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— Stateless versus stateful operators
* Educational challenges and opportunities
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Collaboration for Advancing Minority Participation in Security (CAMPS)
* Texas A&M University

* Prairie View A&M University

 Texas A&M San Antonio

 Texas A&M Corpus Christi

 West Texas A&M University

Research Mission - started January 2021
* Texas A&M University
* Prairie View A&M University

dilma@cse.tamu.edu 2021-10-13 OnRamp Research Symposium



Bﬁ;gﬁﬂrunNé\ﬁ:ngYComputer Stream Processing

. Science & Engineering

query and process
continuous, long-running, and large-scale data streams
within a short period of time
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~ 2008 - IBM System S
~ 2010 - Yahoo S4
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Beyond a computing paradigm:
new requirements in
application architecture
and
cluster management
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Pub-subscribe developed at LinkedIn
Open-sourced in 2011

katka.

Web Custom Apps Microservices Monitoring Analytics
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Apache Kafka®
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https://docs.confluent.io/5.5.1/kafka/introduction.html
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APACHE

STORM

* Open-sourced by Twitter
* Initial release in 2011; Apache top-level project in 2014

« SIGMOD’14
R
T 0



TEXAS A&M UNIVERSITY
JA[vd Department of Computer
. Science & Engineering H E R O N

Apache Heron
Twitter replaced Storm with A realtime, distributed, fault-tolerant stream
Heron [SIGMOD’15] processing engine
to meet Tweeter’s new requirements:

“billions of events per minute;

have sub-second latency and predictable behavior at scale;

in failure scenarios, have high data accuracy;

resiliency under temporary traffic spikes and pipeline congestions;

be easy to debug;
and simple to deploy in a shared infrastructure.”
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Apache Flink

Stateful applications

— “State management in Apache Flink: consistent stateful distributed
stream processing” VLDB’17

data stream
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Figure 2: Stream processing pipeline at LinkedIn.
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Version 0.24

Used at Groupon, Twitter, Twitter Alibaba, AWS, LinkiedIn,
Weather Channel, Capitall, Ebay, Intuit, Slack,
Yahoo!, Spotify, Ericsson, Lyft, TripAdvisor,
Alibaba, Baidu, Uber, Yelp, Netflix, Tivo,
Yelp, WebMD, Huawei and a and a few more
and MANY more few more

In this project, focus on Apache Storm
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Apache Storm

* When released as an Apache project, the community collaborated with
Yahoo!, Hortonworks, and Symantec to address Storm’s security
features.

 8entries in the CVE (Common Vulnerabilities and Exposures) list.
* Publications on using Apache Storm for network intrusion detection.
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cybersecurity analytics

Deployment - from datacenter (cloud computing)
to infrastructure closer to data sources (edge computing)

Direct data source integration
— Flexible, efficient, authenticated, at scale

— Enablement of plug-in engine for integration with industrial loT-based
applications

* Anomalies that capture digital tampering/compromising
Support for provenance tracking

Optimizations of federated learning
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* Deployment
edge computing

« Direct data source integration
— Flexible, efficient, authenticated, at scale
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» Stateful operators

* Lightweight flexible ingestion of data
 Benchmarking framework

e Student training
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» Stateless vs stateful operators

— Previous work has augmented Apache Storm with a design that

allows scalable state recovery
NSF Awards 1919126 and 1919181
Published at IEEE IPDPS’20 and ACM Middleware’21

— The existing prototype has not been assessed for security
implications
* Design to avoid combining additional frameworks
— E.g., do not use Kafka to integrate data streams
* Exploration: lightweight addition to the Zookeeper component
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TEXAS A&M UNIVERSITY Stream Computing meets edge COmputing

Cloud for
Central Analytics

loT Sensors Edge Gateways
& Actuators & Routers

Real-time
analysis
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* The high latency may cause the results to be obsolete
* The network infrastructure may not afford the massive data streams
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* The literature on advancing Apache Storm is reach on optimizing the
placement of the operators.

* Recent efforts address streaming on the edge for loT workloads:
EdgeWise (USENIX ATC 2019), DART (USENIX ATC 2021)

* Exploration: New implementations of the ISpout an IBolt interfaces
— optimize spout instantiation: scale-out

— enable dynamic association between spouts and operators that
adapts to variations in input data patterns.
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 Benchmark setup:

— emulation of ‘smart building” application
with sensors of varying granularity

— Documented deployment on cluster of small servers
— Deployment on container-based virtualization platform
« Components:

— Design of a Distributed- Hash Table (DHT)-based routing from spouts
to bolts

— Implementation/Testing
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* Graduate students recruited for the project did not join
* Training of undergraduate students

— Juniors/seniors

— Exposure to distributed systems

* Reinforcement of computer system knowledge that is valuable
for software security and network security

— loT-based applications
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Completion as of 9/21/21

Benchmark setup and 80%
documentation

addicionasl benchmark 30%
application
Stateful Operator Analysis - 100%

Design/Implementation of
novel Zookeeper-based
approach —40%

Distributed- Hash Table (DHT)- Design: 100%

based routing from spouts to
bolts Implementation/Testing: 65%
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Why Edge Stream Processing?
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FPAS achieves 40.3% to 87.1% less failure recovery time compared to
Storm’s checkpointing recovery.
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Impact of number of the raw fragments m in a state, the number of the parity
fragments K in a state, the number of unavailable blocks e in a state and the
amount of leaf nodes
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SR3 Design:
« L1: DHT-based overlay

e L2: State partitioning
and replication

 L3: State recovery
« L4:SR3API

Implemented on top of
Apache Storm

dilma@cse.tamu.edu

Stream application User defined
runtime metrics requirements
J\_,l’ SR3 APIs J\—,L

State partitioning EBE RN
and replication{} .....Shags

Star-structured| Line-structured Tree-structured
recovery recovery recovery
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Layer 4

Layer 1
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