NICTA seML

oo Above and Beyond

Toby Murray and Thomas Sewell

Joint work with Matthew Brassil, Timothy Bourke,
Peter Gammie, Xin Gao, Gerwin Klein, Corey Lewis,
Daniel Matichuk and Magnus O. Myreen

NICTA Funding and Supporting Members and Partners

: . . A
- Australian Government Australian P
«=> National NSW Trade &
° Department of Broadband, Communications University THE DNIVERSITY OF NEW SOUTH WALES v | INVEStment
and the Digital Economy
. . THE UNIVERSITY OF) ; Queensland (¥ o QUT THE UNIVERSITY
Australian Research Council YDNEY Y Sovernmen WGt S 8 oot

Tuesday, 21 May 2013

Functional Correctness Proof (2009) e

NICTA

Specification

|

Haskell
Prototype

|

2

Tuesday, 21 May 2013

Functional Correctness Proof (2009) e

NICTA

s the
Spec secure?

Specification

I

Prototype

I

2

Tuesday, 21 May 2013

Functional Correctness Proof (2009) e

NICTA

s the
Spec secure?

O

@

Specification

Haskell
Prototype

I

C Code Semanﬁcs

2

Tuesday, 21 May 2013

Proof Architecture (now) e
NICTA

l Isabelle
ST e
Prototype
] Isabelle
—

Tuesday, 21 May 2013

Proof Architecture (now)

] Isabelle

Specification

l sabelle
BN e

] |Isabelle

NICTA

Haskell
Prototype

Tuesday, 21 May 2013

Proof Architecture (now) e

NICTA

Isabelle

Specification

Isabelle
Haskell
Prototype
Isabelle

C Code Semantics

Isabelle/SMT/HOL4

Binary Code Semantics -

-
Binary Code
3

Tuesday, 21 May 2013

Proof Architecture (now) e
NICTA

l Isabelle

Specification

seauri‘cg theorems
N that hold for the Haskell
kRernel biwarg

C Code Semantics -

l Isabelle/SMT/HOL4

Binary Code Semantics - Binary Code
3

Tuesday, 21 May 2013

Proof Architecture (now) e

NICTA

Isabelle

Specification

Isabelle
Haskell
Prototype
Isabelle

C Code Semantics

Isabelle/SMT/HOL4

Binary Code Semantics -

-
Binary Code
3

Tuesday, 21 May 2013

Proof Architecture (now) e

NICTA

|Isabelle
Specification — -
Isabelle
Haskell
Prototype
Isabelle

C Code Semantics

Isabelle/SMT/HOL4

Binary Code Semantics -

-
Binary Code
3

Tuesday, 21 May 2013

Proof Architecture (now)

Secu r|ty

l |Isabelle

Specmcatlon

sabell 94|

BT =

Isabelle

C Code Semantics

|Isabelle/SMT/HC

Binary Code Semantics

NICTA

Haskell
Prototype

Binary Code

3

Tuesday, 21 May 2013

SECURITY (Yo

NICTA

Tuesday, 21 May 2013

A 30-Year Dream

Oyperating R. Stockton Gaines
Systems Editor

Specification and
Verification of the
UCLA Unixt Security
Kernel

Bruce J. Walker, Richard A. Kemmerer, and

Gerald J.
University of California, Los Angeles

Data Secore Usix, » kernel stractured operating sys-
tem, was constructed as part of an ongolng ¢Mert at
UCLA 10 develop precedures by which operating systems
can be prodoced and shown secure, Program verification
metheds were extensively applied &y 2 constructive
means of demoastrating security onforcement.

Here we repert the specification and verification ex-
petience in produciag 2 secure sperating system. The
work regresonts @ significant attempt 1o verify a large-
scale, preduction level seftware system, including all as-
pects from Indtial specification te verification of imple-
mented code.

Key Words and Phrases: veriSoation, security,
sperating systems, profeetion, programming methodolo-
. ALPHARD, feemal specifications, Unlx, securlty
kernel

CR Categories: 4.29, 4.35, 6,35

* Unix is » Trademark of Beli Lator

Permicuon 10 copy wibout foc o or petl of ths matcral o
grasied provided 1Rat the copees ace not made or dmriduted for
Srcet commerdial advantage, the ACM copyright notice and the
titke of 1he pudlhcaron sad it date appear. ard netce nrvcn that
opymg o by per of the A : for C
Machinery. To copy olherwng, o W0 republish, Toguires a (o
and/ or specific permivson

Thin rescacch wan supperiad by the Advanond Rosearch Pro.
sty Ageacy of e Departmens of Defense uader Conaract MDA
H.HT-CQJII Authon’ pesat addrosos B Walkor and G J,
Popek, Department of Compener Scence, Universty o((‘ufov
e, Los Angoles, CA 90003, KA Kemmersr, Compuier 3¢
Depactmant, Uneversty of Catformu, Sona Bambans, CA ma,
© 1580 ACM 0000-07T42/80, 000001 15 30, 75

s

1. Introdection

Early atieerpts to make operating sysiems socure mere-
ly found and fixed faws In evsing systems. As these
cfforts faded, it became cleat that piecemeal alierations
were uniikely ever 10 socceed [20). A more systematc
method was required, presumabdly one that controlled the
systom's dosign and implemeatation. Thee secure opera-
toa could be demonsiraied in a sroeger yeasc than as in-
penvous clim that the last bug had been ehminaced, per-
teularly since peoduction systems are raccly sttic, and o
rors casily introduced.

Our rescarch secks 10 develop means by wheh an
Operating sysiem can be shown dala secure, meaning that
direct access 10 data must be possible caly if the recorded
protection policy permits it The two majos componeals
of this sk are (1) developing system archisectures that
miimize the amount and comphexity of sofiware involved
in both protection decisions and cnforcement, by isolsting
hen im0 Rermel modules; and (2) apphing cxtcasive
verification methods 10 that kerncl software in order 10
prove that our of dava secwnly crilenion is met. This paper
reports on the Satscr part, the verificstion experience.
Those interesied in archiletiueal imsues should see [23)
Rotased work inclades the PSOS operating system peojpect
81 SRI [25] whick uses the hacrarchical desigs mscihodobo-
& described By Robinson and Levitt in 1261, and efforis
10 prove communications soltesre at the Universay of
Texas (31),

Every verdfication step, from the development of wp-
lovel specifications o meching-aided proof of the Pascal
code, was carmcd out. Although 1Bese sicps were nol
completod foe all portions of the keenel. most of the job
wis done for mech of the kerael. [The remainder is chear-
ly more of the same. We thereloee consider the peoject
essentially complete. In this paper, as cach vorfication
step s dscussed, an estmate of the comgleted portoe of
that sigp is given, lgether wilh an ndiaton of the
amount of work requiced for completion. One should
realize that it is essential 10 carry the verilication peocess
twough the staps of actual code-lovel peoals because most
scourity flaws in real systems are found at this level [20).
Sccurity flaws werg found @ our wmwices during
verification, despeie the fact that the implementation was
wrilten carclully and 10s1od extensively. An cuample of
one desected loophole is explamed ia §2.5

This work is samed a1 several audiences: the software
oeginecring and prog verification commwnitios. since
IS case study comprises one of the largest realistic pro-
pram provieg <ffocts 1o dale, e operating sysiems com-
munily because the effoet has involved new operating sys-
tem architectures: and the securdy communily because
the revearch is direcied at the proof of secure operation,
We assume the reader Is aoguainted with common operats
ing system concepts, with geseral programe verificaton
methods. and with common notons of abatract types and
sructured sofreare. Uederstanding of Alphard proof

Commincanons Febesary ¥es0
of Volume 23
he ACM Narmber 2

NICTA

Tuesday, 21 May 2013

A 30-Year Dream

Oyperating R. Stockton Gamnos
Systems Editor

Specification and
Verification of the
UCLA Unixt Security
Kernel

Bruce J. Walker, Richard A. Kemmerer, and

Gerald J. Popek
University of California, Los Ax

Data Secere Usix, » kernel strectat
tem, was constructed as part of an onge

1. Introduction

Early atieerges to make operating sysioms socure mece-
ly found and fixed faws in custing systems. As these
efforts faded, it became cleat that piecemeal alierations
were unlikely ever 10 socceed [20). A more systematc
moethod was required, presumabdly one that controlled the
systom's dosign and implemeatation. Thee secure ogera-
toa could be demonsiraied in a siroeger yeasc than as in-
penvous claim that the last bug had been chminated. par-
teularly since peoduction sysiems are raccly sttic, and or-
rors casily introduced.

Our rescarch secks 0 develop means by whch an
opermting sysiem can be shown dala secure, meaning that
direct access 10 data must be possible caly if the recorded
protection polcy permits it The two majos componeals
of this usk arc (1) developing syseem archisectures that

NICTA

Our research seeks to develop means by which an

waeeeien s gperating system can be shown data secure, meaning that

metheds were extensively applied =y 2 ¢
means of demoastrating security onfore

et ([IPGCL ACCESS tO data musi be possible only if the recorded

work regeesonts a significant attempt i
scale, preduction level sefltware system,

v s o YOtECtion policy permits it.

mented code.
Key Words and Phrases: veriSoation
sperating systems, profoction, programmme
2. ALPHARD, fermal specifications, Unlx, security
kernel
CR Categories: 4.29, 4.35_ 6,35

Y Unix is » Trademark of Bell Latorutoties

Permicuon 10 copy wibout foc ol or patl of ths matcral o
grasied poovided 12at the copees ace nol made or dawributed for
Srcet commerdial advantage, the ACM copyright notice and the
titke of the pudhcarion sad it date appear. ard netice s gven that
oy o by permesion of the Amocion for Competing
Machinery. To copy olharwng, of W republish, rogsires 3 few
and/ or specific permission

Thin rescacch wan supporiad by the Advanced Rosearch Pro
pity Ageacy of e Deparimens of Defense wader Conaract MDA
WAITCONL. Authors’ peeseat addrossos B) Walkor and G)
Popek, Department of Componer Scence, Universty of Cadlfor
ma, Los Angoles, CA X025, KA Kemmerer, Compuier Scence
Depactmgnt, Uneversty of Calfornu, Seeta Rabans, CA 95100
© 1580 ACM 0000 OTE2/ 80000001 18 300 75

. v Son
step s discussed, an estimate of the comgleted portoe of
that sigp is given, lgether wilh an odxaton of the
amount of work requiced for completion. One should
realize that it is esscntaal 1o carry the venlication peoccsy
twough the staps of actual code-lovel peoals because most
scourity flaws in real systems are found at this level [20)
Sccurity flaws were found @0 our wmwice during
verificaton, despeise the fact that the implementation was
wrilten carclully and 10s10d exiensively. An cuample of
one dosected loophole is explamed ia §2.5

This work is samed a1 several audiences: the softwase
oeginecning and program verificabion commwunitios. since
IS case study comprises one of the largest realistic pro-
pram provieg offocts 1o dale, e operating sysiems com-
munily because the effort has involved new operating sys-
tem architectures: and the securdty communily because
the rosearch is direcied at the proof of secure operation
We assume the reader is aoguainted with common operals
ing system concepts, with geseral programe verificaton
methods. and wilth common notons of abatract types and
structured softeare. Uederstanding of Alphard proof

Conmanscations Febrsary VoS0
of Volume 23
he ACM Nareber 2

The two major components

R

Tuesday, 21 May 2013

A 30-Year Dream

Oyperating R. Stockton Gamnes
Systems Editor

Specification and
Verification of the
UCLA Unixt Security
Kernel

Bruce J. Walker, Richard A. Kemmerer, and

Gerald J. Popek
University of California, Los A1

Data Secere Usix, » kernel strectat
tem, was constructed as part of an onge

1. Introduction

Early atieerpts to make operating sysiems socure mece-
ly found and fixed faws in exssting systems. As these
efforts faded, it became cleat that piecemeal alierations
were unlikely ever 10 socceed [20). A more systematc
method was required, presumably one that controlled the
systom's dosign and implemeatation. Thee secure ogera-
oa could be demonsiraied in a Mroeger yease than as in-
penvous claim that the last bug had been ehminated, par-
teularly since peoduction sysiems are raccly sttic, and or-
rors casily introduced.

Our rescarch secks 0 develop means by whch an
Operating sysiem can be shown data secure, meaning that
direct access 10 data must be possible caly if the recorded
protection polcy permits it The two majos componeals
of this sk are (1) developing system archivectures that

NICTA

Our research seeks to develop means by which an

waeeeien s gperating system can be shown data secure, meaning that

metheds were extensively applied =y 2 ¢
means of demoastrating security enfore

et ([IPGCL ACCESS tO data musi be possible only if the recorded

work regeesonts a significant attempt i
scale, preduction level seftware systom,

e prOtection policy permits it

mented code.

Key Words and Phrases: veriSoation
sperating systems, profoction, programtimmg seesnosem-
2. ALPHARD, fermal specifications, Unlx, security
kernel

CR Categories: 4.29, 4.35_ 6,35

* Unix is » Trademark of Bell Laboratoties

Permicion 10 copy wibout foc ol or petl of ths matcral »
gracied provided [Rat the copess are nol mude or daributed for
Sroit commerdial advantage, the ACM copyright notice and the
titke of 1he pudhcaron sad it date appear. ard netce s gven that
oy o by permesion of the Amocion for Competing
Machinery. To copy olharwng, of W republish, rogsires 3 few
and/ o specific permission

Thin rescacch wan supporiad by the Advanced Rosearch Pro
pity Ageacy of e Deparimens of Defense wader Conaract MDA
WAITCONL. Authors’ peeseat addrossos B) Walkor and G)
Popex, Dpartment of Compener Scence, Universty of Cadfor
ma, Los Angetes, CA J0025, KA. Kemmerer, Compuier Scenoe
Depectmgnt, Uneverdty of Calfornu, Sonta Babans, CA 95000
© 1580 ACM 0000 0782/500000-01 15 30075

The two major components

© essentilly complete TR RS RURCT 33 cach serdeaion

step s discussed, an estimate of the comgleted portoe of
that sigp is given, Wgether wilh an wndxaton of the
amount of work roquiced for completion. One should
realize that it is esscntal 10 carry the venlication peoccss
thwough the steps of actual code-lovel prools because most
scourity flaws in real systems are found at this level [20)
Sccurity flaws were found @0 our wmwice during
verification, despeie the fact that the implementation was
wrillen <arg

one detected

e Communications

IS case s
pram provia f
munily beca 0

tem archite
s the ACM
We assume
ing system

methods. ang wam
structured software.
Cormincatons Imuf_\ L]

of Volume 23
he ACM

Alphard proof

O

February 1980
Volume 23
Number 2

Tuesday, 21 May 2013

selL4 Security Proofs: Overview Qe
NICTA

Specification

|

Tuesday, 21 May 2013

seL4 Security Proofs: Overview Qe
NICTA

Access Control Policy Model

Code

Specification

Tuesday, 21 May 2013

selL4 Security Proofs: Overview Qe
NICTA

Access Control Policy Model

==? |

Specification

Integrlty

Tuesday, 21 May 2013

selL4 Security Proofs: Overview e
NICTA

Access Control Policy Model

;
1

(}m

Specification

Tuesday, 21 May 2013

selL4 Security Proofs: Overview Qe
NICTA
Integrity + nfoflow —» isolation

4

- | ’,m
Specification

Access Control Policy Model

Tuesday, 21 May 2013

selL4 Security Proofs: Overview e
NICTA
Integrity + nfoflow —» isolation

4

N
| =
\,

Access Control Policy Model

Integrity

infoflow --» Confidentia thg

Tuesday, 21 May 2013

selL4 Security Proofs: Overview e
NICTA
Integrity + nfoflow —» isolation

Access Control Policy Model

==? |

Specification

Integrlty

infoflow --» Confidentia thg

Tuesday, 21 May 2013

Information Flow Security

Internet

Malware Filter

Tuesday, 21 May 2013

Information Flow Security (Jo

NICTA

general computation
within partitions

Malware Filter

Internet

Tuesday, 21 May 2013

Information Flow Security

general computation
within partitions

-

T

P,

e
-

Tuesday, 21 May 2013

Information Flow Policy

* Derived from access control policy

AsyncSend
Read

Tuesday, 21 May 2013

Information Flow Policy

* Derived from access control policy
n‘j—csln
Read

P1

Tuesday, 21 May 2013

Information Flow Policy

» Derived from access control policy
ﬂ
Read

P1 P2

Tuesday, 21 May 2013

Information Flow Policy

» Derived from access control policy
lIIIEIIIIIt::E???ééé:ilIIIE:IIIII
Read

P1 P2

PSched

Tuesday, 21 May 2013

Information Flow Policy

» Derived from access control policy

AsyncSend
Read

r N r N
N Y N Y
4)

PSched

Tuesday, 21 May 2013

Information Flow Policy

» Derived from access control policy

AsyncSend
Read

4) 4)
_ Y, _ Y
4)

PSched

Tuesday, 21 May 2013

Information Flow Policy

* Derived from access control policy

no-one may affect
scheduling decisions

P1

P2

PSched

NICTA

Tuesday, 21 May 2013

Information Flow Policy (@

* Derived from access control policy

no-one may affect
scheduling dectstons

r - N
P1 H P2
- N Y

ensures PSched Ls not a
global transitive channel

Tuesday, 21 May 2013

Intransitive Nonleakage

4 D e D
P1 |(e—— P2
\ y \ y

L PSched -J

. /

Tuesday, 21 May 2013

Intransitive Nonleakage

e Variant of intransitive noninterference

— Asserts absence of information leaks

P1

[

&

PSched

~N

P2

)

Tuesday, 21 May 2013

Intransitive Nonleakage

e Variant of intransitive noninterference
— Asserts absence of information leaks

* Allows partitions to know of each others’ existence
—P1 allowed to observe that P2 has executed
— But not to learn anything about P2’s state

P1

[

&

PSched

~N

P2

j

Tuesday, 21 May 2013

Intransitive Nonleakage

e Variant of intransitive noninterference

— Asserts absence of information leaks
* Allows partitions to know of each others’ existence

—P1 allowed to observe that P2 has executed
— But not to learn anything about P2’s state

o Sufficient because scheduler follows a fixed round-robin

partition-schedule

— Implied assumption:
everyone is allowed to
know the static
partition-schedule

—When P2 executes, it thus

[

P1

~

/

already knows that P1 must

have finished executing

ﬁ

[

&

PSched

~N

[

)

_

P2

Tuesday, 21 May 2013

Problematic Kernel APls

10

Tuesday, 21 May 2013

Problematic Kernel APls

» Leaky kernel APls need to be disabled

NICTA

10

Tuesday, 21 May 2013

Problematic Kernel APls

» Leaky kernel APls need to be disabled
— by ensuring initially no subject has permission to use them

10

Tuesday, 21 May 2013

Problematic Kernel APls

» Leaky kernel APls need to be disabled
— by ensuring initially no subject has permission to use them
—the proof guarantees they will stay disabled

10

Tuesday, 21 May 2013

Problematic Kernel APls

» Leaky kernel APls need to be disabled
— by ensuring initially no subject has permission to use them
—the proof guarantees they will stay disabled

10

Tuesday, 21 May 2013

Problematic Kernel APls

» Leaky kernel APls need to be disabled
— by ensuring initially no subject has permission to use them
—the proof guarantees they will stay disabled

* Asynchronous interrupt delivery

10

Tuesday, 21 May 2013

Problematic Kernel APls

» Leaky kernel APls need to be disabled
— by ensuring initially no subject has permission to use them
—the proof guarantees they will stay disabled

* Asynchronous interrupt delivery
—device drivers must poll for interrupts

10

Tuesday, 21 May 2013

Problematic Kernel APls

» Leaky kernel APls need to be disabled
— by ensuring initially no subject has permission to use them
—the proof guarantees they will stay disabled

* Asynchronous interrupt delivery
—device drivers must poll for interrupts

10

Tuesday, 21 May 2013

Problematic Kernel APls

» Leaky kernel APls need to be disabled
— by ensuring initially no subject has permission to use them
—the proof guarantees they will stay disabled

* Asynchronous interrupt delivery
—device drivers must poll for interrupts

* Inter-partition object destruction

10

Tuesday, 21 May 2013

Problematic Kernel APls

» Leaky kernel APls need to be disabled
— by ensuring initially no subject has permission to use them
—the proof guarantees they will stay disabled

* Asynchronous interrupt delivery
—device drivers must poll for interrupts

* Inter-partition object destruction
— partition-crossing comms. channels cannot be destroyed

10

Tuesday, 21 May 2013

Problematic Kernel APls ()@

NICTA

» Leaky kernel APls need to be disabled
— by ensuring initially no subject has permission to use them
—the proof guarantees they will stay disabled

* Asynchronous interrupt delivery
—device drivers must poll for interrupts

* Inter-partition object destruction
— partition-crossing comms. channels cannot be destroyed

not uncommon L high-
ASSUYAWNCE sgstems

10

Tuesday, 21 May 2013

Problematic Kernel APls (e
NICTA

» Leaky kernel APls need to be disabled
— by ensuring initially no subject has permission to use them
—the proof guarantees they will stay disah!- -

* Asynchronoi '~
—device a

* |nter-partiti
— partition-cr

not uweEdmmon L high-
ASSUYAWNCE sgstems

10

Tuesday, 21 May 2013

Assurance

11

Tuesday, 21 May 2013

Assurance

 Proofs break when:

11

Tuesday, 21 May 2013

Assurance (Jeo

 Proofs break when:

—they are not logically correct
(involve incorrect reasoning)

11

Tuesday, 21 May 2013

Assurance e

 Proofs break when:

—they are not logically correct
(involve incorrect reasoning)

Security Property

roof I

11

Tuesday, 21 May 2013

Assurance (Jeo

 Proofs break when:

—they are not logically correct
(involve incorrect reasoning)

A WOW-LSSUE LN pmc’cice l
\\
v@
&&’, Proof I

System Model (code semantics)

11

Tuesday, 21 May 2013

Assurance (Jeo

* Proofs break when:
—they are not logically correct

(involve incorrect reasoning)

A WOW-LSSUE LIA pmc’cice ' O
O

—their assumptions are

&Q’ Proof I

System Model (code semantics)

11

Tuesday, 21 May 2013

Assurance (Jeo

 Proofs break when:

—they are not logically correct
(involve incorrect reasoning)

A WOW-LSSUE LIA pmc’cice '

—their assumptions are

!

System Modz! (Scda semantics)

11

Tuesday, 21 May 2013

Assurance (Jo

* Proofs break when:
—they are not logically correct

(involve incorrect reasoning)

A WOW-LSSUE LIA pmo’cice l O
O

—their assumptions are

\\e
v@
&%g’/ Proof I

—they don’'t mean what 2 _
we thought they did

11

Tuesday, 21 May 2013

Assurance

 Proofs break when:

—they are not logically correct
(involve incorrect reasoning)

A WOW-LSSUE LIA pmo’cice l

—their assumptions are ~__
unrealistic Security Property

&
—they don’'t mean what 2 _
we thought they did

11

Tuesday, 21 May 2013

Assumptions

NICTA

12

Tuesday, 21 May 2013

Assumptions

 All those of functional correctness proofs

NICTA

12

Tuesday, 21 May 2013

Assumptions

 All those of functional correctness proofs
— because we build on top of those results

12

Tuesday, 21 May 2013

Assumptions

 All those of functional correctness proofs
— because we build on top of those results

 Correct initialisation

NICTA

12

Tuesday, 21 May 2013

Assumptions o

NICTA

 All those of functional correctness proofs
— because we build on top of those results

» Correct initialisation
— system state after configuration implements access policy, and

12

Tuesday, 21 May 2013

Assumptions ®

 All those of functional correctness proofs
— because we build on top of those results

» Correct initialisation
— system state after configuration implements access policy, and

— meets wellformedness assumptions

12

Tuesday, 21 May 2013

Assumptions e

NICTA

 All those of functional correctness proofs
— because we build on top of those results

» Correct initialisation
— system state after configuration implements access policy, and

— meets wellformedness assumptions

leaky AP features disabled l

12

Tuesday, 21 May 2013

Assumptions @

 All those of functional correctness proofs
— because we build on top of those results

» Correct initialisation
— system state after configuration implements access policy, and

— meets wellformedness assumptions

leaky AP features disabled |

— DMA disabled

12

Tuesday, 21 May 2013

Assumptions o

 All those of functional correctness proofs
— because we build on top of those results

» Correct initialisation
— system state after configuration implements access policy, and

— meets wellformedness assumptions

leaky AP features disabled l

— DMA disabled

» User-space has no info sources that are not modelled

12

Tuesday, 21 May 2013

Assumptions o

 All those of functional correctness proofs
— because we build on top of those results

» Correct initialisation
— system state after configuration implements access policy, and

— meets wellformedness assumptions

leaky AP features disabled l

— DMA disabled

» User-space h what about covert channels? l modellea

12

Tuesday, 21 May 2013

Covert Channels

13

Tuesday, 21 May 2013

Covert Channels

* |Infoflow proof says nothing about timing channels

NICTA

13

Tuesday, 21 May 2013

Covert Channels

* |Infoflow proof says nothing about timing channels
* e.g. Jitter in scheduler

NICTA

13

Tuesday, 21 May 2013

Covert Channels

* |Infoflow proof says nothing about timing channels

* e.g. Jitter in scheduler
—sel 4 syscalls are generally non-preemptible

VN

@
NICTA

13

Tuesday, 21 May 2013

Covert Channels o

NICTA

* Infoflow proof says nothing about timing channels

* e.g. Jitter in scheduler

—sel 4 syscalls are generally non-preemptible
« except at well-defined points during long-running calls e.g. Revoke()

13

Tuesday, 21 May 2013

Covert Channels @

NICTA

* Infoflow proof says nothing about timing channels

* e.g. Jitter in scheduler

—sel 4 syscalls are generally non-preemptible
« except at well-defined points during long-running calls e.g. Revoke()

— partition switch can be delayed by syscall

13

Tuesday, 21 May 2013

Covert Channels

* Infoflow proof says nothing about timing channels

* e.g. Jitter in scheduler

—sel 4 syscalls are generally non-preemptible
« except at well-defined points during long-running calls e.g. Revoke()

— partition switch can be delayed by syscall

user mode

kernel mode
(irgs disabled)

13

Tuesday, 21 May 2013

Covert Channels

* Infoflow proof says nothing about timing channels

* e.g. Jitter in scheduler

—sel 4 syscalls are generally non-preemptible
« except at well-defined points during long-running calls e.g. Revoke()

— partition switch can be delayed by syscall

uop
user mode / \

kernel mode
(irgs disabled)

13

Tuesday, 21 May 2013

Covert Channels

* Infoflow proof says nothing about timing channels

* e.g. Jitter in scheduler

—sel 4 syscalls are generally non-preemptible
« except at well-defined points during long-running calls e.g. Revoke()

— partition switch can be delayed by syscall

uop uop
user mode /\/\

kernel mode
(irgs disabled)

13

Tuesday, 21 May 2013

Covert Channels

* Infoflow proof says nothing about timing channels

* e.g. Jitter in scheduler

—sel 4 syscalls are generally non-preemptible
« except at well-defined points during long-running calls e.g. Revoke()

— partition switch can be delayed by syscall

uop uop
user mode /\/

kernel mode
(irgs disabled)

syscall

13

Tuesday, 21 May 2013

Covert Channels

* Infoflow proof says nothing about timing channels

* e.g. Jitter in scheduler

—sel 4 syscalls are generally non-preemptible
« except at well-defined points during long-running calls e.g. Revoke()

— partition switch can be delayed by syscall

uop uop
user mode /\/

kernel mode
(irgs disabled)

syscall switch partition

13

Tuesday, 21 May 2013

Covert Channels

* Infoflow proof says nothing about timing channels

* e.g. Jitter in scheduler

—sel 4 syscalls are generally non-preemptible
« except at well-defined points during long-running calls e.g. Revoke()

— partition switch can be delayed by syscall

irq

uop uop
user mode /\/ *

kernel mode
(irgs disabled)

syscall switch partition

13

Tuesday, 21 May 2013

Covert Channels

* Infoflow proof says nothing about timing channels

* e.g. Jitter in scheduler

—sel 4 syscalls are generally non-preemptible
« except at well-defined points during long-running calls e.g. Revoke()

— partition switch can be delayed by syscall

irq

uop uop
user mode /\/

kernel mode
(irgs disabled)

syscall switch partition

13

Tuesday, 21 May 2013

Covert Channels

* Infoflow proof says nothing about timing channels

* e.g. Jitter in scheduler

—sel 4 syscalls are generally non-preemptible
« except at well-defined points during long-running calls e.g. Revoke()

— partition switch can be delayed by syscall

irq

uop uop
user mode /\/

kernel mode
(irgs disabled)

syscall switch partition

» Others: caches, CPU temp. etc.

13

Tuesday, 21 May 2013

Covert Channels

+ Infoflow nrens -

g channels

. wixioated 0Y

le
e.g. Revoke()

uop uop irq

e NN Y,

kernel mode
(irgs disabled)

syscall switch partition

* Others: caches, CPU temp. etc.

NICTA

13

Tuesday, 21 May 2013

Covert Channels (Je

NICTA
* Infoflow nre~* - b g channels
' oated 0Y
— S€ o DW\;PLCVWCV\'JCQYB le
) p.a 2\ \A,LOl Wwes e.g. Revoke()
— MLtL@ atl:o W st
Aepenols on
vofilo ~r o . = L
c P oﬁl’e OfdePLo
(irgs disable

* Others: caches, CPU temp. etc.

13

Tuesday, 21 May 2013

Lesson

* Functional correctness enables cheap security proofs

25

20 -

15

10 -

Effort (py)

Functional Correctness

___I

Integrity

Infoflow

Oe

NICTA

14

Tuesday, 21 May 2013

Security Proofs for seL4: Summary

Tuesday, 21 May 2013

Security Proofs for seL4: Summary

VN

@
NICTA

15

Tuesday, 21 May 2013

Security Proofs for seL4: Summary

PUYPO ; security proofs of
operating system
Rernels are practical.

15

Tuesday, 21 May 2013

Security Proofs for seL4: Summary

PUYPO ; security proofs of
operating system

demand nothing less. l

Rernels are pra ctieal.

15

Tuesday, 21 May 2013

sel 4 Verification Stack e

NICTA

Specification

 Desion rototyr
Prototype
C Code Semantics -

Binary Semantics (Cambridge ARM ISA) - Binary Code

16

Tuesday, 21 May 2013

sel 4 Verification Stack e

NICTA

Specification

L oesn MRl e
Prototype
C Code Semantics -

Binary Semantire (Camhridge ARM ISA) - Binary Code

16

Tuesday, 21 May 2013

sel 4 Verification Stack e

NICTA

Specification

 Desion rototyr
Prototype
C Code Semantics -

Binary Semantics (Cambridge ARM ISA) - Binary Code

16

Tuesday, 21 May 2013

sel 4 Verification Stack (Je

NICTA

Specification

*

- securi’cg theoremis Haskell
Prototype
that hold for the

kernel bLna ry

- Binary Code

Tuesday, 21 May 2013

