A Hypothesis Testing Framework for Network Security

P. Brighten Godfrey University of Illinois at Urbana-Champaign

TSS Seminar, September 15, 2015

Part of the SoS Lablet with

Kevin Jin

Matthew Caesar

Bill Sanders

Work with...

Anduo Wang Wenxuan Zhou Dong Jin Jason Croft Matthew Caesar with Ahmed Khurshid Haohui Mai Xuan Zhou **Rachit Agarwal** Sam King

References to papers in this talk

Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P. Brighten Godfrey, and Samuel T. King. **Debugging the Data Plane with Anteater.** ACM SIGCOMM, August 2011.

Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P. Brighten Godfrey. VeriFlow: Verifying Network-Wide Invariants in Real Time. 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI), April 2013.

Wenxuan Zhou, Dong Jin, Jason Croft, Matthew Caesar, and P. Brighten Godfrey. Enforcing Customizable Consistency Properties in Software-Defined Networks. 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI), April 2015.

Anduo Wang, Brighten Godfrey, and Matthew Caesar. **Ravel: Orchestrating Software-Defined Networks.** Demo in SOSR'15.

Background: Network Verification

Networks are complex

89% of operators never sure that config changes are bug-free

82% concerned that changes would cause problems with existing functionality

– Survey of network operators: [Kim, Reich, Gupta, Shahbaz, Feamster, Clark, USENIX NSDI 2015]

Understanding your network

Bidin	ectional 💌 Hosts		Source	▼ Bits	• 1m	v 10	Une 🕶	Show Other	DNS	1	0		
150 - Am Internal (Percent)													
100 -													
and and almalised maken with which which which which we have the													
	-50				1 01	100	· •		-				
	-100							_					
	2009-08-12 11:30		2009-08	-12 12:30		2009-08	-12 13:30	2009-0	1-12 14:27				
0.000	2009-8-12-11	30	au 2005	8,12 (5.35		. O.	and Dates						
Inbound (Top) [1.54 Mb/s] Results 1 - 10 of 9881 (2.08s) Outbound (Bottom) [1.54 Mb/s] Results 1 - 10 of 360 (1.68s)													
	Host(s)	Flows	Rate	Total	Percent		Host(s)	Flows	Rate	Total	Percent		
1	82.34.44.82	5.99 K	30.65 Kb/s	443.22 Mb	7.81 %	1	51.136.184.3	269.00	100.57 Kb/s	1.45 Gb	51.28 %		
2	17.136.70.92	2.75 K	25.15 Kb/s	363.66 Mb	6.41 %	2	51.136.184.193	42.44 K	65.58 Kb/s	948.23 Mb	33.44 %		
3	213.219.115.51	259.00	18.11 Kb/s	261.84 Mb	4.61 %	3	51.136.184.196	994.00	8.88 Kb/s	128.37 Mb	4.53 %		
4	213.115.216.37	182.00	14.61 Kb/s	211.26 Mb	3.72 %	4	51.136.184.199	2.28 K	8.82 Kb/s	127.60 Mb	4.50 %		
5	126.85.41.35	14.00	13.38 Kb/s	193.15 Mb	3.40 %	5	51.136.184.202	6.63 K	3.39 Kb/s	48.96 Mb	1.73 %		
6	126.85.41.36	11.00	10.64 Kb/s	153.87 Mb	2.71 %	6	51.136.184.2	16.97 K	1.72 Kb/s	24.88 Mb	0.88 %		
7	65.136.140.3	2.42 K	10.41 Kb/s	150.50 Mb	2.65 %	7	51.136.184.195	7.93 K	1.42 Kb/s	20.58 Mb	0.73 %		
8	24.39.1.172	3.29 K	9.84 Kb/s	142.26 Mb	2.51 %	8	51.136.189.103	345.00	536.00 b/s	7.75 Mb	0.27 %		
9	22.37.255.1	237.00	9.39 Kb/s	135.73 Mb	2.39 %	9	51.126.108.44	126.00	485.81 b/s	7.02 Mb	0.25 %		
10	2.23.51.126	925.00	9.37 Kb/s	135.55 Mb	2.39 %	10	51.138.184.21	41.00	421.61 b/s	6.10 Mb	0.21 %		
Other				3.48 Gb	61.40 %	Other				61.99 Mb	2.19 %		
Total				5.68 Gb	100 %	Total				2.84 Gb	100 %		
Prev	1234	5 6	7 8 9	10	989	Prev	123	4 5 6	7 8 9	10	36		
Next						Next							

Flow monitoring

Screenshot from Scrutinizer NetFlow & sFlow analyzer, <u>snmp.co.uk/scrutinizer/</u>

hostname bgpdA password zebra					
router bgp 8000 bgp router-id 10.1.4.2					
! for the link between A and B neighbor 10.1.2.3 remote-as 8000 neighbor 10.1.2.3 update-source lo0					
network 10.0.0/7					
! for the link between A and C neighbor 10.1.3.3 remote-as 7000 neighbor 10.1.3.3 ebgp-multihop neighbor 10.1.3.3 next-hop-self neighbor 10.1.3.3 route-map PP out					
! for link between A and D neighbor 10.1.4.3 remote-as 6000 neighbor 10.1.4.3 ebgp-multihop neighbor 10.1.4.3 next-hop-self neighbor 10.1.4.3 route-map TagD in					
! route update filtering ip community-list 1 permit 8000:1000 !					

Configuration verification

e.g.: RCC for BGP [Feamster & Balakrishnan, NSDI'05]

Configuration verification

Verify the network as close as possible to its actual behavior

Data plane verification

Verify the network as close as possible to its actual behavior

- (Checks current snapshot)
- Insensitive to control protocols
- Accurate model

Architecture

Building It

Verification is nontrivial

Packet: x[0] x[1] x[2] ... x[n]

 $(x_4 \lor x_7 \lor \bar{x_1}) \land (\ldots) \land (\ldots) \land (\ldots)$

NP-complete!

Express data plane and invariants as SAT

• ... up to some max # hops

Check with off-the-shelf SAT solver (Boolector)

Define P(u, v) as the expression for packets traveling from u to v

A packet can flow over (u, v) if and only if it satisfies
 P(u, v)

 $P(u, v) = dst_ip \in 10.1.1.0/24$

Goal: reachability from u to w

 $C = (P(u, v) \land P(v, w))$ is satisfiable

- SAT solver determines the satisfiability of C
- Problem: exponentially many paths
 - Solution: Dynamic programming (a.k.a. loop unrolling)
 - Intermediate variables: "Can reach x in k hops?"
 - Similar to [Xie, Zhan, Maltz, Zhang, Greenberg, Hjalmtysson, Rexford, INFOCOM'05]

Essential to model MPLS, QoS, NAT, etc.

- Model the history of packets: vector over time
- Packet transformation \Rightarrow boolean constraints

over adjacent packet versions

 $(p_i.dst_ip \in 0.1.1.0/24) \land (p_{i+1}.label = 5)$ More generally: $p_{i+1} = f(p_i)$ Experience with an operational network

Evaluated Anteater with operational network

- \sim 178 routers supporting >70,000 machines
- Predominantly OSPF, also uses BGP and static routing
- I,627 FIB entries per router (mean)
- State collected using operator's SNMP scripts

Revealed 23 bugs with 3 invariants in 2 hours

	Loop	Packet loss	Consistency
Being fixed	9	0	0
Stale config.	0	13	I
Total alerts	9	17	2

IDP was overloaded, operator introduced bypass

Bypass routed campus traffic to IDP through static routes

Introduced 9 loops

Packet loss

- Blocking compromised machines at IP level
- Stale configuration
 From Sep, 2008

- One router exposed web admin interface in FIB
- Different policy on private IP address range

Can we verify networks in real time?

Challenge #1: Obtaining real time view of network

Challenge #2:Verification speed

Architecture

VeriFlow architecture

VeriFlow architecture

Verifying invariants quickly

Find only equivalence classes affected by the update via a multidimensional trie data structure

Verifying invariants quickly

All the info to answer queries!

Verifying invariants quickly

Simulated network

- Real-world BGP routing tables (RIBs) from RouteViews totaling 5 million RIB entries
- Injected into 172-router network (AS 1755 topology)

Measure time to process each forwarding change

- 90,000 updates from Route Views
- Check for loops and black holes

Microbenchmark latency

97.8% of updates verified within 1 ms

Towards a Science of Security:

Network Hypothesis Testing

Modeling dynamic networks

Modeling dynamic networks

Timing uncertainty

One solution: "consistent updates"

[Reitblatt, Foster, Rexford, Schlesinger, Walker, "Abstractions for Network Update", SIGCOMM 2012]

Uncertainty-aware verification

Update synthesis via verification

Enforcing dynamic correctness with heuristically maximized parallelism

OK, but...

Can the system "deadlock"?

- Proved classes of networks that never deadlock
- Experimentally rare in practice!
- Last resort: heavyweight "fallback" like consistent updates [Reitblatt et al, SIGCOMM 2012]

Software-defined Networks as Databases

Software-Defined Networks

Ravel: database view of net control

Ravel example

Key benefits

- Abstraction via SQL
- Orchestration via datasharing
- "Bonus" DB services
 - verification, synthesis via view maintenance, update
 - transaction processing

Impact of Network Verification

Configuration verification

 [Al-Shaer2004, Bartal 1999, Benson2009, Feamster2005, Yuan2006]

Firewall verification

• Margrave [Nelson, Barratt, Dougherty, Fisler, Krishnamurthi, LISA'10]

Data plane verification

- Static reachability in IP networks [Xie'05]
- FlowChecker [Al-Shaer, Al-Haj, SafeConfig '10]
- ConfigChecker [Al-Shaer, Al-Saleh, SafeConfig '11]
- Anteater [Mai, Khurshid, Agarwal, Caesar, G., King, SIGCOMM'11]
- VeriFlow [Khurshid, Zou, Zhou, Caesar, G., HotSDN'12, NSDI'13]
- CCG [Zhou, Jin, Croft, Caesar, G., NSDI'15]

- Header Space Analysis

 [Kazemian, Varghese, and McKeown, NSDI '12]
- NetPlumber [Kazemian, Chang, Zeng, Varghese, McKeown, Whyte, NSDI '13]
- Batfish [Fogel, Fung, Pedrosa, Walraed-Sullivan, Govindan, Mahajan, Millstein, NSDI'15]

DPV in the real world

Software pipelines

Stateful Networks

Verifiable SDN Controllers

Higher layer concepts (roles, people, applications)

Thanks!