
NICTA Copyright 2012 From imagination to impact

Above and Beyond

Toby Murray and Thomas Sewell

Joint work with Matthew Brassil, Timothy Bourke,
Peter Gammie, Xin Gao, Gerwin Klein, Corey Lewis,

Daniel Matichuk and Magnus O. Myreen

Tuesday, 21 May 2013

NICTA Copyright 2013 From imagination to impact

Functional Correctness Proof (2009)

2

C Code Semantics

Design

Specification

Haskell
Prototype

C Code

Tuesday, 21 May 2013

NICTA Copyright 2013 From imagination to impact

Functional Correctness Proof (2009)

2

C Code Semantics

Design

Specification

Haskell
Prototype

Is the
spec secure?

C Code

Tuesday, 21 May 2013

NICTA Copyright 2013 From imagination to impact

Functional Correctness Proof (2009)

2

C Code Semantics

Design

Specification

Haskell
Prototype

Is the
spec secure?

Can I
trust gcc?

C Code

Tuesday, 21 May 2013

NICTA Copyright 2013 From imagination to impact

Proof Architecture (now)

3

Design

Specification

Haskell
Prototype

Isabelle

Isabelle

C Code Semantics C Code

Tuesday, 21 May 2013

NICTA Copyright 2013 From imagination to impact

Proof Architecture (now)

3

Design

Specification

Haskell
Prototype

Isabelle

Isabelle

C Code Semantics C Code

Security

Isabelle

Tuesday, 21 May 2013

NICTA Copyright 2013 From imagination to impact

Proof Architecture (now)

3

Design

Specification

Haskell
Prototype

Isabelle

Isabelle

C Code Semantics C Code

Security

Isabelle

Binary Code Semantics Binary Code

Isabelle/SMT/HOL4

Tuesday, 21 May 2013

NICTA Copyright 2013 From imagination to impact

Proof Architecture (now)

3

Design

Specification

Haskell
Prototype

Isabelle

Isabelle

C Code Semantics C Code

Security

Isabelle

Binary Code Semantics Binary Code

Isabelle/SMT/HOL4

security theorems
that hold for the
kernel binary

Tuesday, 21 May 2013

NICTA Copyright 2013 From imagination to impact

Proof Architecture (now)

3

Design

Specification

Haskell
Prototype

Isabelle

Isabelle

C Code Semantics C Code

Security

Isabelle

Binary Code Semantics Binary Code

Isabelle/SMT/HOL4

Tuesday, 21 May 2013

NICTA Copyright 2013 From imagination to impact

Proof Architecture (now)

3

Design

Specification

Haskell
Prototype

Isabelle

Isabelle

C Code Semantics C Code

Security

Isabelle

Binary Code Semantics Binary Code

Isabelle/SMT/HOL4

Tuesday, 21 May 2013

NICTA Copyright 2013 From imagination to impact

Proof Architecture (now)

3

Design

Specification

Haskell
Prototype

Isabelle

Isabelle

C Code Semantics C Code

Security

Isabelle

Binary Code Semantics Binary Code

Isabelle/SMT/HOL4

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

SECURITY

4

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

A 30-Year Dream

5

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

A 30-Year Dream

5

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

A 30-Year Dream

5

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

seL4 Security Proofs: Overview

6

Specification

Code

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

seL4 Security Proofs: Overview

6

Specification

Code

Access Control Policy Model

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

seL4 Security Proofs: Overview

6

Specification

Code

Access Control Policy Model

Integrity

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

seL4 Security Proofs: Overview

6

Specification

Code

Access Control Policy Model

Integrity Infoflow

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

seL4 Security Proofs: Overview

6

Specification

Code

Access Control Policy Model

Integrity Infoflow

Integrity + Infoflow --» Isolation

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

seL4 Security Proofs: Overview

6

Specification

Code

Access Control Policy Model

Integrity Infoflow

Integrity + Infoflow --» Isolation

Infoflow --» Confidentiality
Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

seL4 Security Proofs: Overview

6

Specification

Code

Access Control Policy Model

Integrity Infoflow

Integrity + Infoflow --» Isolation

Infoflow --» Confidentiality
Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Information Flow Security

7

Internet

Malware Filter

Audit

Work

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Information Flow Security

7

Internet

Malware Filter

Audit

Work

general computation
within partitions--»

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Information Flow Security

7

Internet

Malware Filter

Audit

Work

intransitive

noninterference

general computation
within partitions--»

Tuesday, 21 May 2013

• Derived from access control policy

NICTA Copyright 2010 From imagination to impact

Information Flow Policy

8

S1 S2

AsyncSend

Read

Tuesday, 21 May 2013

• Derived from access control policy

NICTA Copyright 2010 From imagination to impact

Information Flow Policy

8

S1 S2

AsyncSend

Read

P1

Tuesday, 21 May 2013

• Derived from access control policy

NICTA Copyright 2010 From imagination to impact

Information Flow Policy

8

S1 S2

AsyncSend

Read

P1 P2

Tuesday, 21 May 2013

• Derived from access control policy

NICTA Copyright 2010 From imagination to impact

Information Flow Policy

8

S1 S2

AsyncSend

Read

P1 P2

PSched

Tuesday, 21 May 2013

• Derived from access control policy

NICTA Copyright 2010 From imagination to impact

Information Flow Policy

8

S1 S2

AsyncSend

Read

P1 P2

PSched

Tuesday, 21 May 2013

• Derived from access control policy

NICTA Copyright 2010 From imagination to impact

Information Flow Policy

8

S1 S2

AsyncSend

Read

P1 P2

PSched

Tuesday, 21 May 2013

• Derived from access control policy

NICTA Copyright 2010 From imagination to impact

Information Flow Policy

8

S1 S2

AsyncSend

Read

P1 P2

PSched

no-one may affect
scheduling decisions

Tuesday, 21 May 2013

• Derived from access control policy

NICTA Copyright 2010 From imagination to impact

Information Flow Policy

8

S1 S2

AsyncSend

Read

P1 P2

PSched

no-one may affect
scheduling decisions

ensures PSched is not a
global transitive channel

Tuesday, 21 May 2013

P1 P2

PSched

NICTA Copyright 2010 From imagination to impact

Intransitive Nonleakage

9

Tuesday, 21 May 2013

P1 P2

PSched

• Variant of intransitive noninterference
– Asserts absence of information leaks

NICTA Copyright 2010 From imagination to impact

Intransitive Nonleakage

9

Tuesday, 21 May 2013

P1 P2

PSched

• Variant of intransitive noninterference
– Asserts absence of information leaks

• Allows partitions to know of each others’ existence
– P1 allowed to observe that P2 has executed
– But not to learn anything about P2’s state

NICTA Copyright 2010 From imagination to impact

Intransitive Nonleakage

9

Tuesday, 21 May 2013

P1 P2

PSched

• Variant of intransitive noninterference
– Asserts absence of information leaks

• Allows partitions to know of each others’ existence
– P1 allowed to observe that P2 has executed
– But not to learn anything about P2’s state

• Sufficient because scheduler follows a fixed round-robin
partition-schedule
– Implied assumption:

everyone is allowed to
know the static
partition-schedule

– When P2 executes, it thus
already knows that P1 must
have finished executing

NICTA Copyright 2010 From imagination to impact

Intransitive Nonleakage

9

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Problematic Kernel APIs

10

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Problematic Kernel APIs

• Leaky kernel APIs need to be disabled

10

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Problematic Kernel APIs

• Leaky kernel APIs need to be disabled
– by ensuring initially no subject has permission to use them

10

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Problematic Kernel APIs

• Leaky kernel APIs need to be disabled
– by ensuring initially no subject has permission to use them
– the proof guarantees they will stay disabled

10

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Problematic Kernel APIs

• Leaky kernel APIs need to be disabled
– by ensuring initially no subject has permission to use them
– the proof guarantees they will stay disabled

10

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Problematic Kernel APIs

• Leaky kernel APIs need to be disabled
– by ensuring initially no subject has permission to use them
– the proof guarantees they will stay disabled

• Asynchronous interrupt delivery

10

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Problematic Kernel APIs

• Leaky kernel APIs need to be disabled
– by ensuring initially no subject has permission to use them
– the proof guarantees they will stay disabled

• Asynchronous interrupt delivery
– device drivers must poll for interrupts

10

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Problematic Kernel APIs

• Leaky kernel APIs need to be disabled
– by ensuring initially no subject has permission to use them
– the proof guarantees they will stay disabled

• Asynchronous interrupt delivery
– device drivers must poll for interrupts

10

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Problematic Kernel APIs

• Leaky kernel APIs need to be disabled
– by ensuring initially no subject has permission to use them
– the proof guarantees they will stay disabled

• Asynchronous interrupt delivery
– device drivers must poll for interrupts

• Inter-partition object destruction

10

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Problematic Kernel APIs

• Leaky kernel APIs need to be disabled
– by ensuring initially no subject has permission to use them
– the proof guarantees they will stay disabled

• Asynchronous interrupt delivery
– device drivers must poll for interrupts

• Inter-partition object destruction
– partition-crossing comms. channels cannot be destroyed

10

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Problematic Kernel APIs

• Leaky kernel APIs need to be disabled
– by ensuring initially no subject has permission to use them
– the proof guarantees they will stay disabled

• Asynchronous interrupt delivery
– device drivers must poll for interrupts

• Inter-partition object destruction
– partition-crossing comms. channels cannot be destroyed

10

not uncommon in high-
assurance systems

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Problematic Kernel APIs

• Leaky kernel APIs need to be disabled
– by ensuring initially no subject has permission to use them
– the proof guarantees they will stay disabled

• Asynchronous interrupt delivery
– device drivers must poll for interrupts

• Inter-partition object destruction
– partition-crossing comms. channels cannot be destroyed

10

not uncommon in high-
assurance systems

all kernel services

available within

partitions, besides

async irq notification

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Assurance

11

Security Property

Proof

System Model (code semantics)

I
M

A
W

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Assurance

• Proofs break when:

11

Security Property

Proof

System Model (code semantics)

I
M

A
W

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Assurance

• Proofs break when:
– they are not logically correct

(involve incorrect reasoning)

11

Security Property

Proof

System Model (code semantics)

I
M

A
W

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Assurance

• Proofs break when:
– they are not logically correct

(involve incorrect reasoning)

11

Security Property

Proof

System Model (code semantics)

I
M

A
W

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Assurance

• Proofs break when:
– they are not logically correct

(involve incorrect reasoning)

11

Security Property

Proof

System Model (code semantics)

a non-issue in practice
I

M

A
W

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Assurance

• Proofs break when:
– they are not logically correct

(involve incorrect reasoning)

– their assumptions are
unrealistic

11

Security Property

Proof

System Model (code semantics)

a non-issue in practice
I

M

A
W

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Assurance

• Proofs break when:
– they are not logically correct

(involve incorrect reasoning)

– their assumptions are
unrealistic

11

Security Property

Proof

System Model (code semantics)

a non-issue in practice
I

M

A
W

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Assurance

• Proofs break when:
– they are not logically correct

(involve incorrect reasoning)

– their assumptions are
unrealistic

– they don’t mean what
we thought they did

11

Security Property

Proof

System Model (code semantics)

a non-issue in practice
I

M

A
W

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Assurance

• Proofs break when:
– they are not logically correct

(involve incorrect reasoning)

– their assumptions are
unrealistic

– they don’t mean what
we thought they did

11

Security Property

Proof

System Model (code semantics)

a non-issue in practice
I

M

A
W

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Assumptions

12

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Assumptions

• All those of functional correctness proofs

12

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Assumptions

• All those of functional correctness proofs
– because we build on top of those results

12

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Assumptions

• All those of functional correctness proofs
– because we build on top of those results

• Correct initialisation

12

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Assumptions

• All those of functional correctness proofs
– because we build on top of those results

• Correct initialisation
– system state after configuration implements access policy, and

12

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Assumptions

• All those of functional correctness proofs
– because we build on top of those results

• Correct initialisation
– system state after configuration implements access policy, and

– meets wellformedness assumptions

12

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Assumptions

• All those of functional correctness proofs
– because we build on top of those results

• Correct initialisation
– system state after configuration implements access policy, and

– meets wellformedness assumptions

12

leaky API features disabled

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Assumptions

• All those of functional correctness proofs
– because we build on top of those results

• Correct initialisation
– system state after configuration implements access policy, and

– meets wellformedness assumptions

– DMA disabled

12

leaky API features disabled

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Assumptions

• All those of functional correctness proofs
– because we build on top of those results

• Correct initialisation
– system state after configuration implements access policy, and

– meets wellformedness assumptions

– DMA disabled

• User-space has no info sources that are not modelled

12

leaky API features disabled

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Assumptions

• All those of functional correctness proofs
– because we build on top of those results

• Correct initialisation
– system state after configuration implements access policy, and

– meets wellformedness assumptions

– DMA disabled

• User-space has no info sources that are not modelled

12

leaky API features disabled

what about covert channels?

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Covert Channels

13

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Covert Channels

• Infoflow proof says nothing about timing channels

13

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Covert Channels

• Infoflow proof says nothing about timing channels
• e.g. jitter in scheduler

13

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Covert Channels

• Infoflow proof says nothing about timing channels
• e.g. jitter in scheduler

– seL4 syscalls are generally non-preemptible

13

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Covert Channels

• Infoflow proof says nothing about timing channels
• e.g. jitter in scheduler

– seL4 syscalls are generally non-preemptible
• except at well-defined points during long-running calls e.g. Revoke()

13

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Covert Channels

• Infoflow proof says nothing about timing channels
• e.g. jitter in scheduler

– seL4 syscalls are generally non-preemptible
• except at well-defined points during long-running calls e.g. Revoke()

– partition switch can be delayed by syscall

13

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Covert Channels

• Infoflow proof says nothing about timing channels
• e.g. jitter in scheduler

– seL4 syscalls are generally non-preemptible
• except at well-defined points during long-running calls e.g. Revoke()

– partition switch can be delayed by syscall

13

kernel mode
(irqs disabled)

user mode

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Covert Channels

• Infoflow proof says nothing about timing channels
• e.g. jitter in scheduler

– seL4 syscalls are generally non-preemptible
• except at well-defined points during long-running calls e.g. Revoke()

– partition switch can be delayed by syscall

13

uop

kernel mode
(irqs disabled)

user mode

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Covert Channels

• Infoflow proof says nothing about timing channels
• e.g. jitter in scheduler

– seL4 syscalls are generally non-preemptible
• except at well-defined points during long-running calls e.g. Revoke()

– partition switch can be delayed by syscall

13

uop uop

kernel mode
(irqs disabled)

user mode

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Covert Channels

• Infoflow proof says nothing about timing channels
• e.g. jitter in scheduler

– seL4 syscalls are generally non-preemptible
• except at well-defined points during long-running calls e.g. Revoke()

– partition switch can be delayed by syscall

13

uop uop

syscall

kernel mode
(irqs disabled)

user mode

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Covert Channels

• Infoflow proof says nothing about timing channels
• e.g. jitter in scheduler

– seL4 syscalls are generally non-preemptible
• except at well-defined points during long-running calls e.g. Revoke()

– partition switch can be delayed by syscall

13

uop uop

syscall

kernel mode
(irqs disabled)

user mode

switch partition

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Covert Channels

• Infoflow proof says nothing about timing channels
• e.g. jitter in scheduler

– seL4 syscalls are generally non-preemptible
• except at well-defined points during long-running calls e.g. Revoke()

– partition switch can be delayed by syscall

13

uop uop

syscall

kernel mode
(irqs disabled)

user mode

irq

switch partition

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Covert Channels

• Infoflow proof says nothing about timing channels
• e.g. jitter in scheduler

– seL4 syscalls are generally non-preemptible
• except at well-defined points during long-running calls e.g. Revoke()

– partition switch can be delayed by syscall

13

uop uop

syscall

kernel mode
(irqs disabled)

user mode

irq

switch partition

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Covert Channels

• Infoflow proof says nothing about timing channels
• e.g. jitter in scheduler

– seL4 syscalls are generally non-preemptible
• except at well-defined points during long-running calls e.g. Revoke()

– partition switch can be delayed by syscall

• Others: caches, CPU temp. etc.

13

uop uop

syscall

kernel mode
(irqs disabled)

user mode

irq

switch partition

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Covert Channels

• Infoflow proof says nothing about timing channels
• e.g. jitter in scheduler

– seL4 syscalls are generally non-preemptible
• except at well-defined points during long-running calls e.g. Revoke()

– partition switch can be delayed by syscall

• Others: caches, CPU temp. etc.

13

uop uop

syscall

kernel mode
(irqs disabled)

user mode

irq

switch partition

must be mitigated by

complementary

techniques

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Covert Channels

• Infoflow proof says nothing about timing channels
• e.g. jitter in scheduler

– seL4 syscalls are generally non-preemptible
• except at well-defined points during long-running calls e.g. Revoke()

– partition switch can be delayed by syscall

• Others: caches, CPU temp. etc.

13

uop uop

syscall

kernel mode
(irqs disabled)

user mode

irq

switch partition

must be mitigated by

complementary

techniques
mitigation strategy depends on risk profile of deployment

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Lesson

• Functional correctness enables cheap security proofs

14

!"

#"

$!"

$#"

%!"

%#"

&'()*+(,-".+//0)1(022" 3(104/516" 3(7+8+9"

!"#$%&'()*&

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Security Proofs for seL4: Summary

15

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Security Proofs for seL4: Summary

15

strongest such results

ever for a general-

purpose kernel

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Security Proofs for seL4: Summary

15

strongest such results

ever for a general-

purpose kernel
security proofs of
operating system

kernels are practical.

Tuesday, 21 May 2013

NICTA Copyright 2010 From imagination to impact

Security Proofs for seL4: Summary

15

strongest such results

ever for a general-

purpose kernel
security proofs of
operating system

kernels are practical.

demand nothing less.

Tuesday, 21 May 2013

NICTA Copyright 2013 From imagination to impact

seL4 Verification Stack

16

Design

Specification

Haskell
Prototype

C Code Semantics C Code

Security

Binary Semantics (Cambridge ARM ISA) Binary Code

Tuesday, 21 May 2013

NICTA Copyright 2013 From imagination to impact

seL4 Verification Stack

16

Design

Specification

Haskell
Prototype

C Code Semantics C Code

Security

Binary Semantics (Cambridge ARM ISA) Binary Code

Tuesday, 21 May 2013

NICTA Copyright 2013 From imagination to impact

seL4 Verification Stack

16

Design

Specification

Haskell
Prototype

C Code Semantics C Code

Security

Binary Semantics (Cambridge ARM ISA) Binary Code

Tuesday, 21 May 2013

NICTA Copyright 2013 From imagination to impact

seL4 Verification Stack

16

Design

Specification

Haskell
Prototype

C Code Semantics C Code

Security

Binary Semantics (Cambridge ARM ISA) Binary Code

security theorems
that hold for the
kernel binary

Tuesday, 21 May 2013

