
A Hypothesis Testing
Framework for

Network Security

P. Brighten Godfrey
University of Illinois at Urbana-Champaign

TSS Seminar, September 15, 2015

Part of the SoS Lablet with

David Nicol

Bill SandersKevin Jin Matthew Caesar

Work with…

Anduo Wang
Wenxuan Zhou

Dong Jin
Jason Croft

Matthew Caesar

Xuan Zhou

with

Haohui Mai
Ahmed Khurshid

Sam King
Rachit Agarwal

References to papers in this talk

Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P. Brighten Godfrey, and Samuel T. King.
Debugging the Data Plane with Anteater. ACM SIGCOMM, August 2011.

Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P. Brighten Godfrey. VeriFlow: Verifying
Network-Wide Invariants in Real Time. 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), April 2013.

Wenxuan Zhou, Dong Jin, Jason Croft, Matthew Caesar, and P. Brighten Godfrey. Enforcing Customizable
Consistency Properties in Software-Defined Networks. 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), April 2015.

Anduo Wang, Brighten Godfrey, and Matthew Caesar. Ravel: Orchestrating Software-Defined Networks. Demo
in SOSR’15.

Background:
Network Verification

Networks are complex

89%
of operators never sure
that config changes are
bug-free 82%

concerned that changes would
cause problems with existing
functionality

– Survey of network operators: [Kim, Reich, Gupta, Shahbaz, Feamster, Clark,
USENIX NSDI 2015]

Understanding your network

Flow monitoring
Screenshot from Scrutinizer
NetFlow & sFlow analyzer,

snmp.co.uk/scrutinizer/

Configuration
verification

e.g.: RCC for BGP [Feamster &
Balakrishnan, NSDI’05]

http://snmp.co.uk/scrutinizer/

device software

device software

device software

device software

device softwaredevice software

Configuration verification

protocols

protocols

protocols

protocols

protocols
protocols

Input

Predicted

Data plane verification

data plane state Input

Predicted

Verify the network
as close as possible to

its actual behavior

Data plane verification

data plane state Input

Predicted

Verify the network
as close as possible to

its actual behavior

• (Checks current snapshot)

• Insensitive to control protocols

• Accurate model

Architecture

“Service S reachable
only through firewall?”

“Is segment isolated?”

Verifier

Diagnosis

Building It

Verification is nontrivial

(x4 _ x7 _ x̄1) ^ (. . .) ^ (. . .) ^ (. . .)

x[4] = 1

x[7] = 1

x[1] = 0

A B

Packet: x[0] x[1] x[2] … x[n]

NP-complete!

Anteater’s solution

Express data plane and invariants as SAT

• ...up to some max # hops

Check with off-the-shelf SAT solver (Boolector)

Data plane as boolean functions

Define P(u, v) as the
expression for packets
traveling from u to v
• A packet can flow over (u,

v) if and only if it satisfies
P(u, v) u v

Destination Action

10.1.1.0/24 Fwd to v

P(u, v) = dst_ip ∈10.1.1.0/24

Reachability as SAT solving

Goal: reachability from u to w
==

C = (P(u, v) ∧ P(v,w)) is satisfiable

u v w

• SAT solver determines the satisfiability of C
• Problem: exponentially many paths
- Solution: Dynamic programming (a.k.a. loop unrolling)
- Intermediate variables: “Can reach x in k hops?”
- Similar to [Xie, Zhan, Maltz, Zhang, Greenberg,

Hjalmtysson, Rexford, INFOCOM’05]

Packet transformation

Essential to model MPLS,
QoS, NAT, etc.

•Model the history of packets: vector over time
• Packet transformation ⇒ boolean constraints

over adjacent packet versions

v wu

label = 5?
dst_ip ∈

0.1.1.0/24

(pi.dst ip 2 0.1.1.0/24) ^ (pi+1.label = 5)
pi+1 = f(pi)More generally:

Experience with an
operational network

Experiences with real network

Evaluated Anteater with operational network

• 〜～178 routers supporting >70,000 machines
• Predominantly OSPF, also uses BGP and static routing
• 1,627 FIB entries per router (mean)
• State collected using operator’s SNMP scripts

Revealed 23 bugs with 3 invariants in 2 hours

Loop Packet loss Consistency

 Being fixed 9 0 0

 Stale config. 0 13 1

Total alerts 9 17 2

Backbone

Forwarding loops

IDP was overloaded,
operator introduced
bypass

Bypass routed campus
traffic to IDP through
static routes

Introduced 9 loops …

building

IDP

bypass

Bugs found by other invariants

u X u

u’

Admin.
interface

12.34.56.0/24

Packet loss

• Blocking compromised
machines at IP level
• Stale configuration

From Sep, 2008

Consistency

• One router exposed web
admin interface in FIB
• Different policy on private IP

address range

Can we verify networks
in real time?

Not so simple

Challenge #1: Obtaining real time view of network

Challenge #2: Verification speed

Architecture

“Service S reachable
only through firewall?”

Verifier

Diagnosis

VeriFlow architecture

Thin, standard interface
to data plane
(e.g. OpenFlow)

this section is to demonstrate a practical means for a
server to verify source provenance similar to the 3WH’s
guarantee, yet without introducing an RTT delay.

4.2 Verifying provenance without a handshake
Lifesaver leverages cryptographic proof to verify the

provenance of client requests without requiring an RTT
delay on every connection. First, the client handshakes
with a provenance verifier (PV) to obtain a prove-
nance certificate (PC). The PC corresponds to cryp-
tographic proof that the PV recently verified that the
client was reachable at a certain IP address. After ob-
taining this certificate once, the client can use it for
multiple requests to place cryptographic proof of prove-
nance in the request packet sent to servers, in a way
that avoids replay attacks.

4.2.1 Choosing a Provenance Verifier
The PV may be any party trusted by the server. We

envision two common use cases.
First, the PV may simply be the web server itself, or a

PV run by its domain at a known location (pv.xyz.com).
The first time a client contacts a domain, it obtains
a PC from the PV prior to initiating the application-
level request to the server; thereafter, it can contact
the server directly. Thus, the first connection takes two
RTTs (as in TCP), and subsequent connections require
a single RTT. This will be highly e�ective for domains
that attract the same user frequently, such as popular
web sites or content distribution networks.

Second, trusted third parties could run a PV service.
The advantage is that a client can avoid paying an RTT
delay for each new server or domain. The disadvantage
is that servers need to trust a third party. But this is
not unprecedented: certificate authorities and the root
DNS servers are examples in today’s Internet.

The above two solutions, and multiple di�erent trusted
third parties, can exist in parallel. If the client uses a
PV the server does not trust, it can fall back to a 3WH
and handshake with an appropriate PV for future re-
quests.

4.2.2 Obtaining a Provenance Certificate
The protocol by which a client obtains a PC is shown

in Figure 4. Before the process begins, the client and PV
have each generated a public/private key pair (Kc

pub/K
c
priv

andKpv
pub/K

pv
priv respectively) using a cryptosystem such

as RSA. The client then sends a request to the PV of
the form

{Kc
pub, dc}

where dc is the duration for which the client requests
that the PC be valid. The PV replies with the PC:

PC = {Kc
pub, ac, t, d}Kpv

priv
.

Here ac is the source address of the client, t is the time

Figure 4: Sending a request in Lifesaver: acquiring the

Provenance and Request Certificates and using them to es-

tablish a connection.

when the PC becomes valid, and d is the length of time
the PC will remain valid. The PV sets t to be the
current time, and sets d to the minimum of dc and the
PV’s internal maximum time, perhaps 1 day (see further
discussion in §4.4).

The obvious implementation of the above exchange
would use TCP, thus proving provenance via TCP’s
3WH. In our implementation, however, each message
is a single UDP message. This is su⇤cient to verify
provenance (§4.1.2) because while it doesn’t prove to
the PV that the client can receive messages at ac, the
client can only use the PC if it is able to receive it at ac.
The advantage of this design over TCP is that the PV
implementation is entirely stateless and, thus, is itself
less vulnerable to DoS attacks and more e⇤cient.

4.2.3 Sending a request
Once the client has a current PC for its present loca-

tion, it can contact a server using the Lifesaver protocol
and include the PC in its request in order to bypass the
3WH.

To do this, the client begins by constructing a re-
quest certificate (RC) encrypted with its private key:

RC = {hash(mnet,mtrans, data), treq}Kc
priv

.

Here hash is a secure hash function,mnet is the network-
layer metadata (source and destination IP address, pro-
tocol number), mtrans is the transport-layer metadata
for the connection (source and destination port, initial
sequence number), treq is the time the client sent the
request, and data is the application-level data (such as
an HTTP request). The RC makes it more di⇤cult for
adversaries to replay a connection request.

The client then opens a transport connection to the
server with a message of the form:

mnet,mtrans, PC,RC, data.

5

Logically centralized
controller

software
abstractions

app app

VeriFlow architecture

Thin, standard interface
to data plane
(e.g. OpenFlow)

this section is to demonstrate a practical means for a
server to verify source provenance similar to the 3WH’s
guarantee, yet without introducing an RTT delay.

4.2 Verifying provenance without a handshake
Lifesaver leverages cryptographic proof to verify the

provenance of client requests without requiring an RTT
delay on every connection. First, the client handshakes
with a provenance verifier (PV) to obtain a prove-
nance certificate (PC). The PC corresponds to cryp-
tographic proof that the PV recently verified that the
client was reachable at a certain IP address. After ob-
taining this certificate once, the client can use it for
multiple requests to place cryptographic proof of prove-
nance in the request packet sent to servers, in a way
that avoids replay attacks.

4.2.1 Choosing a Provenance Verifier
The PV may be any party trusted by the server. We

envision two common use cases.
First, the PV may simply be the web server itself, or a

PV run by its domain at a known location (pv.xyz.com).
The first time a client contacts a domain, it obtains
a PC from the PV prior to initiating the application-
level request to the server; thereafter, it can contact
the server directly. Thus, the first connection takes two
RTTs (as in TCP), and subsequent connections require
a single RTT. This will be highly e�ective for domains
that attract the same user frequently, such as popular
web sites or content distribution networks.

Second, trusted third parties could run a PV service.
The advantage is that a client can avoid paying an RTT
delay for each new server or domain. The disadvantage
is that servers need to trust a third party. But this is
not unprecedented: certificate authorities and the root
DNS servers are examples in today’s Internet.

The above two solutions, and multiple di�erent trusted
third parties, can exist in parallel. If the client uses a
PV the server does not trust, it can fall back to a 3WH
and handshake with an appropriate PV for future re-
quests.

4.2.2 Obtaining a Provenance Certificate
The protocol by which a client obtains a PC is shown

in Figure 4. Before the process begins, the client and PV
have each generated a public/private key pair (Kc

pub/K
c
priv

andKpv
pub/K

pv
priv respectively) using a cryptosystem such

as RSA. The client then sends a request to the PV of
the form

{Kc
pub, dc}

where dc is the duration for which the client requests
that the PC be valid. The PV replies with the PC:

PC = {Kc
pub, ac, t, d}Kpv

priv
.

Here ac is the source address of the client, t is the time

Figure 4: Sending a request in Lifesaver: acquiring the

Provenance and Request Certificates and using them to es-

tablish a connection.

when the PC becomes valid, and d is the length of time
the PC will remain valid. The PV sets t to be the
current time, and sets d to the minimum of dc and the
PV’s internal maximum time, perhaps 1 day (see further
discussion in §4.4).

The obvious implementation of the above exchange
would use TCP, thus proving provenance via TCP’s
3WH. In our implementation, however, each message
is a single UDP message. This is su⇤cient to verify
provenance (§4.1.2) because while it doesn’t prove to
the PV that the client can receive messages at ac, the
client can only use the PC if it is able to receive it at ac.
The advantage of this design over TCP is that the PV
implementation is entirely stateless and, thus, is itself
less vulnerable to DoS attacks and more e⇤cient.

4.2.3 Sending a request
Once the client has a current PC for its present loca-

tion, it can contact a server using the Lifesaver protocol
and include the PC in its request in order to bypass the
3WH.

To do this, the client begins by constructing a re-
quest certificate (RC) encrypted with its private key:

RC = {hash(mnet,mtrans, data), treq}Kc
priv

.

Here hash is a secure hash function,mnet is the network-
layer metadata (source and destination IP address, pro-
tocol number), mtrans is the transport-layer metadata
for the connection (source and destination port, initial
sequence number), treq is the time the client sent the
request, and data is the application-level data (such as
an HTTP request). The RC makes it more di⇤cult for
adversaries to replay a connection request.

The client then opens a transport connection to the
server with a message of the form:

mnet,mtrans, PC,RC, data.

5

software
abstractions

app app

VeriFlow

Logically centralized
controller

Verifying invariants quickly

Veriflow

Generate
Equivalence

Classes
Updates

Fwd’ing rules
Equiv classes

0.0.0.0/1 64.0.0.0/3

Find only equivalence classes affected by the
update via a multidimensional trie data structure

Verifying invariants quickly

Veriflow

Generate
Forwarding

Graphs

Generate
Equivalence

Classes
Updates

All the info to answer queries!

Veriflow

Verifying invariants quickly

Diagnosis report

• Type of invariant
violation

• Affected set of packets

Generate
Forwarding

Graphs

Generate
Equivalence

Classes
Run QueriesUpdates

Good rules Bad rules

Evaluation

Simulated network

• Real-world BGP routing tables (RIBs) from RouteViews
totaling 5 million RIB entries

• Injected into 172-router network (AS 1755 topology)

Measure time to process each forwarding change

• 90,000 updates from Route Views
• Check for loops and black holes

Microbenchmark latency

97.8% of updates verified within 1 ms

Towards a Science of Security:

Network Hypothesis Testing

SoS: Network Hypothesis Testing

1 Modeling dynamic networks

2 Networks as databases

3 Provably correct virtual networks

Modeling dynamic networks

Timing uncertainty

Controller

Remove rule 1
(delayed)

Install rule 2

Rule 1

Rule 2

Switch A Switch B

Possible network states:

One solution: “consistent updates”
[Reitblatt, Foster, Rexford, Schlesinger, Walker, “Abstractions

for Network Update”, SIGCOMM 2012]

Uncertainty-aware verification

Update synthesis via verification

CCG
Stream of Updates

Update queue Verifier

Network
Model

Verification
Engine

Confirmations
Yes

Controller

A should reach B
Safe?

No

A B

C
D

E

F G H

2 1 3 4

1 mod A->C to A->F
2 add F->G
3 add G->H
4 add H->B

Enforcing dynamic correctness with heuristically maximized parallelism

OK, but…

Can the system “deadlock”?

• Proved classes of networks that never deadlock
• Experimentally rare in practice!
• Last resort: heavyweight “fallback” like consistent updates

[Reitblatt et al, SIGCOMM 2012]

Is it fast?

84 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

� ����

������

� ����

������

 ����

��
!���������
���������

!���������
���������

!���������
��������

!���������
��������

���

���

���

���

���

���

�
��

�
�

��
���

���
��
��
�

�
��	

��
�
��
�
��
��

!���������
���������

!���������
���������

!���������
��������

!���������
��������

Immediate Update

GCC

Consistent Updates

���������
�
��} CCG

Figure 11: Network-trace-driven emulations: (1) immediate application of updates; (2) CCG (with CU as fallback); and (3) CU.

 0

 0.5

 1

 1.5

 2

 90 91 92 93 94 95

T
hr

ou
gh

pu
t

(G
bp

s)

Second

CCG
Consistent updates

(a) A eight-switch topology.

 0

 0.5

 1

 1.5

 2

 90 95 100 105 110 115 120 125 130

T
hr

ou
gh

pu
t

(G
bp

s)

Second

CCG
Consistent updates

(b) A 78-switch network.

Figure 13: Physical testbed results: comparison of through-
put changes during network transitions for CCG and CU.

of all updates in the first phase before proceeding to the
second. In contrast, CCG’s algorithm significantly short-
ened the delay, especially for networks experiencing a
large number of state changes. In CCG, the through-
put never dropped below 0.9 Gb/s, while CU experienced
temporary yet significant drops during the transition, pri-
marily due to the switches’ lack of support for simulta-
neous application of updates and processing of packets.
8 Discussion
Limitations: CCG synthesizes network updates with
only heuristically maximized parallelism, and in the
cases where required properties are not segment inde-
pendent, relies on heavier weight fallback mechanisms
to guarantee consistency. When two or more updates
have circular dependencies with respect to the consis-
tency properties, fallback will be triggered. One safe way
of using CCG is to provide it with a strong fallback plug-
in, e.g., CU [25]. Any weaker properties will be auto-
matically ensured by CCG, with fallback triggered (rare
in practice) only for a subset of updates and when nec-
essary. In fact, one can use CCG even when fallback is
always on. In this case, CCG will be faster most of the
time, as discussed in §5.3.

Related work: Among the related approaches, four
warrant further discussion. Most closely related to our
work is Dionysus [15], a dependency-graph based ap-
proach that achieves a goal similar to ours. As discussed
in §2, our approach has the ability to support 1) flexible
properties with high efficiency without the need to im-
plement new algorithms, and 2) applications with wild-
carded rules. [22] also plans updates in advance, but us-
ing model checking. It, however, does not account for
the unpredictable time switches take to perform updates.
In our implementation, CU [25] and VeriFlow [18] are
chosen as the fallback mechanism and verification en-
gine. Nevertheless, they are replaceable components of
the design. For instance, when congestion freedom is the
property of interest, we can replace CU with SWAN [13].

Future work: We plan to study the generality of seg-
ment independent properties both theoretically and prac-
tically, test CCG with more data traces, and extend its
model to handle changes initiated from the network. As
comparison, we will test CCG against the original im-
plementation of Dionysus with dependency graphs cus-
tomized to properties of interest. We will also investi-
gate utilizing possible primitives in network hardware to
facilitate consistent updates.

9 Conclusion
We present CCG, a system that enforces customizable

network consistency properties with high efficiency. We
highlight the network uncertainty problem and its ramifi-
cations, and propose a network modeling technique cor-
rectly derives consistent outputs even in the presence of
uncertainty. The core algorithm of CCG leverages the
uncertainty-aware network model, and synthesizes a fea-
sible network update plan (ordering and timing of control
messages). In addition to ensuring that there are no vi-
olations of consistency requirements, CCG also tries to
maximize update parallelism, subject to the constraints
imposed by the requirements. Through emulations and
experiments on an SDN testbed, we show that CCG is
capable of achieving a better consistency vs. efficiency
trade-off than existing mechanisms.

We thank our shepherd, Katerina Argyraki, for helpful
comments, and the support of the Maryland Procurement
Office under Contract No. H98230-14-C-0141.

12

84 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

� ����

������

� ����

������

 ����

��
!���������
���������

!���������
���������

!���������
��������

!���������
��������

���

���

���

���

���

���

�
��

��

��

���
���

��
��
�

�
��	

��
��

��
��
��

!���������
���������

!���������
���������

!���������
��������

!���������
��������

Immediate Update

GCC

Consistent Updates

���������
�
��} CCG

Figure 11: Network-trace-driven emulations: (1) immediate application of updates; (2) CCG (with CU as fallback); and (3) CU.

 0

 0.5

 1

 1.5

 2

 90 91 92 93 94 95

T
hr

ou
gh

pu
t

(G
bp

s)

Second

CCG
Consistent updates

(a) A eight-switch topology.

 0

 0.5

 1

 1.5

 2

 90 95 100 105 110 115 120 125 130

T
hr

ou
gh

pu
t

(G
bp

s)

Second

CCG
Consistent updates

(b) A 78-switch network.

Figure 13: Physical testbed results: comparison of through-
put changes during network transitions for CCG and CU.

of all updates in the first phase before proceeding to the
second. In contrast, CCG’s algorithm significantly short-
ened the delay, especially for networks experiencing a
large number of state changes. In CCG, the through-
put never dropped below 0.9 Gb/s, while CU experienced
temporary yet significant drops during the transition, pri-
marily due to the switches’ lack of support for simulta-
neous application of updates and processing of packets.
8 Discussion
Limitations: CCG synthesizes network updates with
only heuristically maximized parallelism, and in the
cases where required properties are not segment inde-
pendent, relies on heavier weight fallback mechanisms
to guarantee consistency. When two or more updates
have circular dependencies with respect to the consis-
tency properties, fallback will be triggered. One safe way
of using CCG is to provide it with a strong fallback plug-
in, e.g., CU [25]. Any weaker properties will be auto-
matically ensured by CCG, with fallback triggered (rare
in practice) only for a subset of updates and when nec-
essary. In fact, one can use CCG even when fallback is
always on. In this case, CCG will be faster most of the
time, as discussed in §5.3.

Related work: Among the related approaches, four
warrant further discussion. Most closely related to our
work is Dionysus [15], a dependency-graph based ap-
proach that achieves a goal similar to ours. As discussed
in §2, our approach has the ability to support 1) flexible
properties with high efficiency without the need to im-
plement new algorithms, and 2) applications with wild-
carded rules. [22] also plans updates in advance, but us-
ing model checking. It, however, does not account for
the unpredictable time switches take to perform updates.
In our implementation, CU [25] and VeriFlow [18] are
chosen as the fallback mechanism and verification en-
gine. Nevertheless, they are replaceable components of
the design. For instance, when congestion freedom is the
property of interest, we can replace CU with SWAN [13].

Future work: We plan to study the generality of seg-
ment independent properties both theoretically and prac-
tically, test CCG with more data traces, and extend its
model to handle changes initiated from the network. As
comparison, we will test CCG against the original im-
plementation of Dionysus with dependency graphs cus-
tomized to properties of interest. We will also investi-
gate utilizing possible primitives in network hardware to
facilitate consistent updates.

9 Conclusion
We present CCG, a system that enforces customizable

network consistency properties with high efficiency. We
highlight the network uncertainty problem and its ramifi-
cations, and propose a network modeling technique cor-
rectly derives consistent outputs even in the presence of
uncertainty. The core algorithm of CCG leverages the
uncertainty-aware network model, and synthesizes a fea-
sible network update plan (ordering and timing of control
messages). In addition to ensuring that there are no vi-
olations of consistency requirements, CCG also tries to
maximize update parallelism, subject to the constraints
imposed by the requirements. Through emulations and
experiments on an SDN testbed, we show that CCG is
capable of achieving a better consistency vs. efficiency
trade-off than existing mechanisms.

We thank our shepherd, Katerina Argyraki, for helpful
comments, and the support of the Maryland Procurement
Office under Contract No. H98230-14-C-0141.

1284 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

� ����

������

� ����

������

 ����

��
!���������
���������

!���������
���������

!���������
��������

!���������
��������

���

���

���

���

���

���

�
��

��

��

���
���

��
��
�

�
��	

��
��

��
��
��

!���������
���������

!���������
���������

!���������
��������

!���������
��������

Immediate Update

GCC

Consistent Updates

���������
�
��} CCG

Figure 11: Network-trace-driven emulations: (1) immediate application of updates; (2) CCG (with CU as fallback); and (3) CU.

 0

 0.5

 1

 1.5

 2

 90 91 92 93 94 95

T
hr

ou
gh

pu
t

(G
bp

s)

Second

CCG
Consistent updates

(a) A eight-switch topology.

 0

 0.5

 1

 1.5

 2

 90 95 100 105 110 115 120 125 130

T
hr

ou
gh

pu
t

(G
bp

s)

Second

CCG
Consistent updates

(b) A 78-switch network.

Figure 13: Physical testbed results: comparison of through-
put changes during network transitions for CCG and CU.

of all updates in the first phase before proceeding to the
second. In contrast, CCG’s algorithm significantly short-
ened the delay, especially for networks experiencing a
large number of state changes. In CCG, the through-
put never dropped below 0.9 Gb/s, while CU experienced
temporary yet significant drops during the transition, pri-
marily due to the switches’ lack of support for simulta-
neous application of updates and processing of packets.
8 Discussion
Limitations: CCG synthesizes network updates with
only heuristically maximized parallelism, and in the
cases where required properties are not segment inde-
pendent, relies on heavier weight fallback mechanisms
to guarantee consistency. When two or more updates
have circular dependencies with respect to the consis-
tency properties, fallback will be triggered. One safe way
of using CCG is to provide it with a strong fallback plug-
in, e.g., CU [25]. Any weaker properties will be auto-
matically ensured by CCG, with fallback triggered (rare
in practice) only for a subset of updates and when nec-
essary. In fact, one can use CCG even when fallback is
always on. In this case, CCG will be faster most of the
time, as discussed in §5.3.

Related work: Among the related approaches, four
warrant further discussion. Most closely related to our
work is Dionysus [15], a dependency-graph based ap-
proach that achieves a goal similar to ours. As discussed
in §2, our approach has the ability to support 1) flexible
properties with high efficiency without the need to im-
plement new algorithms, and 2) applications with wild-
carded rules. [22] also plans updates in advance, but us-
ing model checking. It, however, does not account for
the unpredictable time switches take to perform updates.
In our implementation, CU [25] and VeriFlow [18] are
chosen as the fallback mechanism and verification en-
gine. Nevertheless, they are replaceable components of
the design. For instance, when congestion freedom is the
property of interest, we can replace CU with SWAN [13].

Future work: We plan to study the generality of seg-
ment independent properties both theoretically and prac-
tically, test CCG with more data traces, and extend its
model to handle changes initiated from the network. As
comparison, we will test CCG against the original im-
plementation of Dionysus with dependency graphs cus-
tomized to properties of interest. We will also investi-
gate utilizing possible primitives in network hardware to
facilitate consistent updates.

9 Conclusion
We present CCG, a system that enforces customizable

network consistency properties with high efficiency. We
highlight the network uncertainty problem and its ramifi-
cations, and propose a network modeling technique cor-
rectly derives consistent outputs even in the presence of
uncertainty. The core algorithm of CCG leverages the
uncertainty-aware network model, and synthesizes a fea-
sible network update plan (ordering and timing of control
messages). In addition to ensuring that there are no vi-
olations of consistency requirements, CCG also tries to
maximize update parallelism, subject to the constraints
imposed by the requirements. Through emulations and
experiments on an SDN testbed, we show that CCG is
capable of achieving a better consistency vs. efficiency
trade-off than existing mechanisms.

We thank our shepherd, Katerina Argyraki, for helpful
comments, and the support of the Maryland Procurement
Office under Contract No. H98230-14-C-0141.

12

Software-defined Networks
as Databases

Software-Defined Networks

Thin, standard interface
to data plane
(e.g. OpenFlow)

this section is to demonstrate a practical means for a
server to verify source provenance similar to the 3WH’s
guarantee, yet without introducing an RTT delay.

4.2 Verifying provenance without a handshake
Lifesaver leverages cryptographic proof to verify the

provenance of client requests without requiring an RTT
delay on every connection. First, the client handshakes
with a provenance verifier (PV) to obtain a prove-
nance certificate (PC). The PC corresponds to cryp-
tographic proof that the PV recently verified that the
client was reachable at a certain IP address. After ob-
taining this certificate once, the client can use it for
multiple requests to place cryptographic proof of prove-
nance in the request packet sent to servers, in a way
that avoids replay attacks.

4.2.1 Choosing a Provenance Verifier
The PV may be any party trusted by the server. We

envision two common use cases.
First, the PV may simply be the web server itself, or a

PV run by its domain at a known location (pv.xyz.com).
The first time a client contacts a domain, it obtains
a PC from the PV prior to initiating the application-
level request to the server; thereafter, it can contact
the server directly. Thus, the first connection takes two
RTTs (as in TCP), and subsequent connections require
a single RTT. This will be highly e�ective for domains
that attract the same user frequently, such as popular
web sites or content distribution networks.

Second, trusted third parties could run a PV service.
The advantage is that a client can avoid paying an RTT
delay for each new server or domain. The disadvantage
is that servers need to trust a third party. But this is
not unprecedented: certificate authorities and the root
DNS servers are examples in today’s Internet.

The above two solutions, and multiple di�erent trusted
third parties, can exist in parallel. If the client uses a
PV the server does not trust, it can fall back to a 3WH
and handshake with an appropriate PV for future re-
quests.

4.2.2 Obtaining a Provenance Certificate
The protocol by which a client obtains a PC is shown

in Figure 4. Before the process begins, the client and PV
have each generated a public/private key pair (Kc

pub/K
c
priv

andKpv
pub/K

pv
priv respectively) using a cryptosystem such

as RSA. The client then sends a request to the PV of
the form

{Kc
pub, dc}

where dc is the duration for which the client requests
that the PC be valid. The PV replies with the PC:

PC = {Kc
pub, ac, t, d}Kpv

priv
.

Here ac is the source address of the client, t is the time

Figure 4: Sending a request in Lifesaver: acquiring the

Provenance and Request Certificates and using them to es-

tablish a connection.

when the PC becomes valid, and d is the length of time
the PC will remain valid. The PV sets t to be the
current time, and sets d to the minimum of dc and the
PV’s internal maximum time, perhaps 1 day (see further
discussion in §4.4).

The obvious implementation of the above exchange
would use TCP, thus proving provenance via TCP’s
3WH. In our implementation, however, each message
is a single UDP message. This is su⇤cient to verify
provenance (§4.1.2) because while it doesn’t prove to
the PV that the client can receive messages at ac, the
client can only use the PC if it is able to receive it at ac.
The advantage of this design over TCP is that the PV
implementation is entirely stateless and, thus, is itself
less vulnerable to DoS attacks and more e⇤cient.

4.2.3 Sending a request
Once the client has a current PC for its present loca-

tion, it can contact a server using the Lifesaver protocol
and include the PC in its request in order to bypass the
3WH.

To do this, the client begins by constructing a re-
quest certificate (RC) encrypted with its private key:

RC = {hash(mnet,mtrans, data), treq}Kc
priv

.

Here hash is a secure hash function,mnet is the network-
layer metadata (source and destination IP address, pro-
tocol number), mtrans is the transport-layer metadata
for the connection (source and destination port, initial
sequence number), treq is the time the client sent the
request, and data is the application-level data (such as
an HTTP request). The RC makes it more di⇤cult for
adversaries to replay a connection request.

The client then opens a transport connection to the
server with a message of the form:

mnet,mtrans, PC,RC, data.

5

Logically centralized
controller

software
abstractions

app app

Ravel: database view of net control

Network

base tables

query,
updatenotification

events Openflow
control

app
view

app
view

app
view

st
an

da
rd

 S
Q

L
da

ta
ba

se

app view

Ravel example
balance

load

base

view

configurationtraffic
matrix

tenant
virtual

network

access
control

shortest pathload
balancer

add_flow del_flow

verify

3

21

compute
path

view

Key benefits
balance

load

configurationtraffic
matrix

tenant
virtual

network

access
control

shortest pathload
balancer

add_flow del_flow

verify

3

21

compute
pathAbstraction via SQL

Orchestration via data-
sharing

“Bonus” DB services

• verification, synthesis
via view maintenance,
update

• transaction processing

Impact of Network Verification

Configuration verification

Configuration verification

• [Al-Shaer2004, Bartal1999, Benson2009, Feamster2005,
Yuan2006]

Firewall verification

• Margrave [Nelson, Barratt, Dougherty, Fisler,
Krishnamurthi, LISA’10]

Data plane verification

• Static reachability in IP networks [Xie’05]
• FlowChecker [Al-Shaer, Al-Haj, SafeConfig ’10]
• ConfigChecker [Al-Shaer, Al-Saleh, SafeConfig ’11]

• Anteater [Mai, Khurshid, Agarwal,
Caesar, G., King, SIGCOMM’11]

• VeriFlow [Khurshid, Zou, Zhou,
Caesar, G., HotSDN’12, NSDI’13]

• CCG [Zhou, Jin, Croft, Caesar, G.,
NSDI’15]

• Header Space Analysis
[Kazemian, Varghese, and
McKeown, NSDI ’12]

• NetPlumber [Kazemian, Chang,
Zeng, Varghese, McKeown,
Whyte, NSDI ’13]

• Batfish [Fogel, Fung, Pedrosa,
Walraed-Sullivan, Govindan,
Mahajan, Millstein, NSDI’15]

DPV in the real world

Microsoft

This paper is included in the Proceedings of the

12th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’15).

May 4–6, 2015 • Oakland, CA, USA

ISBN 978-1-931971-218

Open Access to the Proceedings of the

12th USENIX Symposium on

Networked Systems Design and

Implementation (NSDI ’15)

is sponsored by USENIX

Checking Beliefs in Dynamic Networks

Nuno P. Lopes, Nikolaj Bjørner, and Patrice Godefroid, Microsoft Research;

Karthick Jayaraman, Microsoft Azure; George Varghese, Microsoft Research

https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/lopes

Future research: Richer models

Software pipelines

Verifiable SDN Controllers

Stateful Networks

Higher layer concepts
(roles, people, applications)

Thanks!

