stack trace, or vulnerability 
coverage. 
 

For 1) above, we calculate the percentage of files found on 
stack traces via the following formula. We define this metric 
as File Coverage (FC): 

 ሺ1ሻ	ܥܨ =  	݉݁ݐݏݕݏ	ℎ݁ݐ	݊݅	ݏݐ݂ܿܽ݅ݐݎܽ	݁݀ܿ	݂	ݎܾ݁݉ݑ݊	݈ܽݐݐ݁ܿܽݎݐ	݇ܿܽݐݏ	݁݊	ݐݏ݈ܽ݁	ݐܽ	݊	ݏݐ݂ܿܽ݅ݐݎܽ	݁݀ܿ
 
For 2) above, we calculate our vulnerability coverage via 

the following formula. We define this metric as Vulnerability 
Coverage (VC): 

 ሺ2ሻ	ܸܥ = 	 .ݏ݈݊ݑݒ	ℎݐ݅ݓ	ݏݐ݂ܿܽ݅ݐݎܽ	݁݀ܿ	  .ݏ݈݊ݑݒ	ℎݐ݅ݓ	ݏݐ݂ܿܽ݅ݐݎܽ	݁݀ܿ	݂	ݎܾ݁݉ݑ݊	݈ܽݐݐ݁ܿܽݎݐ	݇ܿܽݐݏ	݊
 

B. Random Sampling of Crashes 

For some organizations, analyzing every crash available 
may result in the storage and analysis of hundreds of millions 
of crashes. Storing and analyzing that much data may be 
unfeasible for the organizations, so a random sampling 
approach may be required to limit the amount of crashes 
stored and analyzed. However, random sampling of crashes 
may result in variations in the final result of RASA, 
weakening the approximation and decreasing its usefulness to 
practitioners. Determining the effect of random sampling on 
the end result of the RASA is therefore important to 
understand the use cases of the approach. 

To test the effect of random sampling, we take set 
percentages of stack traces from the overall dataset in our 
study. The stack traces chosen are by random selection. We 
then repeat random selection 10 times, resulting in 10 different 
sets of stack traces representing the same total percentage of 
stack traces from the original dataset. For example, a 
practitioner could choose to permanently store 20% of all 
crashes reported by users. To simulate this case, we randomly 
sample 20% of the crashes from a target dataset 10 times to 
determine the resulting variance. We then compare several 
metrics on the 10 separate samplings: 

 
1) The percentage of files included on stack traces in each 

sample versus the entire set of files in the system. 
2) The total coverage of the sampled RASA of the 

vulnerabilities included on the attack surface. 
3) The change in individual code entities covered on 

different samplings, or the standard deviation between the 10 
samplings. 

4) The change in individual security vulnerabilities 
covered on different samplings, or the standard deviation 
between the 10 samplings. 

 
From these results, we can then draw conclusions on the 

effect of sampling on this approach to RASA. 
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C. Data Requirements 

The initial study on RASA was performed on Microsoft 
Windows 8 [1] and was done with millions of crashes. Not all 
organizations have as much crash information as these large 
organizations, so the feasibility of RASA on smaller datasets 
should be explored. To explore this idea, we take percentages 
of available stack traces from the target software system, from 
90% of the total stack traces available to 10% of the available 
stack traces. The 100% case is covered by our initial 
experiment in Section 3.1. We can then explore the difference 
in code coverage in the resultant RASA, and the difference in 
covered security vulnerabilities in the resultant RASA. We 
expect that an increase in the percentage of stack traces 
included in our study will result in our code coverage and 
vulnerability metrics converging towards our result with all 
stack traces. 

For each of these slices, we perform the random sampling 
analysis as outlined in section 3.2. From those results, we can 
see how sampling affects the result of RASA. As we increase 
the percentage of stack traces in each step of our study, we 
expect the error bounds of our metrics will decrease. 

IV. FIREFOX CASE STUDY 

 In this section, we discuss our first case study on Mozilla 
Firefox. The Firefox team makes crash data from customers 
(with identifying information removed) available publicly. 
They also make security vulnerability fixes public after the 
affected release has passed out of recommended public use. 
Firefox is written in several languages and is a large codebase, 
with approximately 50,000 files in the production codebase in 
the study period of May 2010 through March 2012. 

A. Data Collection 

Mozilla only makes security vulnerability details available 
once the vulnerability has passed out of public use in all 
versions of Firefox. Because of that policy, vulnerability 
information is only available from before 2012. Therefore, we 
could not make use of Mozilla’s primary stack trace data 
website, Mozilla Crash Reports3, as it only keeps full stack 
traces from crashes for approximately 6-7 months. Instead, we 
made use of the historical dumps at https://crash-
analysis.mozilla.com/crash_analysis/. We performed our 
analysis on crashes occurring from May 2010 to March 2012 
due to the available security data. An example of the format 

                                                           
3 https://crash-stats.mozilla.com/home/products/Firefox 

of code crash strings is found in Figure 4. For the crash-
analysis dataset, this format was consistent throughout the 
entire dataset allowing us to build a string parser to grab the 
file path and filename from the middle of the string, as 
delimited by the colons. Crash dumps from the historical 
dataset do not contain the entirety of the stack trace. Only the 
topmost filename is included in each trace. While the Firefox 
stack traces provide less detail than the Windows stack traces, 
observing only the last file seen on the stack trace may be 
another approximation technique that eliminates more files 
from the attack surface. We explore the impact on the 
completeness of RASA, with the metric for completeness 
being the number of vulnerabilities seen on the 
approximation. 

Figure 2. A visualization of the workflow for developing a Risk-Based Attack Surface Approximation for a target software system. 
 

Name Crashes 

js/src/jsgc.cpp 79705 

layout/generic/nsFrame.cpp 73405 

js/src/jsobj.cpp 71040

js/src/xpconnect/src/xpcnative.cpp 51309

xpcom/io/nsLocalFileWin.cpp 41783

layout/generic/nsObjectFrame.cpp 39853

modules/plugin/base/src/ns.cpp 37226 

js/src/jstracer.cpp 36076 

js/src/jsapi.cpp 35671 

js/src/jsinterp.cpp 28912 
Figure 3. A subset of the final dataset used for analysis (some names 
shortened). 

hg:hg.mozilla.org/releases/mozilla-
1.9.2:view/src/nsViewManager.cpp: 

448d0d2d310c 
hg:hg.mozilla.org/releases/mozilla-
1.9.2:xpcom/threads/nsThread.cpp: 

28ef231a65a3 
hg:hg.mozilla.org/releases/mozilla-
1.9.1:layout/generic/nsFrame.cpp: 

c307a617e5a5
hg:hg.mozilla.org/releases/Mozilla-
1.9.2:nsprpub/pr/src/md/windows/w95sock
.c:28ef231a65a3 
hg:hg.mozilla.org/releases/mozilla-
1.9.1:objfirefox/dist/include/string/ns
Algorithm.h:c307a617e5a5 
Figure 4. Examples of files seen in the topmost_filename field in the Firefox 
crash dumps. 
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To collect our security data, we parsed security reports 
from Mozilla’s security advisory blog from the same May 
2010 to March 2012 period. Each security report presented by 
Mozilla has an associated diff or bug report, indicating what 
files were changed as part of the security fix. As mentioned 
previously, part of the reasoning behind selecting this time 
period was the availability of these security reports. Mozilla 
does not always release security bug details for newer 
vulnerabilities for a variety of reasons, such preventing the 
exploit from becoming more widespread. Mozilla makes 
vulnerability details available later after they are confident the 
issue has been resolved for their users.  

B. Random Sampling 

To create our random samples to answer our data sampling 
and randomization questions, we make use of the random 
library in Python 3.X to create our random samples. We 
consider each stack trace for inclusion in our sample by 
generating a random number from 0 to 1 and comparing it 
against our desired percentage for inclusion. For example, if 
we want to include approximately 30% of stack traces in our 
RASA, then we take all stack traces that have random 
numbers generated for them that are less than 0.3. It is 
important to randomly sample each individual stack trace 
rather than randomly choosing sets of stack traces (by hour, 
minute, or day) as specific time periods may be weighted 
towards specific types of crashes. By considering every stack 
trace for random inclusion in our dataset as opposed to blocks 
of time, we simulate how a version of RASA running for a 
practitioner may choose to keep crashes for later analysis. 

V. WINDOWS CASE STUDY 

In this section, we discuss our second case study on 
Microsoft Windows 8.1. 

A. Data Collection 

Each line of a stack trace is organized as follows. The 
binary is shown at the beginning of the string, followed by a 
“!” delimiter and the function name. In the square brackets, 
the full path of the file associated with this binary/function 
relationship is shown. Not all stack traces will include the 
name of the source file. Some stack traces may even display 
anonymous placeholders for functions and binaries, 
depending on the permissions and ability to identify these 
details during runtime. For example, Windows stack traces 
contain no details about artifacts outside Windows, e.g. a 
third-party application causing the crash.   

Each stack trace is parsed and separated into individual 
artifacts, including binary name, function name, and file 
name. We then map each of these artifacts to code as they are 
named in Microsoft’s internal software engineering tools. File 
information is not always available. In these cases, we make 
use of software engineering data indicating relationships 
between binaries, files, and functions to find the missing data 
if possible. If these symbol tables contain the function name 
referenced by the stack trace, we pull the corresponding 
source file onto the attack surface. In case the function name 
is not unique, e.g. overloading the function in multiple files, 
we over approximate the attack surface and pull all possible 

source files onto the attack surface. If no function name can 
be found, e.g. function not shipped with Windows, we leave 
the file marked as unknown. Thus, this approach generates an 
attack surface that is an approximation of reality. 

When code is seen in a stack trace, we place information 
about that code into a database table containing all code on the 
attack surface approximation. When this code is added to the 
database, we enter as much information as possible about the 
line in the stack trace. In some cases, this is just the binary, as 
the file and function cannot be mapped. Other cases may have 
the exact file and/or function. We also collect the list of 
artifacts appearing directly before and after each artifact in 
each stack trace. This data can be used in a variety of helpful 
ways, particularly in visualizing these relationships in graph 
format as seen in Figure 1.  

Sometimes actual entities within the system are unable to 
be mapped from the stack traces. For example, errors 
occurring during the process of creating the stack trace could 
result in unknown code entities on the trace. When a mapping 
is unable to be made, we label that entity as “unknown,” and 
do not place that entity on the attack surface.  The output used 
by the development and security teams is a classification of 
whether an entity is on or off the attack surface.  This 
classification can be used for prioritizing defect fixing, 
validation, and verification efforts. 

After parsing out individual traces, we were left with 
approximately 9 million crashes from Windows 8.1 to run our 
sampling study.  

We map security bug information to specific code artifacts 
found during our parsing of crash dump stack traces. We 
collect security bug information at the file level, and map the 
bug information to files from stack traces. Individual bugs are 
also defined as pre-release or post-release, depending on when 
the bug was found during the development process. Pre-
release is defined as bugs found in code before its official 
release to customers, where official does not include customer 
alpha or beta releases. Post-release is defined as bugs found in 
code after an official release. We use post-release bugs as our 
set of vulnerabilities for this study. 

B. Random Sampling 

To create our random samples, the collection of stack 
traces was placed in a MSSQL database, with a table 
dedicated to individual lines for individual classes, and a 
second table with mappings for individual crashes to the 
version of Windows that crash was found on. Using the C# 
programming language, we randomly sampled individual 
crashes at each sampling size (10% of the available crashes, 
20% of the available crashes, etc. If a crash was chosen for a 
particular sample, we included files that were seen in that 
crash in RASA for that run. For Firefox, this is the last file 
seen for a particular crash, while in Windows this is all files 
seen in the crash. We ran 10 samples at each sampling level 
using 10 different fixed seeds so the analysis could be 
replicated. We aggregated the 10 runs for each sample size 
into average percentage of shipped files for Windows 8.1 
covered by RASA, average percentage of vulnerabilities 
covered, and the standard deviation of our random runs for 
both statistics. 
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VI. RESULTS 

In this section, we present our results and discuss what 
each of the results means for security professionals. 

A. Attack Surface Approximation (RQ1) 

RQ1: How effective is risk-based attack surface 
approximation in predicting the location of vulnerabilities? 
 

After applying RASA to Mozilla Firefox, 15.8% of files 
contained 73.6% of the vulnerabilities in our study. When 
applied to Windows 8.1, 11.6% of files contained 20.2% of 
vulnerabilities in our study.  The initial study on Windows 8 
found that 48.4% of binaries contained 94.8% of historical 
vulnerabilities when filtering by binaries with a minimum of 
one appearance on a stack trace. 

We have improved the granularity of attack surface 
approximation compared to the previous study [1], in addition 
to the quantitative improvements in coverage and specificity. 
By performing attack surface approximation at the file level, 
we provide more actionable results for practitioners. While a 

single binary file could contain thousands of individual files 
for developers to review, files are typically a more 
manageable level of granularity for a developer, depending on 
the development practices of the organization using attack 
surface approximation. We have lost vulnerability coverage in 
comparison to the original study, indicating a tradeoff as we 
modify RASA for more practical levels of granularity.  

B. Random Sampling (RQ2) 

RQ2: How does random sampling of crash dump stack 
traces affect the variability and effectiveness of the 
resulting risk-based attack surface approximation in 
predicting the location of security vulnerabilities? 
 

The average number of files covered by RASA and the 
average number of security vulnerabilities covered by RASA 
at various random sampling points is found in Table 1 for 
Mozilla Firefox and Table 2 for Microsoft Windows 8.1. As 
the size of the random sampling increases, we see that the  

TABLE I.  RESULTS OF RISK-BASED ATTACK SURFACE APPROXIMATION ANALYSIS ON MOZILLA FIREFOX. 

Sample 
Size Avg %files Avg %vulns Stdev %files Stdev %vulns

10% 12.8% 70.9% 0.03% 0.49%

20% 13.8% 71.9% 0.03% 0.42%

30% 14.3% 72.2% 0.03% 0.34%

40% 14.7% 72.6% 0.02% 0.37%

50% 15.0% 72.8% 0.03% 0.35%

60% 15.2% 73.0% 0.03% 0.30%

70% 15.4% 73.1% 0.03% 0.35%

80% 15.5% 73.3% 0.03% 0.27%

90% 15.7% 73.4% 0.02% 0.16%

100% 15.8% 73.6% X X

 

TABLE II.  RESULTS OF RISK-BASED ATTACK SURFACE APPROXIMATION ANALYSIS ON WINDOWS 8.1 . 

Sample 
Size Avg %files Avg %vulns Stdev %files Stdev %vulns

10% 13.8% 32.0% 0.03% 0.1%

20% 16.6% 35.9% <0.01% 0.1%

30% 18.3% 38.1% <0.01% 0.08%

40% 19.6% 39.5% <0.01% 0.1%

50% 20.7% 40.8% .<0.01% 0.1%

60% 21.4% 41.9% <0.01% 0.1%

70% 22.1% 42.5% <0.01% 0.1%

80% 22.7% 43.3% <0.01% 0.07%

90% 23.2% 44.2% <0.01% 0.05%

100% 23.6% 44.5% X X
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 Figure 5.  Graph of the percentage of files included on the RASA at random 
samples for Microsoft Windows. 

Figure 6. Graph of the percentage of vulnerabilities covered by RASA at 
random samples for Mozilla Firefox. 

 

 
Figure 7. Graph of the percentage of files included on the RASA at random 
samples for Microsoft Windows. 

Figure 8. Graph of the percentage of vulnerabilities covered by RASA at
random samples for Microsoft Windows. 
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average number of files covered by RASA also increases, 
while the standard deviation of the individual runs shows no  
discernable trend. For coverage of security vulnerabilities, we 
also see a slight increase in coverage as the random sampling 
size increases. In the case of security vulnerability coverage, 
we see that the standard deviation decreases as the sample size 
increases.  

From these results, we conclude that randomly sampling 
stack traces for the two datasets do not result in appreciable 
changes in code coverage or vulnerability coverage from run 
to run. The standard deviation in both cases is small in 
comparison with the total number to be insignificant in 
practical terms for determining what code is on the RASA. 

A graph of vulnerability coverage for our implementation 
of RASA for Mozilla Firefox is found in Figure 5. In this 
graph, we observe that the difference between using 10% of 
the total crashes of Firefox versus 100% of the total crashes is 
less than 4% in total vulnerability coverage. Additionally, we 
see that the trend line levels off quickly, with less than 1% 
difference in total coverage of vulnerabilities starting at a 40% 
sampling of crashes. We conclude from this graph that 
random sampling of crashes has a minimal effect on RASA’s 
ability to cover security vulnerabilities. 

A graph of total file coverage (the number of files on 
RASA versus the total number of files in the system) for 
Firefox is found in Figure 6. From this graph, we see an 
increase in the number of files included on the RASA as the 
sample size increases. From Table 1 and Figures 5 and 6, we 
can see points of diminishing returns for vulnerability 
coverage in terms of the tradeoff of additional files on the 
RASA. From a 70% random sample to a complete set of 
crashes, we only cover an additional 2 vulnerabilities while 
adding about 200 files to the RASA, at the cost of the storage 
and analysis of 30% more data. This result suggests that 
randomly sampling stack traces could be an effective 
technique for reducing the cost of running RASA. In a timing 
test done on the Firefox sample, parsing the complete set of 
stack traces on a 2013 MacBook Pro using Python scripts took 
23 minutes, while the 10% sample took 87 seconds. These 
results will vary greatly depending on the number of stack 
traces in a given sample, the clock speed of the system the task 
is running on, the available memory in the system, and the 
code for parsing the stack traces. 

VII. WHY DOES SAMPLING WORK? 

Our data shows that random sampling of crashes from a 
large dataset does not cause appreciably different results for 
RASA compared to RASA run over a complete set of 
available stack traces. Our intuition told us that random 
sampling would cause an equivalent drop in coverage of 
security vulnerabilities: why is this not the case? 

To explore this idea, we present Table 3, which is a subset 
of the list of files in Mozilla Firefox. We sorted the list of files 
by those that had a security vulnerability fix associated with 
them, and then by the number of times the file was seen in a 
crash. We then found the point where files had a vulnerability 
fix, but never appeared in a crash dump stack trace. 

From the table, only 6 files associated with a security 
vulnerability fix appeared in only one stack trace. Returning 

to Table 1, we see that the difference in total vulnerability 
coverage from a 10% sample to the complete set of crashes is 
11 files.  

This observation could explain why random sampling had 
a minimal effect on vulnerable file coverage. For a vulnerable 
file to no longer be covered by RASA, it cannot appear in any 
stack trace from a crash in the target system. When taking 
random samples of crashes, you remove a set percentage of 
stack trace lines for potential analysis, but your sample must 
not catch any occurrence of a file to not include it on the 
RASA. For example, a 30% sampling of crashes is likely to 
include at least one occurrence of foo.cpp if it occurs 8 times 
in the complete dataset. 

 While this result indicates that RASA can make effective 
use of sampling for large projects like Firefox, it also has 
implications for smaller projects that may not have data on the 
same scale. For a smaller project that collects 10% of the 
crashes that Firefox does, RASA may still be a valuable 
technique for prioritizing security efforts. Additional studies 
on smaller projects are needed to confirm our result, as smaller 
project crashes may not follow a random distribution. 

VIII. LIMITATIONS 

 One of the limitations of our previous work was that the 
RASA approach was only tested on Microsoft Windows and 
that the approach may not have been generalizable. In this 
study, we have demonstrated the value of RASA on Mozilla 
Firefox, but smaller software systems with fewer stack traces 
may not work as well with the approach. Both RASA studies 
have been done on industry leading codebases. Future studies 
could determine how RASA performs on smaller codebases. 

In the absence of an oracle for the complete attack surface, 
we cannot assess the completeness of our approximation. Our 
determination of accuracy currently is based only on known 
vulnerabilities, which may introduce a bias towards code 

TABLE III.  SNAPSHOT OF FILES WHERE VULNERABILITY COVERAGE 
STOPS, WHEN SORTY BY THE NUMBER OF TIMES A FILE WAS SEEN IN A 

CRASH. 

File Name Cra
shes 

Vulnerabili
ty?

js/src/liveconnect/jsj_
JavaClass.c 

6 1

js/src/liveconnect/jsj_
JavaArray.c 

6 1

docshell/base/nsDocShel
lEnumerator.h 

6 1

js/src/jsdbgapi.h 3 1
modules/libpr0n/decoder

s/nsIconDecoder.cpp
2 1

layout/generic/nsPageCo
ntentFrame.h 

1 1

layout/xul/base/src/tre
e/src/nsTreeContentView.h 

1 1

content/base/src/nsNode
Iterator.h

1 1

modules/oji/src/nsCSecu
rityContext.h 

1 1

layout/xul/base/src/tre
e/src/nsTreeSelection 

1 1

js/src/jslock.h 1 1
security/nss/cmd/strsci

nt/strscint.c 
0 1
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previously seen to be vulnerable. While basing our 
effectiveness on historical vulnerabilities may be a good 
assumption, further exploration is needed. RASA outputs, as 
expected, an approximation, and it cannot identify latent 
vulnerabilities directly. 

IX. CONCLUSION 

In this paper, we have evaluated the effectiveness of 
RASA for Mozilla Firefox, and confirmed our previous result 
that crash dump stack traces can help practitioners prioritize 
code with vulnerabilities. We have analyzed the effect of 
random sampling of crash dump stack traces on the final result 
of RASA, and concluded that random sampling is an effective 
technique for reducing the amount of data required to use 
RASA. Finally, by moving granularity to file level in this 
study, we have made the approximation more actionable for 
developers.  Files are a more efficient unit of measure for 
locating vulnerabilities as compared to binaries. 

In the previous study [1], we explored graph 
representations of stack traces using the order of appearance 
of code in the trace. For future work, we would like to 
construct similar graph representations of the trace. A 
standalone tool or plugin integrated with a modern IDE such 
as Eclipse is one method for making this representation useful 
to practitioners. 

Mock examples of the types of graph representations we 
could create are in Figure 1. By showing known failing data 
paths to the developer, they can focus their triaging efforts on 
these paths, excluding any paths that crashes were not seen on. 
By following the visualization, the developer focuses their 
effort on code that has a higher probability of containing 
security defects. 

 In addition to the visualization of the graph representation 
of the stack traces, graph shape analysis is another 
methodology we plan to explore to further narrow our scope 
of code that could contain security vulnerabilities. Do certain 
shapes of incoming and outgoing nodes result in more 
frequent sightings of vulnerabilities? We hypothesize that 
certain shapes, such as many files calling into one file but that 
file only calling out to few files, may exhibit more 
vulnerabilities than other areas. 

Where code appears on graph representations of software 
systems may also be important for prioritization of security 
efforts. For example, if security bugs are more likely to appear 
on the “edge” of a software system, or closer to API entry 
points, then prioritization of those code artifacts may be useful 
for finding security vulnerabilities faster. 

RASA currently looks at the code entities themselves as 
possible locations for security vulnerabilities. The code 
entities themselves may not the interesting metric from a 
security perspective. The relationships between code entities 
may do a better job of pointing out potential vulnerabilities. 
Many common vulnerability types are the result of bad data 
handling, including SQL injection attacks and buffer overflow 
attacks. Future work may be prudent to examine the 
relationships between files (or other code entities at various 
levels of granularity) and determine which relationships 
appear in crashes most frequently. These bad handoffs may 
point us towards where vulnerable code lives. 

In this paper and in previous work, RASA was generated 
based on an on/off approach. If a code artifact appeared in at 
least one crash dump stack trace, then RASA considers that 
code entity as part of the attack surface of the system. 
However, further prioritization within the generated attack 
surface approximation may be possible. The frequency in 
which code appears in stack traces from crash dumps may be 
an additional metric to explore for further prioritization of 
security reviews beyond the attack surface. The more a code 
artifact is involved in crashes, the more likely it might be that 
that code artifact has a related security vulnerability. 
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