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Abstract—The Stuxnet worm is a sophisticated malware de-
signed to sabotage industrial control systems (ICSs). It exploits
vulnerabilities in removable drives, local area communication
networks, and programmable logic controllers (PLCs) to pene-
trate the process control network (PCN) and the control system
network (CSN). Stuxnet was successful in penetrating the control
system network and sabotaging industrial control processes since
the targeted control systems lacked security mechanisms for
verifying message integrity and source authentication. In this
work, we propose a novel proactive defense system framework,
in which commands from the system operator to the PLC are
authenticated using a randomized set of cryptographic keys.
The framework leverages cryptographic analysis and control-
and game-theoretic methods to quantify the impact of malicious
commands on the performance of the physical plant. We derive
the worst-case optimal randomization strategy as a saddle-point
equilibrium of a game between an adversary attempting to insert
commands and the system operator, and show that the proposed
scheme can achieve arbitrarily low adversary success probability
for a sufficiently large number of keys. We evaluate our proposed
scheme, using a linear-quadratic regulator (LQR) as a case study,
through theoretical and numerical analysis.

I. INTRODUCTION

Industrial control systems (ICSs) are ubiquitous in appli-
cations ranging from material processing to power generation
and transmission. Such systems increasingly rely on remote
operations via local area networks or the Internet, which are
enabled by software with limited security protections. As a
result, ICSs are inviting targets for adversaries who attempt to
disable critical infrastructure through cyber attacks.

The threat of cyber attacks on ICS was demonstrated by the
Stuxnet worm, which exploited several previously unknown
vulnerabilities in the Windows operating system and Siemens
STEP 7 software to target specific control systems appearing
in uranium enrichment facilities [1], [2]. Stuxnet-type malware
targets the control system by compromising workstations used
to reconfigure the Programmable Logic Controllers (PLCs)
for facility operations and tampering with messages sent
from the system operator to the PLC. For example, Stuxnet
modifies control messages in order to increase the frequency
of nuclear centrifuges to unsafe levels, leading to equipment
failure [3]. The appearance of Stuxnet has led to research into
vulnerabilities of ICS software [4], as well as introducing new
security checks into control software and hardware [5], [6]. In
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Quanyan Zhu and Tamer Başar are with the Coordinated Science Laboratory
and Department of Electrical and Computer Engineering, University of
Illinois at Urbana-Champaign, Urbana, IL 61801 USA. Email: {zhu31,
basar1}@illinois.edu

particular, control messages must be secured in order to ensure
the authenticity of the source, detect modification of received
messages, and prevent replay attacks.

In the security literature [7], [8], these properties are
provided efficiently using cryptographic mechanisms, such
as message authentication codes. Securing communication
between the operator and PLC can be achieved by either using
the same cryptographic key for all messages, or using a differ-
ent key for each message. Under both approaches, however,
tampering with any message requires constant workload for
the adversary, even though the impact of a tampered message
varies based on its effect on the physical plant.

In this paper, we introduce a framework for securing
industrial control systems against Stuxnet-type malware by
incorporating the impact of tampered message on system per-
formance into the defense strategy. We observe that there are
two possible diversity-based proactive cryptographic defense
schemes within this solution framework: (a) increasing the
cryptographic key length so that high-impact messages are
more computationally difficult to tamper, and (b) given a set of
keys, choosing the subset of messages authenticated by each
key so that the expected impact on the physical system of
compromising any one key is minimized.

Since the key lengths are typically fixed by common security
standards [9] and cryptographic algorithms are often optimized
for a fixed set of key lengths, we focus on the latter scheme
in this work. We make the following specific contributions:
• We propose a system architecture for securing the com-

munications between a system operator and PLCs against
Stuxnet-type malware. We take into account the cyber
aspect, including authentication of control messages to
the PLCs, as well as the physical aspects, including the
damage caused by unauthorized messages on ICSs.

• We formulate the key management problem within a
convex optimization framework for minimizing the ex-
pected damage on ICSs and provide efficient solution
algorithms. We show that the defense gain, defined as
the ratio between the impact of the attack with non-
proactive and proactive defenses, increases exponentially
as a function of the key length and polynomially in the
number of message classes.

• As a case study, we evaluate the proposed mechanism
for protecting an industrial plant modeled by a linear
quadratic regulator, in which an adversary aims to modify
the set point values for the regulator, and derive the
weights representing the impact of the attack from com-
promising each message class.

• Our results are corroborated through a simulation study,
in which we show that a significant decrease in the impact
of the attack can be provided by randomizing between



a small set of keys. We illustrate how the effect of
the attack changes depending on which component of
the set point is modified, and discuss how to provide
additional protection for more sensitive messages within
our framework.

The paper is organized as follows. Section II reviews the
related work. Section III provides background on ICSs, PLCs
and the Stuxnet worm. Section IV defines the system and
adversary model and introduces security metrics. Section V
presents problem formulation for selecting the set of messages
authenticated using each key. Section VI describes a case study
based on LQR control. Section VII presents simulation results.
Section VIII concludes the paper.

II. RELATED WORK

Since the advent of the Stuxnet virus, there has been signif-
icant research into identifying vulnerabilities in the software
used to program PLCs. Discussions of the Stuxnet worm can
be found in [3], while a broader review of topics in PLC secu-
rity is given in [4]. Cyber security requirements for industrial
control systems are given in [9]. These existing models focus
on identifying and removing software vulnerabilities, however,
rather than establishing a broader analytical framework for
cyber security of ICS.

In the control-theoretic community, attacks in which an
adversary compromises one or more sensors in order to inject
false data have been considered [10]. This attack model differs
from our case, in which an adversary attempts to compromise
the device used to program the controller, and hence is
complementary to our line of research.

Vulnerabilities of the operating systems used by embedded
control systems have been identified as a potential security
threat [11]. While efforts at designing secure operating systems
for these embedded systems are underway [12], to the best of
our knowledge no such operating system specially designed
for secure control has been released.

Proactive, diversity-based defense mechanisms, in which the
system randomizes its internal state in order to reduce the
impact of attacks, are an emerging area in the cyber security
community. For example, address space randomization, in
which the address of a device is randomized in order to thwart
code injection attacks, has been deployed in modern operat-
ing systems including Windows, Linux, and iOS [13]. Such
defense techniques have not yet been applied to the domain
of cyber-physical systems for designing security mechanisms
to protect control systems in modern critical infrastructures.

The impact of cyber attacks on physical systems is a major
concern in control systems. The design of cyber defense needs
to take into account the effect of communication delay and
packet loss [15], the design specifications on the robustness
and resilience of the system [16], and its information and
system architecture [17]. Following these principles, the goal
of this paper is to design a proactive defense mechanism using
cryptographic solutions at the interface between the cyber and
physical components of industrial control systems.

Fig. 1. An example sequence of attacks in Stuxnet adapted from [2]

III. BACKGROUND ON STUXNET MALWARE

The Stuxnet worm leverages known and previously un-
known vulnerabilities to install, infect and propagate, aiming to
sabotage industrial processes operated by Siemens SIMATIC
WinCC and PCS 7 control systems [2], [3]. Figure 1 uses
an example sequence of attacks to illustrate how the worm
propagates through the enterprise control network (ECN) to
the control system network (CSN). The worm first propagates
via infected removable drives (such as flash drives and external
portable hard disks), and then local area network commu-
nications (such as shared network drives and print spooler
services), and finally infects Siemens project files, including
both WinCC and STEP 7 files, which are used to program the
PLC.

In conventional ICS network architectures, the process
control network (PCN) and control system network (CSN)
are hosted in the same security zone [2], [18]. The PCN
hosts plant operators on their human machine interface (HMI)
workstations. The CSN is dedicated to traffic specifically
related to automation and control such as traffic to and from
PLCs. This has created potential security hazards for CSN
once the worm penetrates the perimeter network and PCN
since no firewalls are used to separate the two networks.

Figure 2 illustrates the interactions between PCN and CSN.
The connection between the PCN and CSN is managed by a
library file, which calls different routines to read and write to
memory on the PLC. By replacing the library files, Stuxnet can
tamper with commands from the PCN without being detected
by the PLC or system operator, since there are no integrity
checks used to verify the source of a message [3]. In the 2010
Iranian Natanz nuclear facility incident [1], a function block
DP_RECV for receiving network frames on the Profibus, a
standard industrial network bus used for distributed I/O, is
replaced by a malicious block. Each time the function is used
to receive a packet, the malicious Stuxnet block takes control
and does post-processing on legitimate packet data, and hence
affect the PLC and the control system.

IV. SYSTEM AND ADVERSARY MODEL

In this section, we describe the system and adversary
models, including the capabilities of the adversary and the
defense mechanisms employed by the system. We then define
the security metrics considered in this work.



Fig. 2. Interactions between process control network (PCN) and control system
network (CSN) in industrial control systems (ICSs): A proactive cryptographic
solution is proposed at the information exchange interface between PCN and
CSN.

Fig. 3. A system model of the cryptographic solution for protecting ICSs from
cyber attacks.

A. System Model

The cryptographic solutions to ICSs against Stuxnet-type
worms can be described by the system model described in Fig-
ure 3. The model constitutes 6 building blocks. A workstation
operator sends messages to PLCs through a communication
channel that can be subject to attacks. The message man-
agement categorizes messages in different classes including
dummy messages that are used for deceiving the adversary.
The receiver end executes the message if it is legitimately
authenticated. The operator sends commands to the PLC from
a message space M . The set M is divided into n classes,
denoted M1, . . . ,Mn, with M = ∪n

i=1Mi and Mi ∩M j = /0
for i 6= j. We group the message classes into two different
types. One type is used for standard command and control. The
second type of message classes contain dummy messages that
are used for deception, which results in no PLC responses. The
set of indices R⊆{1, . . . ,n} correspond to classes of messages
that overwrite the internal logic of the PLC. Messages in the
set of indices F = {1, . . . ,n}\R are ignored by the PLC, and
are used only to deceive the adversary. We assume that the
fraction of messages in each class can be varied. Varying the
number of messages per class will affect the cryptographic
computations performed by the operator and PLC, but not the
control messages themselves.

To prevent an adversary from altering or injecting messages,
we propose that a message authentication code (MAC) be

appended to each message sent from the operator. The MAC
is described by the hash function h : M ×K → Y , where
K is the set of keys and Y is the set of hash outputs. All
message classes use the same MAC function h. Let p = |K |
represent the number of possible keys. Messages from set Mi
are authenticated using key Ki ∈K , with Ki 6= K j for i 6= j.

The PLC authenticates the (message, MAC) pair (x,y)
by consulting a predefined look-up table known to both the
operator and the PLC, which identifies the set Mi with x∈Mi.
We assume that generating such a look-up table is feasible if
the number of sensitive messages that must be authenticated
is small. Otherwise, the operator and PLC can generate a table
via a keyed hash function h′ : M ×K →{1, . . . ,n}.

The PLC then checks if h(x,Ki) = y. Messages that fail this
authentication check are discarded and ignored. Furthermore,
if x ∈Mi and h(x,K j) = y with K j 6= Ki, then the message
is identified as a possible forgery attempt and a warning is
triggered by an alarm system depicted in Fig. 3.

It is assumed that the contents of the messages are not
encrypted, as the operator gives higher priority to ensuring that
no forged messages are inserted (i.e., guaranteeing message
integrity) than to protecting against passive eavesdropping.

B. Adversary Model

We consider an active adversary, who is capable of eaves-
dropping on messages exchanged between the operator and
PLC, sending (message, MAC) pairs (x,y) to the PLC, and
performing computations using probabilistic polynomial-time
algorithms. Let Alg0 denote the set of feasible algorithms for
determining the keys K1, . . . ,Kn. The goal of the adversary is
to insert a (message, MAC) pair (x,y) such that h(x,Ki) = y
and x ∈Mi.

Assumption 1: The adversary knows the number of mes-
sage classes, n. However, given a valid (message, MAC) pair
(x,y), an adversary who does not know any of the keys
K1, . . .Kn cannot determine whether x∈Mi for any i= 1, . . . ,n.

The assumption that the adversary does not know the
mapping between messages and keys is justified by the fact
that interactions between the operator and PLC take place
intermittently in a closed environment, giving the adversary
few opportunities to eavesdrop on messages. This assumption
holds for the Stuxnet malware, although secure storage tech-
niques should be used to hide the message/key mapping from
more sophisticated adversaries.

Assumption 2: The adversary has a probabilistic
polynomial-time algorithm Adv0 ∈ Alg0 that takes as input
a set of q (message, MAC) pairs (x1,y1), . . . ,(xq,yq) signed
by a key K ∈K . The algorithm outputs a key K̃; we define
f (p,q) := Pr(K̃ = K). Furthermore, if there exist i, j, r, and s
with i 6= j and r 6= s, such that yi = h(xi,Kr) and y j = h(x j,Ks),
xi ∈Mr, and x j ∈Ms, then Pr(K̃ ∈ {K1, . . .Kn}) = 0.

Assumption 2 implies that, if the adversary inputs two
(message, MAC) pairs with distinct keys into a cryptanalytic
algorithm, then the algorithm will fail to return a correct key.
An example of Adv0 for a particular class of hash functions
is given in Section IV-D.



C. Security Metric Definitions

Security metrics quantify the probability that the adversary
will succeed in compromising one or more keys and injecting
false messages. We first define the success probability, de-
noted Ps, which is equal to the probability that the adversary
compromises at least one key.

Definition 1 (Success probability): Let A denote the set
of probabilistic polynomial-time algorithms calling Adv0 as
a subroutine, and let Adv ∈ A . Let Ps(p,q,M;Adv) denote
the probability that Adv correctly computes at least one Ki
after observing M messages. We define the adversary’s success
probability to be

P∗s (p,q,M) = max
Adv∈A

Ps(p,q,M;Adv). (1)

D. Security Metric Analysis for Universal Hash Function

The following MAC construction, first appearing in [8], this
is used in the subsequent analysis.

Definition 2: The strongly-universal hash function MAC
takes as input messages in Zp, the integers modulo p where p
is a prime. The key is a sequence of coefficients b0, . . . ,bq0−1 ∈
Zp. The MAC h̃ : M ×Zq0

p → Zp, which is a special form of
h from Section IV-A is defined by

h̃(x,b0, . . . ,bq0−1) =
q0−1

∑
i=0

bixi mod p, (2)

where xi denotes x raised to the ith power.
The following lemma gives the security analysis of this

MAC when only one key is used.
Lemma 1: Under Assumptions 1 and 2, the best-possible

probability of recovering the correct key for the MAC in

Definition 2 is f (p,q) =
(

1
p

)(q0−q)+
.

Proof: A proof can be found in [7, Ch 4].
We now analyze the security when multiple keys are used,

as described in Section IV-A.
Lemma 2: Suppose that the adversary has access to Mi

distinct (message, MAC) pairs from set Mi for i = 1, . . . ,n.
Then

P∗s (p,q,M) = max
q∈Zq0

{
1(M
q

) n

∑
i=1

(
Mi

q

)
f (p,q)

}
. (3)

A proof is given in the appendix. Note that, since f (p,q)= 1
for q ≥ q0, P∗s (p,q,M) is strictly decreasing as a function of
q for q > q0.

V. PROBLEM FORMULATION

In this section, we introduce a model for the interaction
between the cyber and physical components of the system and
present our optimization approach for designing a proactive
randomization defense. The goal of the defender is to mini-
mize the damage to the ICS caused by the injection of false
messages. This can be accomplished by optimizing the number
of messages of each class, M1, . . . ,Mn.

Let ωi denote the fraction of messages from M contained
in Mi, so that ωi =

Mi
M . The impact of the adversary’s attack

is defined to be the expected damage to the system from a
successful forged message, under the assumption that the ad-
versary attempts to forge each message with equal probability.

Let ai,m denote the damage to the plant from an adversary
injecting message m ∈Mi. The value of ai,m depends on the
physical plant model; in some cases, ai,m = 0 if the message
is not harmful. We assume that ai,m is constant in time. An
example of the derivation of ai,m is given in Section VI. Since
the forgery is successful if the adversary determines the key
Ki with m ∈Mi, the probability of success for a given choice
of q, denoted sm(q), is

sm(q) :=

(Mi
q

)(M
q

) Mi

M
=

(
ωiM

q

)(M
q

) ωi.

Define the attack impact function g : ∆n×ZM → R

g(ω1, . . . ,ωn;q) =
n

∑
i=1

a∗i

(
ωiM

q

)(M
q

) f (p,q)ωi,

where ∆n is the n-dimensional simplex; a∗i =
1
|Mi| ∑m∈Mi ai,m,

equal to the expected impact on the system from compromis-
ing a randomly chosen message in Mi. We denote the worst-
case damage to the system by g∗(ω1, . . . ,ωn), given as

g∗(ω1, . . . ,ωn) = max
q∈Zq0

{
n

∑
i=1

a∗i

(
ωiM

q

)(M
q

) f (p,q)ωi

}
.

The problem of minimizing the impact of the attack on the
system performance is equivalent to selecting the probability
distribution (ω1, . . . ,ωn) that minimizes the expected cost
g(ω1, . . . ,ωn). The problem is formulated as

minimize max
{

∑
n
i=1 a∗i

(ωiM
q )
(M

q)
f (p,q)ωi : q ∈ {1, . . . ,M}

}
ω1, . . . ,ωn

s.t. ω1 + · · ·+ωn = 1
(4)

Remark 1: Problem (4) can be interpreted as a zero-sum
game between the system and adversary. The system selects
a probability distribution (ω1, . . . ,ωn) in order to reduce the
impact of the attack, while the adversary selects q in order
to maximize the impact of injecting a message and disrupting
the system. �

The following proposition leads to efficient algorithms for
computing g∗(ω1, . . . ,ωn).

Proposition 1: For fixed (ω1, . . . ,ωn), there exists a unique
point q∗ ∈ {1, . . . ,q0} such that g(ω1, . . . ,ωn;q) is nondecreas-
ing for 1≤ q≤ q∗ and nonincreasing for q≥ q∗. Furthermore,
q∗ ∈ argmax{g(ω1, . . . ,ωn;q) : q ∈ {1, . . . ,M}}.

A proof is given in the appendix. In order to solve (4),
we use a polynomial extension of the binomial coefficient

(t
q

)
from a function taking discrete values of t to a continuous
function of t. By optimizing the extension of the function
g(ω1, . . . ,ωn;q), a value of (ω1, . . . ,ωn) is obtained that can be
rounded to an integral value of ω1M, . . . ,ωnM with arbitrarily
high accuracy for M sufficiently large. The following propo-
sition gives the first step towards this optimization approach.



Proposition 2: For fixed q, g(ω1, . . . ,ωn;q) is a convex
function of (ω1, . . . ,ωn).

A proof is given in the appendix. The convexity of
g(ω1, . . . ,ωn;q) as a function of (ω1, . . . ,ωn), as well as the
existence of a concave extension as a function of q, lead to
the following alternate formulation of (4).

Theorem 1: The optimization problem (4) is equivalent to

maximize min g(ω1, . . . ,ωn;q)
q ∈ {1, . . . ,q0} ω1, . . . ,ωn

s.t. ∑
n
i=1 ωi = 1

(5)

Proof: From the proof of Proposition 1, for every ω , there
exists a concave extension g̃ of g(ω1, . . . ,ωn;q) as a function of
q. Furthermore, by Proposition 2, g(ω1, . . . ,ωn;q) is convex as
a function of (ω1, . . . ,ωn). By Minimax theorem [19], we can
interchange order of max and min for the extended function g̃.
With the linear extension of g(ω1, . . . ,ωn;q), for every given
ω , an optimal q is achieved at the extreme boundary point,
which coincides with the solution to (4). Hence the minimum
and maximum of (4) can be interchanged, yielding (5).

Note that the optimum of (5) need not be unique. However,
each optimum gives the same value of g(ω∗1 , . . . ,ω

∗
n ).

Remark 2: The interchange of minmax to maxmin also
allows us to conclude that the zero-sum game that corresponds
to problems (4) and (5) admits a saddle-point point equilib-
rium and in case of multiple saddle points, the saddle-point
strategies possess the ordered interchangeability property [19].
�
Theorem 1 leads to a straightforward bisection algorithm for
computing the solution to (4). First, define r(q) by

r(q),min

{
g(ω1, . . . ,ωn;q) :

n

∑
i=1

ωi = 1

}
.

Evaluating the function r(q) requires solving an equality-
constrained convex program, and hence can be computed in
polynomial time in (ω1, . . . ,ωn). Initialize qmin = 1 (represent-
ing the lower bound on q∗) and qmax = q0 (an upper bound
on q∗). At each step of the algorithm, set q = (qmax +qmin)/2,
and compute r(q+1)− r(q). If r(q+1)− r(q)> 0, then r is
still increasing, and hence qmin is set to qmin = q∗. Otherwise,
set qmax = q∗. The algorithm terminates when qmin = qmax−1,
setting q∗ = argmax{r(qmin),r(qmax)} and

(ω∗1 , . . . ,ω
∗
n ) ∈ argmin

{
g(ω1, . . . ,ωn;q∗) :

n

∑
i=1

ωi = 1

}
.

Lemma 3: When a1 = · · · = an = a, the global minimum
of (4) occurs when ω∗1 = · · ·= ω∗n = 1

n .
The proof is given in the appendix. The performance of a

defense strategy can be quantified by Γ(ω1, . . . ,ωn), defined
as the ratio between the cost of a non-proactive defense and
a proactive defense. In a non-proactive defense, each message
is authenticated using the same key, so that ω1 = 1 and ω2 =
· · ·= ωn = 0. Hence Γ is given by

Γ(ω1, . . . ,ωn) :=
g∗(1,0, . . . ,0)
g∗(ω1, . . . ,ωn)

. (6)

The following theorem gives a lower bound on this ratio.
Theorem 2: For M > q0, we have

Γ(ω1, . . . ,ωn)≥

[
n

∑
i=1

ωi

(
ωiM−q0

M−q0

)q0
]−1

. (7)

A proof appears in the appendix. Note that, when n = 1, the
bound results in Γ = 1, implying that it is tight in this special
case. Further, in the case of Lemma 3 where ω1 = · · ·= ωn =
1
n , (7) reduces to

(
M−q0

M/n−q0

)q0
, which increases exponentially

in q0 for M > q0. Hence increasing q0 has a greater impact
on the success of the defense than increasing the number of
message classes, n, and so increasing q0 should be given higher
priority for allocating computational resources when designing
a proactive defense.

VI. CASE STUDY: LQR CONTROL

In this section, we provide a case study showing compu-
tation of ai,m,m ∈Mi, i = 1,2, · · · ,n, using a linear-quadratic
regulator (LQR) problem as our control system model. The
physical plant is described by a linear system:

ẋ(t) = Ax(t)+Bu(t), x(0) = x0, (8)

where x0 ∈ x ∈ Rk is the initial condition; x ∈ Rk is the state
vector; A ∈ Rk×k, B ∈ Rk×l are constant matrices; and u ∈ Rl

is the l-dimensional control input to the system. The goal of
the control is to regulate the system to a given set point x̄.
Assuming that the states are perfectly observable, we design
an optimal perfect-state feedback controller that minimizes the
following cost criterion:

L(u) := lim
T→∞

1
T

∫ T

0
(‖x(t)− x̄‖2

Q +‖u(t)‖2
R)dt, (9)

where x̄ = {x̄1, x̄2, · · · , x̄k} ∈ Rk is the setpoint configured by
the system operator; ‖ · ‖2

Q,‖ · ‖2
R are weighted l2-norms with

symmetric square matrices Q ∈ Rk×k,R ∈ Rl×l respectively,
where Q≥ 0 and R > 0. We restrict the optimal controller to
a set of admissible perfect feedback strategies Γ, i.e., for a
generic γ ∈ Γ,γ : Rk×R+→Rl , the control input is given by
u(t) = γ(x(t), t), t ≥ 0.

Theorem 3: Under the assumptions that (A,B) is control-
lable and (A,Q) is observable, the optimal stabilizing control
is affine in the state and is given by

u(t) = γ(x(t), t) :=−R−1B′(Sx(t)+m), (10)

where the control gain S ∈ Rk×k is the unique solution of the
algebraic Riccati equation below, within the class of positive-
definite matrices:

A′S+SA+SBR−1R′S+Q = 0, (11)

and m ∈ Rk satisfies

(A−BR−1B′S)′m = 2Qx̄. (12)

The closed-loop system under this control is given by

ẋ(t) = (A−BR−1B′S)x(t)−Mx̄, (13)



where M := 2R−1B′[(A−BR−1B′S)′]−1Q, and the matrix A−
BR−1B′S is Hurwitz.
This is a standard result in LQR design with non-zero set
points.

We can see that the set point x̄ affects the controller through
the affine term m. Let x̂ be the setpoint made by the malicious
attacker. Denote by K̂ = { j : x̄ j 6= x̂ j, j = 1,2, · · · ,k}, which is
a set of indices of setpoints compromised by the attacker. The
manipulation of setpoints results in the degradation of control
performances. We adopt the following metric to measure the
damage.

J(x̄, x̂, t0,T ) =
∫ T

t0
e−ρ(t−t0)‖x(t)− xm(t)‖2

Zdt, (14)

where ρ ∈ R is the discount factor; t0 is the time instant
where the setpoint is changed, and T is the time instant when
recovery strategies are applied to the system after detection,
and Z = diag{z1,z2, · · · ,zk} ∈ Rk×k is a diagonal weighting
matrix; x(t),xm(t) ∈ Rk are the state trajectories generated
by setpoints x̄ and x̂, respectively. The performance can be
obtained in the closed form as follows: For a singleton set
K̂ = {i}:

J(x̄, x̂, t0,T ) =
k

∑
j=1

z j

∫ T

t0
e−ρ(t−t0)(M jit)2dt

=

(
k

∑
j=1

z jm2
ji

)
· 1

ρ3

(
(ρ2T 2 +2ρT +2)

·(−eρ(t0−T ))+(ρ2t2
0 +2ρt0 +2)

)
Let each message m ∈Mi correspond to a setpoint change

of the states of the control system indicated by the pair
(x̂i,m, K̂i,m), where x̂i,m is the new set point commanded by
message m and K̂i,m is the set of setpoint indices changed
by message m. Depending on the content of the message, the
damage ai,m caused by a message m can be evaluated by the
physical damage as in (14), i.e., ai,m = J(x̄, x̂, t0,T ), where x̂
is the setpoint value contained in message m. The parameters
ai,m can then be used in (4) and (5) to find a saddle-point
solution.

VII. SIMULATION

A numerical simulation study has been performed using
Matlab. The simulations assume a system with p= 8, q0 taking
values between 2 and 10, and the number of message classes,
n, taking values from 1 to 10. The control system is assumed
to have M = 100 possible messages.

For the physical component, we consider a multivariable
example given in [20], which studies the design of a controller
for the lateral motion of an aircraft. The model consists of four
states xi, i = 1, · · · ,4, and two inputs u1,u2: x1 is the bank
angle, x2 the derivative of the bank angle, x3 is the sideslip
angle, x4 the yaw rate; u1 the rudder deflection, and u2 the
aileron deflection. The matrices A,B in state space equation

(8) are given by

A =


0 1 0 0
0 Lp Lβ Lr

g/V 0 Yβ −1
Nβ (g/V ) Np Nβ +NβYβ Nr−Nβ

 ;

B =


0 0
0 −3.91

0.035 0
−2.53 0.31

 (15)

We consider the following values for the aircraft parameters
entering into the state matrix: Lp = −2.93,Lβ = −4.75,Lr =
0.78,g/V = 0.086,Yβ = −0.11;Nβ = 0.1,Np = 0.042,Nβ =
2.601 and Nr = −0.29. The matrices Q and R were set
equal to the 4× 4 and 2× 2 identity matrices, respectively.
For simplicity, we considered set points in which all states
had the same value, and each message m corresponded to a
different set point. The impact ai,m from an adversary inserting
message m was computed based on (14). Each message class
Mi consisted of messages corresponding to set points in the
interval [χi,χi+1], where the values of χi and χi+1 depended
on the total number of messages and the maximum state value.

The effect of randomizing between multiple keys is illus-
trated in Figure 4(a). When two message classes are used,
the defense ratio Γ is scaled by 50% when q0 = 2 and is
scaled by a factor of 14 of the non-deception case when
q0 = 5. As the number of message classes increases, the ratio
grows exponentially, agreeing with Theorem 2. Furthermore,
the rate of increase is exponentially larger as the parameter q0
increases.

The impact of the total number of messages on the adver-
sary’s success probability is shown in Figure 4(b). Increasing
the number of messages reduces the expected impact of the
attack on the system, as the adversary has a reduced probability
of finding a set of messages belonging to the same class.
Increasing the number of messages from 100 to 200, however,
provided no improvement in security.

Figure 4(c) shows the impact on the system, Ji, caused by
an adversary introducing a malicious set-point for state xi, for
i = 1, . . . ,4. Each message class Mi, i = 1, . . . ,4, corresponds
to a different state variable, with each representing a set
point for that state. Altering the set-point of state 1 has a
significantly larger effect on the system than altering states 2 or
4, implying that messages that alter state 1 should be assigned
to a message class with fewer elements. This will result in a
lower probability that a message modifying the set-point of
state 1 can be injected. Conversely, changing the set-point of
state 2 has lower impact, and hence messages altering state 2
should belong to a set M j with a higher value of M j.

VIII. CONCLUSION

In this paper, we have studied the problem of mitigating
attacks on control systems, such as Stuxnet-type malware,
using proactive mechanisms. We have introduced a novel
proactive defense, in which the system randomizes between



(a) (b) (c)

Fig. 4. Numerical evaluation of proposed deception mechanism. (a) The deception ratio, defined as the ratio of the expected impact of the attack when the
number of message classes is n and the impact when there is only one message class. The adversary’s success probability decreases exponentially as the
number of message classes increases, with the rate of decrease determined by the parameter q0. (b) The effect of the total number of messages M on the
impact of the attack. Increasing the message space makes it more difficult for the adversary to forge messages. (c) The impact of compromising each of the
four states. Compromise of state 1 results in the largest deviation from the desired set point, resulting in a higher ai value.

different cryptographic keys for authentication. Based on se-
curity metrics such as the adversary’s probability of success
and the impact of a successful attack, we have developed an
analytical framework for selecting the number of messages
signed using each key. The interactions between the network
and the adversary can be viewed as a zero-sum game. We
provide an efficient algorithm for finding a saddle-point equi-
librium of the game, leading to optimal worst-case selection
of the number of messages of each type. Worst-case bounds
have been proven, showing that the proposed scheme can
achieve arbitrarily low adversary success probability for a
sufficiently large number of keys. As a case study, we have
considered a cyber-physical system with a linear quadratic
regulator similar to the frequency drives targeted by Stuxnet
through both theoretical analysis and simulation study.
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APPENDIX

Proofs of Lemmas 2 and 3, Propositions 1 and 2, and
Theorem 2 are given as follows.

Proof of Lemma 2: Suppose Adv∈A , so that Adv calls
Adv0 as a subroutine with parameter p and number of queries
q. Let M̂ denote the number of (message, MAC) pairs passed
as input to Adv0 with messages in M1. Then, the success
probability Ps(p,q,M;Adv) is given by

Ps(p,q;Adv) =
q

∑
m=1

Pr(success |M̂ = m)Pr(M̂ = m). (16)

Now, Assumption 2 of Section IV implies that

Pr(success |M̂ = m) =

{
f (p,q), m ∈ {0,q}

0, else (17)

Furthermore, Assumption 1 implies that the adversary cannot
differentiate between messages in Mi and M j, so that the
messages input to Adv0 are chosen uniformly at random. This
leads to

Pr(M̂ = m) =

(M1
m

)( M2
q−m

)(M
q

) . (18)



Combining these equations leads to

Ps(p,q;Adv) =

(M1
q

)(M
q

) f (p,q)+

(M2
q

)(M
q

) f (p,q). (19)

Since this expression depends only on q, maximizing over Adv
yields (3).

Proof of Proposition 1: First, since the log function is in-
creasing, the function g is nondecreasing (resp. nonincreasing)
on that interval if logg is nonincreasing (resp. nondecreasing
on an interval). In what follows, we show that there exists
a concave extension to logg(ω1, . . . ,ωn), and hence a unique
maximum point q∗ satisfying the criteria of the proposition.
For q ∈ {1, . . . ,q0}, the log function of g is given by

logg(ω1, . . . ,ωn;q) = log

(
n

∑
i=1

a∗i

(Mi
q

)(M
q

) ( 1
p

)q0−q
)
.

It suffices to find a concave extension of

q log p+ log

[
n

∑
i=1

a∗i

(Mi
q

)(M
q

) ]. (20)

Furthermore, since the first term has a linear extension, it
remains to find a concave extension of the second term of (20).
To do so, we find a concave extension α̃(q) of the function

α(q) =
n

∑
i=1

a∗i

(Mi
q

)(M
q

)
and then choose log α̃(q) as the concave extension of the
second term. To compute α̃(q), the goal is to show that, for
1≤ q≤′≤ q0,

α(q+1)−α(q)≥ α(q′+1)−α(q′), (21)

which allows a piecewise linear concave extension with slope
h(q+1)−h(q) on the interval [q,q+1]. By definition of

(Mi
q

)
,

(21) is equivalent to

n

∑
i=1

a∗i
q

∏
j=0

Mi− j
M− j

−
n

∑
i=1

a∗i
q−1

∏
j=0

Mi− j
M− j

≥
n

∑
i=1

a∗i
q′

∏
j=0

Mi− j
M− j

−
n

∑
i=1

a∗i
q′−1

∏
j=0

Mi− j
M− j

,

which in turn reduces to

n

∑
i=1

[
a∗i

(
q−1

∏
j=0

Mi− j
M− j

)(
Mi−q
M−q

−1
)]

≥
n

∑
i=1

[
a∗i

(
q′−1

∏
j=0

Mi− j
M− j

)(
Mi−q′

M−q′
−1
)]

. (22)

Now, since Mi ≤M, Mi− j ≤M, and so

q−1

∏
j=0

Mi− j
M− j

≥
q′−1

∏
j=0

Mi− j
M− j

for q≤ q′. Similarly, Mi−q
M−q ≥

Mi−q′
M−q′ . These two identities imply

(22), which then implies that α , and hence logα , have concave

extensions. Thus the function (20) has a concave extension,
which has a unique maximum point q̃ satisfying the conditions
of the proposition. Setting

q∗ = argmax
q
{g(ω1, . . . ,ωn;bq̃c),g(ω1, . . . ,ωn;dq̃e)}

yields the desired result.
Proof of Proposition 2: We have that d

dt

(t
q

)
=(t

q

)
∑

q−1
j=0

1
t− j , so that

d
dωi

(
ωiM

q

)
= M

(
ωiM

q

) q−1

∑
j=0

1
ωiM− j

.

Differentiating again with respect to ωi yields

d2

dω2
i

(
ωiM

q

)
=

M2
(

ωiM
q

)(q−1

∑
j=0

1
ωiM− j

)2

−
q−1

∑
j=0

1
(ωiM− j)2

≥ 0. (23)

Eq. (23) implies that g(ω1, . . . ,ωn;q) is a nonnegative
weighted sum of convex functions, and is therefore convex.

Proof of Lemma 3: For a fixed q, the inner optimization
problem of (5) is written using a Lagrange multiplier λ as
follows:

n

∑
i=1

a

(
ωiM

q

)(M
q

) f (p,q)ωi +λ

(
n

∑
i=1

ωi−1

)
.

Differentiating with respect to ωi yields

a(M
q

) f (p,q)

[
q−1

∑
j=0

(
ωiM

ωiM− j
+

(
ωiM

q

))]
+λ = 0. (24)

Choosing ω1 = . . .= ωn =
1
n satisfies (24) for i = 1, . . . ,n, as

well as primal feasibility, and hence is optimal.
Proof of Theorem 2: Let a∗ denote the impact of the

most damaging forgery. Then Γ can be expressed as

Γ(ω1, . . . ,ωn) =
a∗ f (p,M)

maxq ∑
n
i=1 a∗i

(ωiM
q )
(M

q)
f (p,q)ωi

,

leading to the bound

Γ(ω1, . . . ,ωn)≥
f (p,M)

∑
n
i=1 maxq

(ωiM
q )
(M

q)
f (p,q)ωi

≥ f (p,M)

∑
n
i=1 maxq

(
ωiM−q
M−q

)q
f (p,q)ωi

=
f (p,M)

∑
n
i=1 maxq

(
ωiM−q
M−q

)q(
1
p

)(q0−q)+
ωi

.

For M > q0, f (p,M) = 1, and the denominator is maximized
by q∗ = min

{
M(p−ωi)

p−1 ,q0

}
= q0. Substitution yields the de-

sired result.


