Model-based analysis and synthesis for

security of cyber-physical systems

Sayan Mitra, Geir Dullerud & Swarat Chaudhuri University of Illinois at Urbana Champaign

NSA SOS Review meeting, October 2015

project team

Sayan Mitra UIUC, ECE Hybrid & Distributed systems **Geir Dullerud** UIUC, MechE Control theory, hybrid systems Swarat Chaudhuri Rice University, CS Programming Languages, Formal methods **Zhenqi Huang** PhD student, ECE **Yu Wang** PhD student, MechE

cyber-physical systems

- engineering systems that bring together sensing, computation, and control
- autonomous, complex, and safety-critical
- many application areas: driving assist systems, driverless cars, embedded medical devices, surveillance drones

Crash involving self-driving Google car injures three employees

Driverless car hit while stationary in traffic by human driver travelling at 17mph in another vehicle, resulting in the first self-driving car injuries

"How can we design cyber-physical systems people can bet their lives on?" --- Jeannette Wing

foundational approach

- develop sound and relative complete algorithms for analysis and synthesis
 - powertrain control in vehicles
 - motion control in drones
- theory for optimality in distributed control while preserving privacy
 - distributed optimization
 - traffic networks
- robust control, formal methods, program analysis, and distributed systems theory

system design & properties

hybrid systems models: mathematical model of CPS differential equations & programs discrete or continuous time uncertainties: model parameters, disturbances, scheduling

- invariance and safety: "drone maintains safe separation to objects"
- stability, disturbance attenuation: "under sensor failures/attacks, air-fuel ratio maintained in required range"
- sensitivity: "individuals in a distributed control system maintain differential privacy ?"
- controllability: "does there exist a path for an attacker to make a power system unstable while avoiding detection ?"

6

outline

- control synthesis
- privacy in cyber-physical systems
- challenge problems in verification

PARTI

CONTROLLER SYNTHESIS WITH ADVERSARY

control system with quantized sensing

- measurements over finite bandwidth channel: quantized and sampled
- multi-point attack surface
- goal: synthesize controller with provable guarantees (certificates)

synthesis problem as search

given a system *model*, *quantization*, *init*, *safe* and *goal*, <u>find</u> control *g(.)* such that all behaviors are safe and reach goal

- yes (controller strategy function g)
- no (impossibility certificate "no controller exists")

inductive synthesis rules [Huang et al. CDC 15]

Find $g: \mathcal{C} \to U, V: \mathcal{C} \to \mathbb{N}, k \in \mathbb{N}$ such that

- (control invariant) $V(init) \le k \land C' \subseteq post(C, g) \Rightarrow V(C) \ge V(C')$
- (safe) $V(C) \le k \Rightarrow C \subseteq safe$
- (goal) $C \subseteq goal \Leftrightarrow V(C) = 0;$
- (progress) $C \subseteq inv \setminus goal \land C' \subseteq post^k(C,g) \Rightarrow V > V(C')$

soundness and relative completeness of synthesis algorithm

- Robustness: Given controller C and ranking function templates R, the problem M is robust if there exists $\epsilon > 0$:
 - exists $g \in C, V \in R$ such that for any problem M' that is ϵ -close to M, the g, V solves the synthesis problem for M' with some k, OR
 - for none of the problems M' that are ϵ -close to M, have solutions to the synthesis problem with any $g \in C, V \in R$
- Theorem. If the synthesis problem M is (C,R)-robust, then there exists a sufficiently accurate computation of post(C,g) to (a) either find control g and proof V or (b) give a proof that there exists no such controller in C, R.

application: path planning

implemented using CVC4 SMT solver nonlinear vehicle navigation with noise and obstacles C: regions in x-y plane $V: C \rightarrow \mathbb{N}$ 768 cells, 3072 real-valued variables, booleans, solved in less than 10 minutes

Light (under) and over (dark) approximation of post

linear dynamics with L2 attack budget

 $Reach(x_0, u, t) = \{ x \mid \exists a : x = \xi(x_0, u, at) \}$

 $L(x_0, u, t)$ is called adversarial leverage iff $Reach(x_0, u, Adv, t) = Reach(x_0, u, 0, t) \bigoplus L(x_0, u, t)$

For linear dynamics and L2-budget $L(x_0, u, t) = \{x \mid x^T W_t^{-1} x \le b\},$ where $W_t = \sum_{s=0}^{t-1} A^{t-s-1} C C^T (A^T)^{t-s-1}$

Can be computed exactly and independently of x_0

adversarial leverage

For each $t \leq H$, generate safe_t and $goal_t$ such that

- $safe_t \oplus L(t) = safe$
- $goal_t \oplus L(t) = goal$ $safe_t, goal_t$ computed by conic programming

Check $\exists u \in Ctrl : \forall t, x_0 \in Init, Reach(Init, u, 0, t) \subseteq safe_t$ and $Reach(Init, u, 0, T) \subseteq Goal_T$

Theorem. Exists u that is adversary-free solution u $Reach(x_0, u, 0, t) \in Safe_t$ and $Reach(x_0, u, 0, t) \in Safe_t$ Iff u solves the control synthesis problem with adversary

planning under uncertainty

Autonomous helicopter (16D, 4 inputs)

 $x_{t+1} = A_t x_t + B_t u_t + C_t a_t$

 $Adv: \sum |a_i|^2 \le b$: intrusion budget constraints

 $Ctr: \sum c_i u_i \leq k$: actuation constraints

Init: Additive sensor attacks

Synthesis of Adv(b)-proof control strategies

Find b_{crit} that makes synthesis impossible

Vulnerability classification of initial states

Attack synthesis: function: $\mathbb{R}^n \rightarrow Adv$ that reaches

Т	ϕ_{safe}	ϕ_{goal} , Ctr	φ	Result	R.time (s)
40	16	4, 160	804	Unsat	2.79
80	44	4, 320	3844	Sat	35.22
320	24	4, 1280	8964	Sat	532.5
9	36	6, 72	402	Sat	24.5
12	24	6, 96	338	Sat	60.6
15	24	10, 96	576	Sat	158.8

summary and outlook

- we have developed a new class of synthesis algorithms for control systems under attacks with budget-constrained adversaries
 - algorithms can also give impossibility certificates
 - applications in motion planning under sensor attacks
- ongoing: switching based synthesis of attacks on that make power networks unstable while evading standard detection mechanisms (new collaboration with Prof. Saman Zonouz)

PRIVACY IN CYBER-PHYSICAL SYSTEMS CONTROL [HiCons 2014] [CDC 2014] [ICDCN 2015]

- Participants share private information for social benefit
- Unfettered sharing can expose users in unexpected ways
- Adding noise to private information can give privacy by sacrificing some accuracy
- Privacy—accuracy trade-off in database

Hillandale Local Park

Army Research Laboratory +Sayan

99

agents sharing no location data

Hillandale Local Park

agents sharing complete location data

Ħ

better distributed control while protecting private location data

Obs: observation stream (location data) of the system bounded by time

Sensitive data: location way points of all agents $g = \{g_1, \dots, g_n\}$

g and g' be two sequences location waypoints that are identical except g_i and g_i' . The system is differentially private iff $\frac{P[g \ leads \ to \ Obs]}{P[g' \ leads \ to \ Obs]} \leq e^{|g_i - g'_i|}$

Cost of privacy: $\sup_{g,i} E[Cost(g, M^*) - Cost(g, M')]$ Worst case loss of efficiency (over all location waypoints of any agent) for using differentially private sharing

What is the cost of privacy in distributed control?

Q

Hillandale Local Park

Z

differentially private control

 $\widetilde{x_1} = x_1 + Lap(\frac{\Delta T}{C})$

 $\widetilde{x_2} = x_2 + Lap(\frac{\Delta T}{c})$

sensitivity of system to change in \widetilde{z} private data

The Hindu Temple of Metropolitan Washington

Vehicle_i $\dot{x_i} = f_i(x_i, z, u)$ Controller $u_i = g_i(x_i, \tilde{z})$

Traffic

 $z = \frac{1}{n} \sum x_i$

Vehicle_j $\dot{x_j} = f_j(x_j, z, u)$

Server

 $\tilde{z} = -\frac{1}{n} \sum x_i$

Controller $u_j = g_j(x_j, \tilde{z})$ Buck Lodge Middle Schoo

 x_1

 x_n

Hillandale Local Park

Army Research Laboratory

cost of privacy

Privacy: g and g' be two sequences of observations that are identical except g_i and g_i' . The system preserves differentially private iff $\frac{P[g \ leads \ to \ Obs]}{P[g' leads \ to \ Obs]} \leq e^{|g_i - g'_i|}$

Cost of privacy: sup $E[Cost(g, M') - Cost(g, M^*)]$

Theorem. COP = $O(\frac{T^3}{N^2 \epsilon^2})$ for stable linear systems [HiCons 2014] Cost reasonable for short-lived agents and large number of agents

lower-bound on estimation accuracy [Wang et al. CDC 2014]

suppose adversary estimates the initial system state from observations

minimal mean square estimator: $\hat{X}(t) = \mathbb{E}[X(0)|Z(t), ..., Z(0)]$

accuracy of this estimation process at time t \subseteq N is measured by the entropy of the sequence $H(\hat{X}(t))$

Hillandale Local Park

US Army Research Eaboratory

Theorem: If the system is ε -differentially private up to time t, then for any $s \leq t$, the Shannon entropy of the estimator $H(\hat{X}(s)) \geq n(1 - ln(\frac{\varepsilon}{2}))$, where n is the dimension of the state of the system.

The minimum is achieved by adding *n*-dimensional Laplace noise $N(0) \sim Lap(\frac{1}{\epsilon}, n)$ at the beginning and N(t + 1) = AN(t) successively.

Hillandale Local Park

Laborato

summary and outlook

we have proposed a basic research problem on exploring the trade-offs between (differential) privacy of distributed control / optimization and performance

• established lower-bounds on (cost, estimation entropy)

 connections to problems in distributed optimization, learning, empirical risk minimization, sensitivity analysis (verification)

Middle Schoo

 we have proposed to organize a workshop on Science of Security of Cyber-physical systems for CPSWeek 2016, Vienna

Part III

MEETING CPS VERIFICATION CHALLENGES

verification problem

strategy: combine concrete numerical simulations with symbolic analysis

T

- given start
 s and target
- compute finite cover of initial set
- numerically simulate from center x₀ of each cover
- symbolically bloat simulation so bloated tube contains all trajectories from the cover
 - Union = over-approximation of reach set
 - Check intersection/containment with *T*
 - Refine
 - symbolic bloat computed from static analysis of models; this is related to sensitivity [HSCC 2014] [ATVA 2015]

sound & relatively complete

Theorem. (Soundness). Given hybrid automaton A, initial set Θ , unsafe set U, time bound T, bound on discrete transitions N, if the algorithm 1 returns safe or unsafe, then A is safe or unsafe.

Definition (Robust Safety). Given HA $A = \langle V, Loc, A, D, T \rangle$, an ϵ -perturbation of A is a new HA A' that is identical except, $\Theta' = B_{\epsilon}(\Theta), \forall \ell \in Loc, Inv' = B_{\epsilon}(Inv)$ (b) a \subseteq A, $Guard_a = B_{\epsilon}(Guard_a)$.

A is robustly safe iff $\exists \epsilon > 0$, such that A' is safe for U_{ϵ} upto time bound T, and transition bound N. Robustly unsafe iff $\exists \epsilon < 0$ such that A' is safe for U_{ϵ} .

Theorem. (Relative Completeness) The algorithm will always terminate whenever the system is either robustly safe or robustly unsafe.

application 1: powertrain verification

powertrain design is a critical piece for meeting fuel efficiency and emissions targets for automotive industry

simulink model of a powertrain control benchmarks presented by **Toyota** [ATVA, HSCC2014] as a verification challenge.

highly nonlinear polynomial differential equations; discrete mode switches

application 1: powertrain verification

our tool C2E2 is the first to verify air-fuel ratio remains within required range for a set of driver behaviors

analysis is mostly automatic. project took less than 2 months

[CAV 2015] [ARCH 2015 award winning paper]

application 2: pacemaker verification

2M medical devices recalled in the past decade; 24 % owing to software defects

challenge problem: verify properties of a pacemaker composed with a model of cardiac tissue

composition of many identical cells: millions of modes, nonlinear differential equations; compositional analysis

u1] m20	

		ł	
tate1 du: u_dot=-0.002500000000000*u v_dot=-0.01666666666667* w_dot=-0.072639213075064 s_dot=0.0325954614796371*u u_cout=u; cur_x(1) = u; cur_x(1) = v; cur_x(2) = w; cur_x(2) = w; cur_x(2) = s; cur_x(2) = s;	µ+D"(u1+u2-2"u)/(h' r+0.016666666666 u-0.005000000000 0.36573769292663	h)+stim; 667; 000°w+0.0050000000000000; 30°s+0.0078827602517302;	
[u<0.0032252252252252]	2	[u>=0.0032252252252252]	
u_aot=-0.0029934648787471"\ w_dot=-0.16666666666667"\ w_dot=-0.0726392130750601"u u_out=u; cout=u; cout=u; w_d(1) = u; cout_s(1) = v; cout_s(2) = w; cout_s(2) = w; cout_s(2) = s; cout_s(2) = s;	+0.0000003014452 +0.016666666666 +0.0050000000000 0.365737692926633	940+D7(U1+UZ-Z [*] U7(U [*] U)+SIM; 67; 100 [*] W+0.0050000000000000; 10 [*] \$+0.0078775084405570;	
[u>=0.0059]		[u<0.0059]	
state3 du: 	u+0.589100001329 *u-0.948695652173 0.00500000000000 0.36573769292663:	9984+D*(u1+u2-2*u)/(h*h)+stim; 9127*v+157.97101449275586 07w-0.00307042814287712; 10*s+0.0080794269996715;	0 *u* v+0.99999999999999

application 2: pacemaker verification

new algorithm for compositionally computing symbolic bloat using ideas from input-to-state stability [Huang & Mitra, HSCC 2014]

first to verify this class of models [Huang et al. CAV 2014]

synthesize pacemaker parameters that prevent pacemaker induced tachycardia [Huang et. al. IEEE Design and Test]

	Nodes	Thresh	Sims	Run time (s)	Property
	3	2	16	104.8	TRUE
	3	1.65	16	103.8	TRUE
	5	2	3	208	TRUE
	5	1.65	5	281.6	TRUE
	5	1.5	NA	63.4	FALSE
	8	2	3	240.1	TRUE
С	8	1.65	73	2376.5	TRUE

summary

- we have developed algorithms and a software tool for verification of a general class of cyberphysical system models
 - applied it to meet several verification challenges
- establishes connection between formal verification, synthesis, and privacy of cyberphysical systems