
Verification from Simulations
and Modular Annotations

Zhenqi Huang, Yu Wang, Sayan Mitra and Geir Dullerud
Coordinated Science Lab

University of Illinois at Urbana-Champaign

Presenter
Presentation Notes
Today I am gonna talk about scalable invariant verification of composed non-linear dynamical systems. This approach can also be generalized to switch and hybrid systems.

Composed Safety-critical CPS

2

Presenter
Presentation Notes
Water Distribution systemElectrical GridsTraffic Control systemSwarm robots

Safety under Adversary

3

�̇�𝑥 = 𝑓𝑓(𝑥𝑥,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑎𝑎)�̇�𝑢𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑢𝑢𝑐𝑐 , 𝑥𝑥)

Vehicle Controller

𝑢𝑢𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥)

Adversary

Presenter
Presentation Notes
Hybrid automata is a mathematical model for cyber-physical systems. Its has a structure like a FSM with multiple modes, which shown by green squares. In addition, HA has a set of real-valued variables that evolve continuously overtime. In each of the modes, the evolution of the continuous variables are captured by Differential equations. Sometimes these differential equations may take an input signal that is originating from another HA.Consider, for example, a model of a heart, where a cardiac cell is stimulated by a pacemaker.Motivated by many recalls in medical devices often resulting from SW bugs, now there is body of work that is attempting to verify models of pacemaker designs w.r.t. increasingly realistic models of the heart

Invariant Verification

Computing reach set exactly is undecidable [Henzinger]
• Over-approximations
• Bounded time

• Static analysis and symbolic approaches
• E.g. HyTech[Henzinger97], CheckMate[Silva00], d/dt[Dang98],

SpaceEx[Frehse11], flow*[Chen13]

• Dynamic+Static analysis using numerical simulations
• E.g. Breach[Donzé10], S-TaLiRo[Annapureddy11], C2E2[Duggirala13]

CAV 2014, Vienna Summer of Logic 4

Presenter
Presentation Notes
One standard approach to verify invariant for hybrid automata is to compute its reach set from the set of its initial states and then check that this set is contained in the invariant.For many interesting models, including the cardiac cell model, the problem of computing the Exact reach set is undecidable.For those models, we can try to solve a relaxed version of the problem by computing overapproximations upto a bounded time.There are 2 categories of approaches to compute the overapproximations. For linear HA, there are purely static approaches that use interesting data structures for representing reach set and use symbolic algorithms for computing the reach set. Tools like ….. implement variants of this approach.For non-linear HA, recently several research groups exploit numerical simulations for verification.Tools like …. implement this ideaThis talk is about the second approach

Simulation-Based Bounded Reachability
�̇�𝑥 = 𝑓𝑓 𝑥𝑥 ,Θ ⊆ 𝑅𝑅𝑛𝑛

• Finite cover of Θ
• Simulate from the center of each cover
• Bloat the simulation with some factor, such that the bloated

tube contains all trajectories starting from the cover
• Union of all tubes gives an over-approximation of reach set

5

The bloating factor can be computed using sensitivity analysis[Donzé07], or given
as an annotation for the model[Duggirala13,Huang14].

Presenter
Presentation Notes
I will summarize the main idea of simulation-based verification. We will first look at differential equation with no discrete transitions, and later I will extend this idea to hybrid automata. For a differential equation and a set of initial state.Compute a cover of the initial setThen generate a numerical simulations from the center of each cover.Then use the continuity property of the trajectories, to bloat each simulation by “some factor” to get a tube. Such that this bloated tube contains “all” solutions starting form the cover.How much bloating is needed? This is obviously a property of the differential equation.The bloating factor can be computed using for example sensitivity analysis. In our previous work, we assume the bloating factor is given as an annotation to the model.

Challenge

6
We assume the network is annotated by the user per automaton per mode.

�̇�𝑥1 = 𝑓𝑓𝑎𝑎(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3)
�̇�𝑥2 = 𝑓𝑓𝑏𝑏(𝑥𝑥2,𝑥𝑥1, 𝑥𝑥3)
�̇�𝑥3 = 𝑓𝑓𝑐𝑐(𝑥𝑥3,𝑥𝑥1,𝑥𝑥2)

× 𝐿𝐿𝑁𝑁
𝑞𝑞𝑎𝑎

Module 1

𝑞𝑞𝑏𝑏

Module 2
𝑞𝑞𝑐𝑐

Module 3

?Module 1

Module 2 Module 3

Module 1

Module 2 Module 3

Module 4 Module 5

Presenter
Presentation Notes
However, the previous approaches for finding the bloating factor maybe not applicable to Network of HA. And here is why.- Consider a cardiac cell network where each cell’s trajectory is affected by its neighboring cells and one of the cells is stimulated by the pacemaker.-Different cells can be in different modes. Then the differential equation of the whole network in this particular mode may look like this. Here the green terms are corresponding to cell 1, its evolution depends on continuous variables of cell 2 – the orange terms, cell 3 –- the blue terms, and the stimulus from the pacemaker.Since different cells can be in different modes, the set of modes for the network is the Cartitian product of those of each cell. Thus, there will be L to the N number of such differential equations for the whole network, where L is the number of modes for a single cell and N is the number of cells. For some network, this number can go up to millions, which makes finding the bloating factor for each differential equation physically impossible. Our approach, is to decompose the network into smaller HA with inputs and outputs. And we ask the user to annotate each mode of each HA. I will give the precise definition of such annotation in the next slide.Roughly, the annotation quantifies how fast neighboring trajectories go away from each other.And then, for different network topologies and for different modes of the network, the bloating factors can be automatically computed using the annotations of the smaller HA.

Annotation: Input-to-State (IS) Discrepancy

Definition[Duggirala13,Huang14]. IS discrepancy is defined by 𝛽𝛽 and 𝛾𝛾
such that for any initial states 𝜃𝜃,𝜃𝜃′ and any inputs 𝑢𝑢,𝑢𝑢′,

|𝑥𝑥(𝑐𝑐) − 𝑥𝑥𝑥 𝑐𝑐 | ≤ 𝛽𝛽(𝜃𝜃 − 𝜃𝜃′ , 𝑐𝑐) + �
0

𝑡𝑡
𝛾𝛾 |𝑢𝑢 𝑠𝑠 − 𝑢𝑢′ 𝑠𝑠 | 𝑎𝑎𝑠𝑠

• 𝛽𝛽 → 0 as 𝜃𝜃 → 𝜃𝜃𝑥, and 𝛾𝛾 → 0 as 𝑢𝑢 → 𝑢𝑢′
• Linear 𝑓𝑓(): found automatically
• Nonlinear 𝑓𝑓(): several heuristics were proposed

7

�̇�𝑥 = 𝑓𝑓(𝑥𝑥,𝑢𝑢)
𝑢𝑢

time

𝜃𝜃
𝑥𝑥(𝑐𝑐)

𝜃𝜃𝑥 𝑥𝑥𝑥(𝑐𝑐)

𝑐𝑐

time

𝑢𝑢(𝑐𝑐)

𝑢𝑢𝑥(𝑐𝑐)

Presenter
Presentation Notes
In earlier talks in CAV this year you have seen several types of annotations for softwares, the type of annotation we use is completely different and is drawn from ideas in control theory. We call these annotations: input-to-state discrepancy.Consider a mode where the continuous variables follows differential equation x_dot = f(x,u).Once an initial state theta and a continuous input u(t) are specified, a trajectory x(t) is obtained.For a different theta’ and u’(t), a different trajectory is obtained, let us call it x’(t).--The IS discrepancy is captured by two functions beta and gamma (this is what the user has to provide), such that the distance between two trajs are upper bounded by a beta term on the initial distance and an integral of gamma term on the input differences.For precision of the analysis, we require that for all time, as the dist between the initial states converge to 0 beta vanishes and as the input signals converge, the gamma term vanishes.For linear differential equations, beta and gamma function can be computed automatically,And for non-linear differential equations, in earlier works we proposed several heuristic for computing it.

Bloating a Trajectory with IS Discrepancy

8

�̇�𝑚2 = �̇�𝛽2 𝛿𝛿, 𝑐𝑐
+𝛾𝛾2(𝑚𝑚1,𝑚𝑚3)

�̇�𝑚1 = �̇�𝛽1 𝛿𝛿, 𝑐𝑐
+𝛾𝛾1(𝑚𝑚2,𝑚𝑚3)

�̇�𝑚3 = �̇�𝛽3 𝛿𝛿, 𝑐𝑐
+𝛾𝛾3(𝑚𝑚1,𝑚𝑚2)

• The bloated tube contains all trajectories start from the 𝛿𝛿-ball of 𝜃𝜃.
• The over-approximation can be computed arbitrarily precise.

time

𝑥𝑥(𝑐𝑐)

𝜃𝜃
time

𝑚𝑚(𝑐𝑐)𝛿𝛿

𝑚𝑚(𝑐𝑐)

̇𝑥𝑥1 = 𝑓𝑓1(𝑥𝑥1,𝑢𝑢1)

Module 1

̇𝑥𝑥2 = 𝑓𝑓2(𝑥𝑥2,𝑢𝑢2)

Module 2

̇𝑥𝑥3 = 𝑓𝑓3(𝑥𝑥3,𝑢𝑢3)

Module 3

Presenter
Presentation Notes
How do IS discrepancy help with verification? Consider, a 3-ring of cardiac cells, where the cells are in mode q_a,q_b,q_c respectively. We can construct a reduced model using the IS discrepancies. The reduced model has 3 continuous variables ---one for each automaton and it has a real-valued parameter delta.M1 evolves according to a differential equation constructed by the IS discrepancy of cell 1. And the differential equation depends on delta, m2 and m3. And similarly the differential equations of m2 and m3 are constructed using the IS discrepancies of cell 2 and cell 3 respectivelyThe initial state of the reduced model is specified by delta.It turns out that, the trajectory of the reduced model gives a bloating factor for reach set overapproximation.We simulate both the original network and the reduced model, we get trajectories x(t) and m(t)Then, if we bloat the trajectory x(t) of the original network by m(t),the bloated tube contains all trajectory of the network starting from ball around theta with radius delta.Moreover, given precise enough numerical simulation and small enough parameter delta, the overapproximation can be computed up to arbitrary precision.

Simulation & Modular Annotation ⟹ Proof

9

Simulation
Engine

Reach set
over-

approximation
Reduced
Model

Trajectory

Bloating factor

IS Discrepancy

HSCC 2014, Berlin

Sat
Inv?

Proof

Counter
Example

Refinement

̇𝑥𝑥1 = 𝑓𝑓1(𝑥𝑥1,𝑢𝑢1)

Module 1

̇𝑥𝑥2 = 𝑓𝑓2(𝑥𝑥2,𝑢𝑢2)

Module 2

̇𝑥𝑥3 = 𝑓𝑓3(𝑥𝑥3,𝑢𝑢3)

Module 3

Presenter
Presentation Notes
We implement an algorithm to verify invariant of composed non-linear system using this technique.First we cover the initial set of the system. The simulations of the system model gives over-approximation of trajectory from the center of each cover.Depending on the granularity of the cover, we build the reduced model using the modular annotations.Simulation of the reduced model gives a bloating factor. Bloat the trajectory with this factor, we get an overappoximation of reach set.%%%ADD a FIGURE of Reachset

Soundness and Relative Completeness

• Definition. 𝑐𝑐-perturb(𝐴𝐴) is the set of all HA 𝐴𝐴𝑥, such that 𝐴𝐴𝑥 and 𝐴𝐴 are
identical except that

• The initial sets: dH Θ𝐴𝐴,Θ𝐴𝐴′ ≤ 𝑐𝑐, and
• The differential equations in every module: d∞ 𝑓𝑓𝐴𝐴,𝑓𝑓𝐴𝐴′ ≤ 𝑐𝑐

• Definition. 𝐴𝐴 Robustly satisfies (violates) 𝐼𝐼𝐼𝐼𝑎𝑎 iff there exists 𝑐𝑐 > 0
such that all 𝑐𝑐-perturb(𝐴𝐴) satisfy (violate) 𝐼𝐼𝐼𝐼𝑎𝑎.

• Theorem: the algorithm is sound and relatively complete.
• i.e. the algorithm terminates if 𝐴𝐴 robustly satisfies (violates) 𝐼𝐼𝐼𝐼𝑎𝑎.

10

Presenter
Presentation Notes
With the algorithm, we can verify robust invariant properties of a HA.-before state the robustness condition, we define c-perturbation of a HA.For a positive constant c, a c-perturbation of a HA A is the set of all HA A’ such that A’ and A are identical elsewhere except that the initial set between A and A’ are within c-distance away. The distance between sets are measured by Hausdorff distance. In addition, the differential equations in every mode of A and A’ are within c-distance away.The distance between two function is measured by the standard L-infinity norm.Then we say A robustly satisfies or violates Invariant Inv, if there exists small enough perturbation c, such that all c-perturbation of A satisfy or violate the invariantChecking robust invariant is a reasonable problem because in many cases we can not write down the exact differential equations of a physical system.Then, if A robustly satisfies or violate the invariant, the algorithm .

Benchmark

11

Presenter
Presentation Notes
 We apply the algorithm to a benchmark of cardiac cell networks. We build models for different network topologies in MATLAB Simulink/stateflow environment. And the figure is a screenshot of the model, where each block represents a cell. Each cell is modeled as the figure in the middle, where each block corresponding to a mode. And there are 29 modes for each cell. The differential equation of a mode is shown in the figure on the right.We find IS discrepancy for the 29 different modes of a cell. With this relatively small number of annotations, we are able to compute reach set and verify whether the voltage of cells remains within safety bound for networks arbitrary topology, up to 8 cells.

Experiments
Network # Variables # Modes # Sims Run Time (s)

8 cells (FH) 16 1 24 33

Lin. Sync 24 6 128 135.1

Nonli. WT 30 6 128 140.0

5 cells 20 2.1 × 107 170 945

8 cells 32 5.0 × 1010 73 2377

12

Presenter
Presentation Notes
We compute reach set of the networks and verifies whether the voltage of each cell remains in some threshold.And here is our experimental results.We compute reach set for network upto 8 cells, 32 cont. var. and billions of modes with in minutes.A typical reach set of all the continuous variables for a cell are demonstrated in the figure. And in some rear cases, we observe aperiodic behavior of the cell, where the reach set of a cell are dramatically different in each cycle.

Discussion

• A scalable technique to verify nonlinear hybrid automata networks
using annotations

• IS discrepancies are used to construct a reduced model of the overall network
whose trajectory gives the bloating factor

• Both original network and the reduced model
• Sound and relatively complete algorithm

• Cardiac cell networks upto 8 cells, 32 var. and 298 modes are verified
using 29 annotations

13

Presenter
Presentation Notes
To conclude this talk.

Ongoing: Synthesis

14

Synthesizer Verifier

Synthesis
Fails

Synthesis
Success

Candidate Controllers
{�𝑢𝑢𝑡𝑡}

Counter-example
{ �𝑎𝑎𝑡𝑡}

�̇�𝑥 = 𝑓𝑓(𝑥𝑥,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑎𝑎)�̇�𝑢𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑢𝑢𝑐𝑐 , 𝑥𝑥)
Vehicle Controller

𝑢𝑢𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥)
Adversary

Presenter
Presentation Notes
Verifier: 1 handle large model with multiple modules2 able to tell how the overall behavior is modified if some of the modules got compromised

	Verification from Simulations and Modular Annotations
	Composed Safety-critical CPS
	Safety under Adversary
	Invariant Verification
	Simulation-Based Bounded Reachability
	Challenge
	Annotation: Input-to-State (IS) Discrepancy
	Bloating a Trajectory with IS Discrepancy
	Simulation & Modular Annotation ⟹ Proof
	Soundness and Relative Completeness
	Benchmark
	Experiments
	Discussion
	Ongoing: Synthesis

