A Brief Introduction to Cryptol

Galois Connections Inc.

15th March 2001

1 Introduction

Cryptol is a Domain Specific Language for expressing cryptographic algorithms.
Galois Connections, Inc. is currently designing Cryptol, implementing an in-
teractive development environment for Cryptol, and building a compiler that
generates highly efficient C code implementations of cryptographic algorithms.
This document, and Cryptol itself, are very much a work-in-progress. View
this document as a snapshot in the design process, not a final document.
The main features of Cryptol are:

e A uniform view of data, from bits all the way up to streams of blocks

e A uniform view of control, again from bits to streams of blocks

A flexible, but strong type system

Easy interoperability with C, Java, and most standard languages

Ability to generate highly-efficient implementations

In Cryptol, data is composed of bits, and arbitrarily nested matricies. A com-
puter word in Cryptol is just a matrix of bits. But Cryptol gives you very flexible
views of this word. For example, this word might be a matrix of 4 bytes, and
each byte might be viewed as a matrix of 2 4-bit nibbles. Cryptol allows the
programmer to view data as a flat vector of bits, or as a structured hierarchy.
Cryptol also allows the programmer to express infinite-sized matricies in order
to easily express streams of data.

This very simple, but flexible, view of data has a corresponding simple and
flexible notion of control. Control at all levels, from bits to streams is expressed
using a matrix comprehension notation, akin to set comprehensions. Combining
matrix comprehensions with recursive definitions allows us to directly express
sophisticated recurrence relations that appear often in cryptographic algorithms.

2 ELEMENTS OF CRYPTOL

2 Elements of Cryptol

Cryptol is a declarative language, thus there are no assignment statements or
imperative loops. It is also a first-order language. A Cryptol program consists
of a collection of definitions, either of values or of functions.

x = 13;
incr x = x + 1;
foo (x, y) =2 *x+3 xy-1;

The building blocks of Cryptol are bits, which are written True for a one bit,
and False for a zero bit. The more common building block of Cryptol programs,
however, is words, i.e. vectors of bits. A numeric literal in a Cryptol program
is represented as a word. The type of a word is written by enclosing the size in
bits in square brackets: e.g. the type of a 32-bit word is written [32].

Numeric literals can either be written in the usual base 10, or expressed as
hexidecimal constants, by prefixing with 0x, as in 0x1fc3.

2.1 Matricies

Data is structured in Cryptol using matricies. These are written as square
brackets around space separated elements. The elements of a matrix may be
bits, or other matricies. However, the elements at any given level in a matrix
must all be the same size. A word is just a single-dimension matrix.

Matricies whose elements are enumerations can be expressed using ... For
example, the matrix consisting of the elements from 1 to 10 can be written [
1 .. 10 1. If two starting elements are provided, the difference between the

two provides the delta for subsequent values. Thus:
[13..91+— 11357291

The elements of a matrix are indexed from left-to-right, starting with 0. Ma-
tricies are indexed using the operator @. In the following, y will have value
9.

xs = [13 27 9 34];
y xs Q@ 2;

The @@ operator can be used to construct a new matrix out of elements of
another matrix. In the following, ys will have value [27 34].

ys = xs @@ [1 3];

The bits of a word are indexed in little-endian fashion. In the following, y has
value True, and z has value 5.

x = 0x85
y = 0x80 @ 7
z=x 0@ [0 .. 3];

Copyright (© 2001 2 Galois Connections Inc.

2 ELEMENTS OF CRYPTOL 2.2 Arithmetic

2.2 Arithmetic

Many of the basic arithmetic operators are defined over words. Arithmetic in
Cryptol is modulo the size of the word. The operators are +, -, *, /, % (modulo)
and ** (power).

2.3 Boolean operations

Cryptol has the standard boolean operations of and, or, exclusive-or and com-
plement, written as &, |, ~ and ~. These operations in Cryptol are bulk operators
- they work on everything from Bit to arbitrarily-nested matricies. The opera-
tions on Bit are standard, and on matricies, they are defined element-wise.

2.4 Equality

The equality operator in Cryptol is written ==. It compares two like-typed
values, and returns a result of type Bit. Matricies are compared element-wise,
to arbitrary depth.

1 == 2 —— False
[[13 34] [14 91 1 == [[13 34] [14 91] +— True

2.5 Comparison

The standard comparison operators are available: <, >, <=, >=. These are only
defined over words, and have a result of type Bit.

2.6 Conditional Expressions

The standard if-then-else construct is available. The first expression is expected
to be of type Bit, and the then and else expressions are expected to be the
same type.

min (x, y) = if x <= y then x else y

2.7 Shifts and Rotates

The shift and rotate operators in Cryptol allow shifting/rotating at the outer
level of any matrix. Shifts are written using the operator << or >>. The left-
hand argument is the matrix to be shifted, and the right-hand argument is a
word describing how much to shift. The matrix is filled in with zeros, where
zero is understood to be an appropriately typed element that is all zeros.

xs = [0123456T7];

Xxs << 4+ [4567000 0]
yss = [[0 1] [2 3] [45] [6 7] 1;

yss >> 2~ [[0 0] [0 0] [0 1] [2 3]]

Copyright (© 2001 3 Galois Connections Inc.

2 ELEMENTS OF CRYPTOL 2.8 Joining matricies

x = 0x1234;
x >> 8 — 0x12

The final example should raise an eyebrow. In the second example, the shift right
filled in zeros in the lower-numbered elements of the matrix. However, in the
third example, the zero bits were filled into the higher-numbered bit-positions.
Shifts and rotates on words are treated differently from shifts/rotates on larger-
dimensions matricies. For words, shift left moves elements from lower-indexed
positions to higher-indexed positions. This is reversed for higher-dimension
matricies: shift left moves elements from higher-indexed positions to lower. This
inconsistency is due to the ambiguity of the term “left”, and is somewhat forced
on us by historical precedent: shift-left traditionally means making a value
larger. But it is also consistent with how data is presented, since literals are
printed big-endian (highest bit position on the left), while higher-dimensioned
matricies are printed little-endian (least element position on the left).

2.8 Joining matricies

Matricies of differing widths (but the same element types) may be joined to-
gether into one matrix using the join operator.

xs = [0 1 2 3];
ys = [4 5 6];
xs # ys — [01 2345 6];

2.9 Matrix Comprehensions

A very convenient way of describing matricies is the matrix comprehension
notation, analogous to set comprehension notation. A matrix is described by
drawing and combining elements from other matricies, referred to as generators.
When there are multiple generators, the elements produced form the cartesian
product of the two matricies.

[xyl |l x<-[01], y<-[4..7]]1]
—
[[0 4] [0 5] [0 6] [0 7] [14] [15] [1e6] [17]]

Groups of generators may also be combined in parallel. In this case, the elements
produced will be only as long as the elements of the shortest group.

[xyzl |l x<-[01], y<-1[4 .. 7]
[l z <- [0 .. 4] 1]

—

[[040] [051] [062] [07 3] [14 4]]

Parallel generators are very useful for doing element-wise operations between
matricies. For example, if we didn’t have exclusive-or built-in, we could have
defined it as follows:

Copyright (© 2001 4 Galois Connections Inc.

2 ELEMENTS OF CRYPTOL 2.10 Size Polymorphism

xor (xs, ys) =[x& "y | Cx&y)
[l x <- xs || y <- ys 1;

2.10 Size Polymorphism

Cryptol has a very flexible notion of the size of data. When a numeric literal is
used in a program, it will take on whatever size (i.e. number of bits) is demanded
by its surrounding context. For example, if we have a function twizzle, which
expects a 32-bit word argument, then the parameter in the call twizzle 14 will
be interpreted as a 32-bit literal.

But things get interesting when the context doesn’t immediately constrain
the size. A value or function with unconstrained sizes is size polymorphic. How-
ever, this polymorphism isn’t completely unbounded - a numeric literal is con-
strained to be at least as large as the number of bits necessary to represent the
literal itself. E.g. the literal 32 would require at least 6 bits. This constraint is
reflected in the type given, with size constaints given to the left of a =>. E.g.
the literal 32 has type (a >= 6) => [a].

The builtin function size0f can be used to determine the size of the outer-
most dimension of an expression. For example, size0f ([1 2 3 4]) is equal to
4.

2.11 Shape Polymorphism

In addition to size polymorphism, Cryptol functions can also be polymorphic
about the number of dimensions a value has, i.e., its shape. This is expressed
in the type of a matrix by putting a type variable after the sequence of outer
dimensions. For example, the type of a matrix that has four elements, but we
don’t know or care what those elements are, would be [4]a.

A nice example of this is a function that re-arranges the elements of a matrix:

swab [abcdl = [dcbal;

This function has type [4]a -> [4]a.

2.12 Subtyping

A common step in a crypto algorithm is to divide up words into smaller pieces,
such as dividing a 128-bit word into 4 32-bit words. Cryptol provides a simple
form of subtyping that make this particularly convenient. Any function that
expects, for example, a matrix of 4 32-bit words may also be passed a 128-bit
word. Consider the following function.

frotz [abcdl =a+b-c+d

We can pass a matrix consisting of four words to it, but we can also pass a lower
dimension matrix whose outer dimension (in this case, single dimension) is a
multiple of four. If we assume that we’re doing 8-bit arithmetic (i.e., a b ¢ d

Copyright (© 2001 5 Galois Connections Inc.

2 ELEMENTS OF CRYPTOL 2.13 Controlling Polymorphism

are all 8-bits wide), then we can either pass frotz a value of type [4][8], or a
value of type [32].

frotz [1 2 3 4] — 4
frotz 0x04030201 —— 4

2.13 Controlling Polymorphism

Definitions in Cryptol can be given a type signature. The use of the signature
is optional, but is often useful, and even necessary. The flexibility of the type
system can lead to programs that are more polymorphic than the programmer
expects or needs, and type signatures can be used to restrict polymorphism.
E.g., the following defines a constant, which is constrained to be 32-bits wide:

x @ [32];

x = 13;

Consider the definition of xor given in Section 2.9. If we didn’t constraint its
type, it would be assigned a type more polymorphic than the user might want.
The assigned type would be:

xor : {a b c} ([alb,[c]b) -> [min(a,c)]b;

If the user was intending to define a function only over words, then this defintion
is both more size polymorphic (works over matricies of differing sizes) and shape
polymorphic than desired (works over arbitrarily-dimensioned matricies). While
this flexibility might be useful in some cases, often it will lead to ambiguities
later on. A more useful type might be to constrain it only to work on arbitrary-
sized words of the same length.

xor : {a} ([al, [al) -> [al;

2.14 Streams and Recursively Defined Matricies

Cryptol can also express matricies of unbounded size, which we’ll call streams.
Streams allow us to model such things as shift registers, recurrence relations
and cryptographic modes. The simplest way to define a stream is by using an
unbounded matrix enumeration

[0..]1]+— [0123456 ---]

Streams may also be defined recursively. We can model a simple counter with
the following definition:

counter init = [init] # counter (init + 1);

Copyright (© 2001 6 Galois Connections Inc.

3 SOME BASIC IDIOMS

The streams [0 ..] and counter O will denote the same thing.

The size of a stream is indicated in the type system by a special constant,
named ko. Each ko size is annotated with a parameter indicating the cycle size
of the recursion. In the above examples, both streams have type [ko(1)].

The cycle size annotation indicates the amount of state necessary to generate
the stream. It is calculated during type inference by noting the number of
elements on the left of a # between a definition and each recursive reference.
This is useful in code generation, but is also useful for detecting ill-formed
recursion - a cycle size of zero is bad news, as is a cycle size of ko. For example,
the following definition has a cycle size of 0, and is rejected by the type checker:

xs =[x+ 1 || x<-xs1];

3 Some Basic Idioms

Learning how to use a new language usually involves learning its idioms. Here
we give some basic Cryptol idioms that we’ve identified.

3.1 Padding

It is very common to pad data to a larger size. In Cryptol, we can take advantage
of size polymorphism to define padding in a very declarative fashion. In the
following example, we pad a key on the right with a single one bit followed by
zeros and finally a 64 bit size of the key. Notice that the key is constrained to
have a size that can be expressed in 6 bits.

pad : {a} (6 >= a) => [a] -> [512];
pad key = key # [Truel] # O # sz
where {sz : [64];

sz = size0f key;};

The 0 in the middle is unconstrained in size, while everything else is of a fixed
or given size. Thus, in order to make the result be 512 bits wide, the 0 will have
to expand to fill all available space as necessary to pad the result out to 512
bits.

3.2 For Loops and Recurrence Relations

In an imperative language, for-loops are a fundamental building block of cryp-
tographic algorithms. In Cryptol, we express this control more declaratively
using matrix comprehensions and by defining recurrence relations.

For example, consider the following imperative loop in C:

sum = 0;

for (i = 0; 1 < 10; i++)
sum = sum + i;

return sum;

Copyright (© 2001 7 Galois Connections Inc.

3 SOME BASIC IDIOMS 3.3 Cryptographic Modes

In Cryptol we would identify the state (sum) and then write a recurrence relation
corresponding to this loop. We define the sequence of states (sums) with an
initial value of 0. To get the final value we index into the sequence of states at
the desired location: sums @ 10.

result = sums @ 10;

sums = [0] # [sum + i || sum <- sums
[l i <= [0 .. 9]

1;

Here another example from the SHA1 specification of the compression function:

1. Divide Mi into 16 words W0, W1, ... , W15, where WO is the left-most
word.

2. 2. Fort = 16 to 79 let Wt = S1(Wt-3 XOR Wt-8 XOR Wt- 14 XOR
Wt-16).

In Cryptol we identify the state as being initialized for the first 16 steps with m.
Each of the succeding states is calculated by offsets into the state. For example
to reference a state that occured 14 steps ago in a 16 entry state we have to
drop the first two elements, ie indexing the state at an offset of 2: (ws @@ [2

.

compressl : [16][32] -> [80][32];

compressl m = ws @@ [0 .. 79]

where ws = m # [(w3 ~ w8 ~ wl4 ~ wl6) <<< 1
|l wi6 <- ws

|| wid <- ws@@[2 ..]
|| w8 <- wse@e[8 ..]
|| w3 <- ws@@[13 ..]
1

2

3.3 Cryptographic Modes
Cryptographic modes are easily described using matrix comprehensions. Elec-
tronic Code Book is particularly straightforward.

ecb (xs, key) = [encrypt (x, key) || x <- xs 1;

CBC mode is expressed as a simple recurrence relation.

cbc (iv, xs, key) = ys
where ys = [encrypt (x
[l x <- xs
[l y <- iv # ys 1;

y, key)

Copyright (© 2001 8 Galois Connections Inc.

4 EXAMPLES

4 Examples
4.1 DES

The following example defines the core encryption routine for DES.

Algorithm 1 DES encryption
des : {a b} (a >=7) => ([2*x(a-1)],[b][48]) -> [64]
des (pt, keys) = permute (FP, swap last)
where { pt’ = permute (IP, pt);
iv = [round (k, 1r)
[l ¥ <- keys
[l 1r <- [pt’] # iv 1;
last = iv @ (sizeOf keys - 1);
s

round (k, [1r]) =r # (1 - f (r, k));
f (r, k) = permute(PP, SBox(k ~ permute(EP, r)));
swap [a b] = b # a;

permute : {a b} (b >= 1) => ([al[b], [2**x(b - 1)]) -> [al;
permute (p, m) = [m@ (i - 1) || i<-p1;

Copyright (© 2001 9 Galois Connections Inc.

4 EXAMPLES 4.2 RC6

4.2 RC6
The following defines the key schedule for RC6.

Algorithm 2 RC6 key schedule
rc6ks : {a} (w >= sizeOf a) => [al[8] -> [r+2]1[2][w];
rcBks key = chop2 (rs >>> (v - 3 * nk))
where {
c = max (1, (sizeOf key + 3) / (w / 8));
v = 3 * max (c, nk);
initS = [pq || pq <- [pw (pw+qw) ..]
i <- [0 .. (nk-1)11;
padkey = key # [0 || i <- [(sizeOf key + 1) .. c] 1;
initl = combine4 padKey;

ss = [(s+atb) <<< 3 || s <- initS # ss
[l a <- [0] # ss
[l b <- [0] # 1s 1;

1s = [(1+atb) <<< (a+b) || 1 <- initL # 1s
|| a <- ss
[l b <- [0] # 1s 1;

rs = ss @ [(v-nk) .. (v-1)]1;

Copyright (© 2001 10 Galois Connections Inc.

