
Securing SDNs with App Provenance
UIUC/R2 Monthly Group Meeting
Presented by Ben Ujcich
September 18, 2017



2

Project Members
§ Ben Ujcich (UIUC)
§ Sam Jero (Purdue)
§ Anne Edmunson (Princeton)
§ Richard Skowyra (MITLL)
§ James Landry (MITLL)
§ Adam Bates (UIUC)
§ Bill Sanders (UIUC)
§ Cristina Nita-Rotaru (Northeastern)
§ Hamed Okhravi (MITLL)



3

Motivation



4

Challenges
§ Network applications can modify:
– OpenFlow control protocol messages 

(e.g., PACKET_IN)
– Shared data structures (e.g., topology 

data store)
§ Northbound API boundary between 

apps and controller is complicated
§ Apps bundled with controller have 

risks depending on language

App 1 App 2

SDN Controller

OpenFlow 
event 

handler
Data stores



5

Prior Solutions
§ Permission-based access control (e.g., Security Mode ONOS)
– Pros: easy to implement hierarchical permissions
– Cons: does not track data once permission has been granted; not 

expressive for contextual-based systems
§ Taint tracking
– Pros: traces how data is used from “sources” to “sinks” for information 

flow control; minimal additional storage constraints
– Cons: does not capture which system principal/agent was responsible 

(i.e., no attribution)



6

Solution: ProvSDN
§ Add data provenance collection to 

controller activities to create a 
provenance-aware control plane

§ Implemented as extension to 
ONOS SDN controller

§ No modifications needed to apps
§ Acceptable latency overheads for 

provenance capture (~100 ms) 
and online detection/prevention 
(~300 ms)

ProvSDN
architecture

Provenance graph 
example



7

Components
§ Cross-app poisoning attacks
§ Northbound API semantics
§ ProvSDN provenance model
§ ProvSDN architecture design
§ Implementation
§ Evaluation
§ Results



8

Cross-App Poisoning Attacks

Method 1: Shared data structure access via 
controller API 

Method 2: PacketIn processing via 
callbacks.



9

Northbound API Semantics
§ Unlike traditional operating systems, SDNs do not (yet) have 

well-defined semantics
§ Prerequisite for defining provenance model
§ Approach: static analysis of controller functions/methods
– Class with high number of references in other classes (3 or more) is 

considered public-facing and thus part of the northbound API
– ONOS “Public”: 63 classes, 721 methods
– ONOS “Internal”: 194 classes, 1,405 methods



10

ProvSDN Provenance Model (W3C PROV-DM)

endedAtTime

wasAssociatedWithactedOnBehalfOf

wasGeneratedBy

wasAttributedTo

wasDerivedFrom

wasInformedBy

used

Activity

Entity

Agent

xsd:dateTime

startedAtTime

xsd:dateTime

Source: “A Walk Through PROV-O”, Tim Lebo, 
https://www.w3.org/2011/prov/wiki/ISWCProvTu
torial



11

ProvSDN Architecture Design
§ Security goals
– Non-bypassable
– Complete

§ Threat model
§ Northbound API 

enforcement
§ Optimizations



12

Implementation
§ Controller: ONOS (Java-based)
– ProvSDN provenance collector: 1,100 LOC

§ Provenance graph database: Neo4j
– Separate Neo4j server instance

§ Provenance query language: Neo4j Cypher



13

Evaluation
§ Policy: only allow apps to 

use data that was
1. generated from previous 

activity by app,
2. genereted by controller, or
3. generated by switches

§ Enforcing application 
isolation

Neo4j Cypher query for policy

Subgraph pattern represented by query



14

Evaluation: Host Location Change Attack

§ Prevent forwarding app from using HostLocation data that 
was previously tampered with by malicious app mal



15

Evaluation: ARP Spoofing Attack

§ Prevent forwarding app from using an OpenFlow PacketIn
message that was tampered with by malicious app mal



16

Results: End Host Latency

§ Provenance generation 
adds one order of 
magnitude to latency

§ Average 140 ms without 
checks and 330 ms with 
checks

§ (Future work: other 
graph databases)



17

Results: Microbenchmarking

§ Online querying was most expensive
§ API boundary check was most frequent (and least expensive)



18

Results: Storage

§ Spikes correspond to flow 
modifications; depends 
on topology

§ (Future work: pruning 
provenance graph)



19

Summary
§ Provenance-based solution to information flow control for 

securing SDN controllers and network applications
§ Real-time checking for online enforcement of information flow 

control policies
§ Implemented in production-quality ONOS SDN controller
§ Future work: exploring other ways we can use provenance (e.g., 

compliance, forensics)
§ Paper submitted to NDSS ‘18



20

Questions?
§ Thanks for listening!


