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Data Secore Usix, » kernel stractured operating sys-
tem, was constructed as part of an ongolng ¢Mert at
UCLA 10 develop precedures by which operating systems
can be prodoced and shown secure, Program verification
metheds were extensively applied &y 2 constructive
means of demoastrating security onforcement.

Here we repert the specification and verification ex-
petience in produciag 2 secure sperating system. The
work regresonts @ significant attempt 1o verify a large-
scale, preduction level seftware system, including all as-
pects from Indtial specification te verification of imple-
mented code.
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1. Introdection

Early atieerpts to make operating sysiems socure mere-
ly found and fixed faws In evsing systems. As these
cfforts faded, it became cleat that piecemeal alierations
were uniikely ever 10 socceed [20). A more systematc
method was required, presumabdly one that controlled the
systom's dosign and implemeatation. Thee secure opera-
toa could be demonsiraied in a sroeger yeasc than as in-
penvous clim that the last bug had been ehminaced, per-
teularly since peoduction systems are raccly sttic, and o
rors casily introduced.

Our rescarch secks 10 develop means by wheh an
Operating sysiem can be shown dala secure, meaning that
direct access 10 data must be possible caly if the recorded
protection policy permits it The two majos componeals
of this sk are (1) developing system archisectures that
miimize the amount and comphexity of sofiware involved
in both protection decisions and cnforcement, by isolsting
hen im0 Rermel modules; and (2) apphing cxtcasive
verification methods 10 that kerncl software in order 10
prove that our of dava secwnly crilenion is met. This paper
reports on the Satscr part, the verificstion experience.
Those interesied in archiletiueal imsues should see [23)
Rotased work inclades the PSOS operating system peojpect
81 SRI [25] whick uses the hacrarchical desigs mscihodobo-
& described By Robinson and Levitt in 1261, and efforis
10 prove communications soltesre at the Universay of
Texas (31),

Every verdfication step, from the development of wp-
lovel specifications o meching-aided proof of the Pascal
code, was carmcd out. Although 1Bese sicps were nol
completod foe all portions of the keenel. most of the job
wis done for mech of the kerael.  [The remainder is chear-
ly more of the same. We thereloee consider the peoject
essentially complete. In this paper, as cach vorfication
step s dscussed, an estmate of the comgleted portoe of
that sigp is given, lgether wilh an ndiaton of the
amount of work requiced for completion. One should
realize that it is essential 10 carry the verilication peocess
twough the staps of actual code-lovel peoals because most
scourity flaws in real systems are found at this level [20).
Sccurity flaws werg found @ our wmwices  during
verification, despeie the fact that the implementation was
wrilten carclully and 10s1od extensively. An cuample of
one desected loophole is explamed ia §2.5

This work is samed a1 several audiences: the software
oeginecring and prog verification commwnitios. since
IS case study comprises one of the largest realistic pro-
pram provieg <ffocts 1o dale, e operating sysiems com-
munily because the effoet has involved new operating sys-
tem architectures: and the securdy communily because
the revearch is direcied at the proof of secure operation,
We assume the reader Is aoguainted with common operats
ing system concepts, with geseral programe verificaton
methods. and with common notons of abatract types and
sructured sofreare. Uederstanding of Alphard proof

Commincanons Febesary ¥es0
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he ACM Narmber 2
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e Variant of intransitive noninterference

— Asserts absence of information leaks
* Allows partitions to know of each others’ existence

—P1 allowed to observe that P2 has executed
— But not to learn anything about P2’s state

o Sufficient because scheduler follows a fixed round-robin

partition-schedule

— Implied assumption:
everyone is allowed to
know the static
partition-schedule

—When P2 executes, it thus
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Lesson

* Functional correctness enables cheap security proofs
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operating system

demand nothing less. l
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