Analysis-based verification:

A programmer-oriented approach to the
assurance of mechanical program properties

e T T — e __

Tim Halloran

HCSS 6 May 2011

tim.halloran@surelogic.com
Surelogic, Inc.

Vision: Create focused analysis-based verification for software
quality attributes! as a scalable? and adoptable3 approach to
verifying4 consistency of code with its design intent5

1. Quality attributes: Including safe concurrency with locks, data
confinement to thread roles, static layer structure, many others

e Each has its combination of contributing constituent analyses — e.g.,
effects upper bounds, mostly-unique references, and binding context

2. Scalable: Significantly adapt constituent analyses to enable
composition

3. Adoptable: Before-lunch test (incremental reward principle)

4. Verification: No false negatives from analysis targeted to an
attribute and a model

5. Design intent: Fragmentary models/specifications focused on
quality attributes

Overview

e The focus of this talk is concept of sound combined analyses, an
enabling component of analysis-based verification, including

e Meta-theory to establish soundness of the approach of
combining multiple constituent static analyses into an aggregate
developer-focused analysis

e Reminiscent, with respect to goals — not particulars, of Nelson-Oppen
cooperating decision procedures

e User experience and tool engineering approach designed to
address adoption and usability criteria of professional
development teams

e Developer ROI, including before-lunch test

e Field validation in collaboration with professional engineers
on diverse commercial and open source code bases

e Deployed major systems including vendor application server code,
library and framework code, and MapReduce infrastructure

Overview

validates

Sound combined analyses

|

Overall vision:
Analysis-based
verification

A

Meta-theory

le—

l informs

User experience &
tool engineering

'\bduilds upon

Analysis work
of
Boyland,
Greenhouse,
Sutherland

enables

Y

validates

Field validation

informs

An analysis-based verification tool

Flashlight

A concurrency-focused dynamic
analysis tool

Sierra

A platform for the management of
results from multiple heuristic-
based static analysis tools

Carnegie Mellon

SSF AR Sure|ogQIC.

RESEARCH

Commercialization

Fluid Research Project
Java* Analysis Capability

Scherlis, Boyland, Chan, Greenhouse,
Halloran, Sutherland

Prototype Tools, Technology, People

Related work

e Fluid project at Carnegie Mellon — sound static analysis, promises
e Scherlis, Boyland, Greenhouse, Chan (formative)
e Sutherland (evaluative)

e Heuristics-based static analysis tools
e FindBugs [Hovemeyer, Pugh]; MC [Engler, Chelf, Chou, et al.]

e Spec# — practicable verification of real-world code
e Specification: preconditions, postconditions, invariants
e Tool verification: Boogie verifier
e Microsoft Research [Leino, Barnett, et al.]
e Builds upon the work ESC/Modula and ESC/Java (Larch)

e JML [Leavens, et al.]
e Verifiers: LOOP (PVS), KeY, Jive — automation, language subset

e Languages that support specification
e SPARC Ada — up front commitment

Outline

e Design intent and heuristics-based static analysis tools
e What is analysis-based verification?

e Sound combined analyses
Supporting verification

An aside on the meta-theory
Supporting model expression

Supporting contingencies

e Evaluation
e Field trials

e JSure Modeling Language

e Summary

= —

Examples: FindBugs, PMD,
MC (lots more...)

[**

* java.lang.annotation.AnnotationTypeMismatchException

SC&H&KXhEandIEport * Qauthor Josh Bloch

violations of “bug patterns” */ _ _
private final String foundType;

Successful finding defectsin public String foundType() {
real-world code return this.foundtype();
}

How many infinite recursive loops can FindBugs find in
your code?

5 Sun’s JDK 1.5.0_01
10 Sun’s AppServer 8.1 2005Q1 e
14 IBM’s WebSphere 6.0.2
13 JBoss 4.0.2

3 Eclipse 3.1M7

2 Tomcat 5.5.9

Everyone makes stupid mistakes. What do you use
; | to help you find and fix yours?

False pOS|t|ves and false negatlves

a Code Review - Eclipse SDK u_u
File Edlt Navigate Search Project Flashlight JSure Sierra Run Window Help
0-HaB 0 A id P ter I 5 (38 Code Review) & Jave
s - o E\.
Project | Show & 2000 of 11121 shown FF v ¥ “
Finding Category ® « | Project ~| a Summary ool ‘
Finding Type - common 3 Random object created and used only once in org.apache.hadoop.to... FindBugs
Importance * = hd . 2,400 Audited » 3 Random object created and used only once in org.apache.hadoop.uti... FindBugs
Java Class » s — Audits ® |= /|36 Random object created and used only once in org.apache.hadoop.uti... ~ FindBugs
JavaPackage ® mapreduce I 4. — Finding Category ® | ||3¢ Return an empty array rather than null. PMD
3 zookeeper I 13 Finding Type » 3¢ Returnan empty array rather than null. PMD
Status » Importance » |3 Return an empty array rather than null. PMD
Tool » Java Class » 3¢ Return an empty array rather than null. PMD
| Tool Artifacts .| X 11121 Java Package » - |3 Returnan empty array rather than null. PMD

Actuality

Fault No fault

Fault
No fault

Tool says

Intent sharpens heuristic analysis

public @NonNull String convert(@NonNull Object o) {
return o.toString(Q);

¥

e Why? To reduce false positive results

e “The static analysis crowd jokes that too high a percentage of
false positives leads to 100% false negatives because that’s what
you get when people stop using the tool.” [Chess, McGraw]

e Best result: “I didn’t find anything wrong”

e Does not answer the question: “Is this design intent fully
consistent with my code?”

e That is, there may be something wrong that it didn’t find

Answerable by verification: classical theorem proving,
sound static analysis, etc.

10

What Is analysis-ba

sed verification!

e Tool-supported verification, based upon sound static analysis

e Prior work developed annotations and a set of verifying analyses

e Boyland: Uniqueness, effects Work done by the Fluid

e Greenhouse: Lock use policy, effects research group at
Carnegie Mellon

e Sutherland: Thread use policy

Lock Model Annotations
@RegionLock

@RequiresLock
@ReturnsLock

@GuardedBy Lock Analysis

Bindin ntext
Region Annotations O gCo_ =
@Region Analysis
@InRegion

SIS Effects Analysis
@AggregateInRegion

MayEqual

Effects Annotations

@RegionEffects
Uniqueness Annotations
Uniqueness Analysis @Unique
@Borrowed

Sound combined analyses

e Creates verification results by combining analysis results
e Multiple constituent program analyses (“plug-in”)
e Analyses report fragmentary results

e Verification results are always with respect to some some
specification — usually narrowly focused with respect to attribute
and code region

e What do we mean by sound?

e For program analyses: Sound (also called conservative) means no
false negatives. A judgement of inconsistency may mean “not
sure” [Rice]

e For our approach: Sound means results derivable our proof
calculus are ‘consistent’ in a semantics of the analysis results

e Demonstrated by proof in Halloran’s dissertation (Chapter 2)

We introduce our approach via a “tour” of its features |

12

e BoundedFIFO from Apache Log4j

e The program enqueues an event into the buffer and returns

e A dispatcher thread removes events from the buffer and
processes them (as events become available)

e Not exemplary Java — but typical of (some) code we encountered
in the field

e Annotations reflect the use of the class within Log4j

Program Threads Dispatcher Thread
| | | I

AsyncAppender BoundedFIFO Dispatcher

put(LoggingEvent) * “ “ “ * get : LoggingEvent

v v l
v

13

@RegionLock("FIFOLock is this protects Instance")
public class BoundedFIFO {
@Unique
@Aggregate
LoggingEvent[] buf;

int numElts = @, first = @, next = 0, size;

@Unique("return") public BoundedFIFO(int size) { ... }

@RequiresLock("FIFOLock") public
@RequiresLock ("FIFOLock") public
@RequiresLock ("FIFOLock") public
@RequiresLock ("FIFOLock") public
@RequiresLock ("FIFOLock") public
@RequiresLock("FIFOLock") public
@RequiresLock("FIFOLock") public

LoggingEvent get() { ... }

void put(LoggingEvent o) { ... }
int getMaxSize() { ... }

int length() { ... }

boolean wasEmpty() { ... }
boolean wasFull() { ... }
boolean isFull() { ... }

14

Supporting verification

== -

Lock Policy Analysis Results for BoundedFIFO

. « . . e Finding | About Descriptior;
. R f + T thread-confined access to numElts at line 8
. Prlor appro aCh . COmpller_llke Output fa + 1 thread-confined access to first at line 8
f3 + [2 thread-confined access to next at line 8
f1 + T thread-confined access to size at line 13
fs + 1 thread-confined access to buf at line 14
‘ Analyses I‘eport L] fe + [2 FIFOLock held for access to numElts at line 19
® fr + 1 FIFOLock held for access to buf at line 20
fs + el FIFOLock held for access to first at line 20
fo + 1 FIFOLock held for access to buf [first] at line 20
. . — - fio + 1 FIFOLock held for access to first at line 21
. « POlntS Of conslstency,, 1— —1 fu + 1 FIFOLock held for access to size at line 21
u fi2 + 1 FIFOLock held for access to first at line 21
f13 + r1 FIFOLock held for access to numElts at line 22
2 . fia + 1 FIFOLock held for access to numElts at line 28
(13 ® by by 2 ':'.’—.‘ fis + 1 FIFOLock held for access to size at line 28
. POlntS Of lnconSlStency “ f16 + r1 FIFOLock held for access to buf at line 29
fir + T FIFOLock held for access to next at line 29
fig + 1 FIFOLock held for access to buf [next] at line 29
fi9 + r1 FIFOLock held for access to next at line 30
fa0 + T FIFOLock held for access to size at line 30
fo1 + 1 FIFOLock held for access to next at line 30
fo2 + r1 FIFOLock held for access to numElts at line 31
fo3 + T FIFOLock held for access to size at line 36
. . ° foa + e} FIFOLock held for access to numElts at line 39
. leltatlons b fos + r FIFOLock held for access to numElts at line 42
® fo6 + T FIFOLock held for access to numElts at line 45
for + 1 FIFOLock held for access to size at line 45
. . . fos + r1 FIFOLock held for access to numElts at line 48
. Rel atlonshlps among pro mlses are lost fao + T FIFOLock held for access to size at line 48

Uniqueness Analysis Results for BoundedFIFO

e Impact of “X” on consistency of other i | bt | Dcrpon

f30 + 6 reference held by buf is unique (i.e., unaliased)

fa1 + 710 constructor does not alias this

promises difficult to understand 1 D I B ol

Lock Policy Analysis Results for Dispatcher

e Fails to answer the question,

‘ Finding ‘ About ‘ Description

(14 hd 4 I I b)) fa3 x 38 FIFOLock not held when invoking length() at line 61
IS I l l I I l Odel CO I I SlSte I It Wlt t e CO dep faa X 17 FIFOLock not held when invoking get () at line 66
M f3s5 x T44 FIFOLock not held when invoking wasFull() at line 67

Issue of scale: 2,146 analysis results
on our first field trial, ~12K analysis
results on Electric)

15

Lost relationships among promises

1 @RegionLock("FIFOLock is this protects Instance")
2 public class BoundedFIFO { 4

10 @Unique("return")
11 public BoundedFIFO(int size) {

12 if (size < 1) throw new IlleghglArgumentException();
13 this.size = size;

14 buf = new LoggingEvent[size];

15 }

38 @RequiresLock ("FIFOLock")
39 public int length() { returnipumElts;| }

Lock Policy Analysis Results for BoundedFIFO

‘ Finding ‘ About ‘ Description
154‘ + ‘ r1 ‘ FIFOLock held for access to numElts at line 39

e The 1ength() method lock is not synchronized on this, so fo4 “trusts”
the @RequiresLock("FIFOLock™) promise at line 38

Unknown impact of an “X" result

50 public class Dispatcher {

58 private LoggingEvent get() {

59 synchronized (this) { // Broken - acquires the wrong lock
60 LoggingEvent e;
61 while J¢fifo.length()| == 0) {

1 @RegionLock("FIFOLock is this protects Instance")
2 public class BoundedFIFO {
v f24
38 @RequiresLock("FIFOLock")~
39 public int length() { returr,jnumElts| }

Lock Policy Analysis Results for Dispatcher

‘ Finding ‘ About ‘ Description
/33 ‘ X ‘ 738 ‘ FIFOLock not held when invoking length() at line 61

e The get() method in the pispatcher class acquires the wrong lock at
line 59, so f3s reports that FIFoLock is not held when invoking
fifo.length() at line 61

e What is the impact of this inconsistent result? r; is not verifiable!

Not answering the right question

1 @RegionLock("FIFOLock is this protects Instance")
2 public class BoundedFIFO {

e Are the annotations consistent with the code? Rock Policy Anslysis Results o soundedfIf0

Finwm)ut Description
Nil IR\ thread-confined access to numElts at line 8
° fa + Y thread-confined access to first at line 8
‘ All the an alySIS results about r are all f3 + 1 thread-confined access to next at line 8
1 fa + [a thread-confined access to size at line 13
. f5 + 1 thread-confined access to buf at line 14
Conslstent fe + 1 IFOLock held for access to numElts at line 19
fr + 1 IFOLock held for access to buf at line 20
*)fs + 1 FOLock held for access to first at line 20
f + T FYFOLock held for access to buf [first] at line 20
(14 99 o f + T FYFOLock held for access to first at line 21
. BUT the use Of the Wrong IOCk ln the get C) bi + 1 FIFOLock held for access to size at line 21
flz + 1 FIIFOLock held for access to first at line 21
. s + 1 FIFOLock held for access to numElts at line 22
methOd ln the D'.L S pat Che rl ClaSS Caus eS rl tO be fa + 1 FIFOLock held for access to numElts at line 28
s + 1 FIFOLock held for access to size at line 28
. . . . i B + 1 FIFOLock held for access to buf at line 29
lndlrectly lnconSIStent Ar + r FIFOLock held for access to next at line 29
s + 1 FIFOLock held for access to buf [next] at line 29
f + 1 FIF0OLock held for access to next at line 30
13 + r1 FIF0OLock held for access to size at line 30
f2 + 1 FLFOLock held for access to next at line 30
S + 1 FOLock held for access to numElts at line 31
fo3 + r1 IFOLock held for access to size at line 36
foa + 1 IFOLock held for access to numElts at line 39
fos + e} IFOLock held for access to numElts at line 42
fo6 + r1 FIFOLock held for access to numElts at line 45
for + T FIFOLock held for access to size at line 45
fos + e} FIFOLock held for access to numElts at line 48
fa9 FIFOLock held for access to size at line 48

Uniqueness Analysis Results for BoundedFIF0

‘ Finding ‘ About ‘ Description

fa0 + T6 reference held by buf is unique (i.e., unaliased)
f31 + 710 constructor does not alias this
+ 10 super () promises not to alias this

To be “sate” the programmer has to fix
all inconsistent analysis results e o et

OLock not held when invoking length() at line 61
FIFQLock not held when invoking get () at line 66
FIEOLock not held when invoking wasFull() at line 67

x 17

18

Overcoming these

e The drop-sea proof management system
e What is proof management?

e The manipulation of formal proofs and proof fragments (lemmas) as
data structures

e Separation of overall proof mgmt from constituent analyses

e Proof mgmt: combining fragmentary results, abductive inference
(proposed promises), contingency management (red dot), truth
maintenance (incremental recomputation)

e Independent of language semantics!

e Analyses: embody aspects of programming language semantics, creating
a plug-in model (cf. Nelson-Oppen)

e Challenges
e Scale-up to very large proofs
e Usability and visualization/debuggability

e Enabling composition w.r.t. multiple underlying analyses, multiple
components being “composed,” and new bits of design intent being
added (expanding the scope of consideration w.r.t. models)

19

Overcoming lost re

1 @RegionLock("FIFOLock is this protects Instance")

2 public class BoundedFIFO { 4
10 @Unique("return")
11 public BoundedFIFO(int size) {
12 if (size < 1) throw new IlleghglArgumentException();
13 this.size = size;
14 buf = new LoggingEvent[size];
15 }
38 @RequiresLock("FIFOLock")
39 public int length() { returnipumElts;| }

Analysis Results for BoundedFIFO

‘ Finding ‘ AboutmDescription

fb4‘

+

‘ r 738

FIFOLock held for access to numElts at line 39

20

Drop-sea graph: Iracking relationships

e

r1 — @RegionLock("FIFOLock is this protects Instance”)
— _ N

e ————— -

Ja — =, thread-confined access to size at line 13 foq — =@ FIFOLock held for access to numElts at line 39
rin — @Unique("return” < — &, super() promises not to alias this r.q — @RequiresLock("FIFOLock"
10 32 38
Jf31 — =~ constructor does not alias this r7g — @Unique("return”) f33 — ¥ FIFOLock not held when invoking length() at line 61

f36 — c;: constructor does not alias this

. Legend
e Tabular analysis results are modeled as O Pmmiseeffgp

nodes a graph (tree if no recursion) [Result drop

e Drops are the nodes in the graph = Consistent analysis result
24 Inconsistent analysis result
(=>[] is a prerequisite assertion

[0 is about

21

e o™

Overcommg unlmovvn mnpact Of an &

r —X@RegionLock("FlFOLock is this protects Instance")

f4 — g#,” thread-confined access to size at line 13 f24 — ¥ FIFOLock held for access to numElts at line 39

ri0 — é@Unique("return") <— f3p —ags® Super() promises not to alias this r3g —y@RequiresLock("FIFOLock")

i i
f31 —as® constructor does not alias this rag — ﬁ@Unique("return") /33 —xﬁ FIFOLock not held when invoking length() at line 61

f36 —gf,® constructor does not alias this

e Traversals of the graph yield Legend
aggregate verification results, % Proof of model-code consistency (verified)
which are stored on the drops * (Can't prove model-code consistency
O Promise drop
e The graph structure reveals [Result drop
relationships to the human - Conssieni analyss sl
users &4 Inconsistent analysis result
0> is a prerequisite assertion
[0 is about

22

Answering the big question

#2 RegionLock FIFOLock is this protects Instance on BoundedFIFO at line1
4 3= 29 protected field access(es)

4 4% org.apache.logdj.helpers (29 issues)
4 {9 BoundedFIFO (29 issues)

@ | RegionLock FIFOLock is this protects Instance

N

e The lock use policy, FIFOLock, is
inconsistent with the code

e The question to be addressed by the
developer is why?

e The JSure tool presents a view of the
drop-sea graph to the user —

e There is “good news” and “bad news

e To work toward consistency the user
follows the trail of “X”s

n

[N %3%3%3%

»

CHEEEELLLLELLAREARLEELE

L8558

Access to numeElts = 0 occurs within a thread-confined constructor at line 8
Access to first = 0 occurs within a thread-confined constructor at line 8
Access to next = 0 occurs within a thread-confined constructor at line 8
Access to this.size occurs within a thread-confined constructor at line 13
&= 1 prerequisite assertion:

4 @ Unique(return) on BoundedFIFO.BoundedFIFO(int) at line 10

= Control flow of constructor BoundedFIFO.BoundedFIFQ(int)
4 g Unique return value of call super at line 12
4 g~ 1 prerequisite assertion:

42 Unique(return) on java.lang.Object.Object()
Access to this.buf occurs within a thread-confined constructor at line 14

Lock "<this>:FIFOLock" held when accessing this.numElts at line 19
Lock FIFOLock held when accessing this.buf [thisfirst] at line 20
Lock FIFOLock held when accessing this.buf at line 20
Lock FIFOLock held when accessing this.first at line 20
Lock FIFOLock held when accessing (this.first) at line 21
Lock FIFOLock held when accessing this.size at line 21
Lock FIFOLock held when accessing this.first at line 21
Lock FIFOLock held when accessing (this.numElts) at line 22
Lock FIFOLock held when accessing this.numéElts at line 28
Lock FIFOLock held when accessing this.size at line 28
Lock FIFOLock held when accessing this.buf [this.next] at line 29
Lock FIFOLock held when accessing this.buf at line 29
Lock FIFOLock held when accessing this.next at line 29
Lock FIFOLock held when accessing (this.next) at line 30
Lock FIFOLock held when accessing this.size at line 30
Lock FIFOLock held when accessing this.next at line 30
Lock FIFOLock held when accessing (this.numeElts) at line 31
Lock FIFOLock held when accessing this.size at line 36
Lock FIFOLock held when accessing this.numElts at line 39
== 1 prerequisite assertion:
4 J® RequiresLock FIFOLock on BoundedFIFO.length() at line 38
4 %= 1lock precondition(s) not satisfied; possible race condition
4 33 org.apachelogdj.helpers (1 issue)
4 {9 Dispatcher (1 issue)
¥ FIFOLock not held when invoking fifo.length() at line 61
Lock FIFOLock held when accessing this.numéElts at line 42
Lock FIFOLock held when accessing this.numeElts at line 45
Lock FIFOLock held when accessing this.size at line 45
Lock FIFOLock held when accessing this.numeElts at line 48
Lock FIFOLock held when accessing this.size at line 48

23

Tool interaction toward consistency (|

2 RegionLock FIFOLock is this protects Instance on BoundedFIFO at line1
4 3~ 29 protected field access(es)
4 338 org.apache.logdj.helpers (29 issues)
4 {9 BoundedFIFO (29 issues)
4
4 37 Lock FIFOLock held when accessing this.numéElts at line 39
4 g == 1 prerequisite assertion:
4 ¥ RequiresLock FIFOLock on BoundedFIFQ.length() at line 38
a4 3~ 1lock precondition(s) not satisfied; possible race condition
4 48 org.apache.logdj.helpers (1 issue)
4 9 Dispatcher (1 issue)
¥ FIFOLock not held when inveoking fifo.length() at line 61

Double-clicking on the inconsistent result (bottom) brings
up the unprotected call in the source code of Dispatcher

24

Tool interaction toward con3|stency (2)

b4 FIFGL::I-::I-: not heldwhenlnvuklngﬂfﬂ- Iengthl:j at line El ”

o n

O W

LoggingEvent e;

o O

W N

try {
fifo.waitc():

(8)]

o
&

M O
lo)T ¥ 1 Y Y

}

e = fifo.get():

if (fifo.wasFull())
fifo.notify():

}

return e;

-J

o 0

-] O

O w

= LoggingEvent get {
synchronized (this) {
while (jSEdaBEESlepd] ==

} catch (InterruptedException ignore)

{

{1}

The programmer determines that the code is wrong and fixes line 59

|

LoggingEvent get () {

O W

Loggingkvent e;
while (fifo.length()

ot M U n

[

<:§i§§§ronized (fiféi:z::>

JSure re-runs its analysis l

4% RegionLock FIFOLock is this protects Instance on BoundedFIFO at linel

25

An aside on the meta-theory

New meta-theory to support the
drop-sea proof management

Annotated Java
Program

model (Halloran)

Analyze

Analyzes the
annotated program
using constituent
"plug-in" analyses

Lock Policy | | Uniqueness | | Effects || Thread Effects |

Overall assertion of soundness

¥

Merge Analysis Results l Proposed Promises

)

involves multiple formalisms

If V eoe {0} (R, @) {9} is valid
then My Fpr @ = ¥ holds

Merged Analysis Results

Finding | About | Prerequisite
i + T a

7 " e

5 z Strenitreranne

Ja [

fs T

fo s

r T

f 14 v (a5

: o s

i i Match Promises

iz s

s T

i ’ Searches the annotated

ho T rogram for promises that
Tir]

= "match" promises that were

proposed by an analysis

(Not a Hoare Logic, but rather a
logic that links chains of
evidence)

Generate Verification Conditions

729

730
T31

a1
a2

UE]

Constructs triples from the
merged analysis results and the
set of proposed promise
formulas

720

Set of Proposed Promise

T18

Feasible prerequisites for the
constituent analyses to be
combined

Basis of abductive reasoning to
“fill in” missing pieces of a model
(next topic...)

T19 d6
ar
a8

a9

Formulas (®)

!

{aav (g5 7 a6)} ({fs}, @) {ra}
{a ATATH{f1s fo, £33, @) {rs}
{a2 AT} ({fa, f5}, @) {ro}

{as AT} ({for fr}, @) {710}

{ar AT ATY({fo, fro, fir}, @) {r1s}
{as AT} ({ fr2, fia}, @) {r10}
{a9 AT} ({1, f15}, @) {ra0}
{1} ({ fr6}, @) {r20}

{1} ({fir}, @) {rs0}

{1} ({f1s}, @) {ra1}

!

Verify Promises

T8

T9

O

T10

Promise Verification Conditions (V)

Proofs

Figure 2.16 Figure 2.15
V oo (1} (Bio®) (ris) ¥ Feoe (1) (Ber®) 0} _
V teoe {T AT} (B, @) {ris AT10} Merge e {ra0 v (rus Arao)} ((fs), @) {ra) ™Ped
V Feoe {T) (R5, @) {ris Arig) _ 'mPlied V reoe (ris ATio) ({sh, ®) {ra} __ mPlied
V eoe (1) (B, @) (2} Compose

Using the generated set of V roe (00v (@ 7 a0)} (a1 @) (] Aoiom
promise verification conditions,
construct contingent promise

verification proofs

26

Supporting model expression

—— R —

————

e A limitation of analysis-based verification is the number of
annotations required

e 11 annotations were required to verify the lock use policy of
BoundedFIFO, a tiny program
e Why so many annotations?

e The annotations allow the verifying analyses to be modular
(i.e., avoiding a whole program analysis)

e We introduce two approaches to assist the programmer with model
expression

e Proposed promises
e The scoped promise, @Promise
e These approaches can reduce the extent of model expression by
orders of magnitude
e In some cases down to 6.3 annotations per KSLOC (Sutherland)

27

e How does the verification process “connect” analysis fragments?
e Constituent analyses propose promises rather than look for them

e A specialized program analysis, called promise matching,
“matches” each proposed promise with a real promise in the code

Analysis Results for BoundedFIFO

Finding | About | Prerequisite | Description
fa + 1 g1V (g2 A g3) | thread-confined access to size at line 13
foa + r1 q4 FIFOLock held for access to numElts at line 39
f32 + 710 qs super () promises not to alias this

Proposed Promises

Promise On
q1 | @Unique("return") BoundedFIF0(int) constructor
q> | @RegionEffects("none") BoundedFIF0(int) constructor
q3 | @Starts("nothing") BoundedFIF0(int) constructor
g4 | @RequiresLock("FIFOLock") | BoundedFIF0.length()
q5 | @Unique("return") java.lang.0Object no-argument constructor

28

2

10
11

38
39

Promise matching

public class BoundedFIFO {

@Unique("return™)
public BoundedFIFSE:;¥~§T2E3~{.

/5

/6
/7

/8

Proposed Promises

Promise On
>, | QUnique("return") BoundedFIF0(int)
@RequiresLock("FIFOLock™) g2 | @RegionEffects("none") BoundedFIF0(int)
public int lengthQ) { ~\\‘\\ q3 | @Starts("nothing") BoundedFIFQ0(int)
~\\EKQ4 @RequiresLock ("FIFOLock") | BoundedFIFQ.length()
<package name="java.lang"> -”)7q5 @Unique("return") Object ()
<class name="0Object">
<constructor>
<Unique>return</Unique> Matched Promises (the set @)
A specialized lys oo
o Speclallze rogram analysis
P pros Y r3s > Q4
e Results in a set of implications — r7s = (s

e Areal promise “implies” a proposed promise

e If the real assertion holds the proposed assertion must hold

e Our proof calculus allows this set to be used to mark proposed

promises as intended

29

Promise matching: VWhy implications?

= —_— . .
E —

Annotated Program Matches Proposed Promises

public class SynchronizedBoolean extends ... {

@InRegion("Variable") protected boolean value_,; 20 — d4)
/ q, @Unique("return")
13 (@RegionEffects("none")) g5 @RegionEffects('reads All")
@Starts("nothing") J rig = 45
I (_@Unique("return"))
public SynchronizedBoolean(boolean initialValue) {
super();

value_ = initialValue;
}
}

e A “match”is a semantic match—not a textual match

e Example: The match ris — g5 (above)

e Promising not to read or write to global program state is a
stronger assertion than promising to only read global state

e If the former holds the latter must hold

What has this got to do with supporting model expression?

30

lool-assisted completio

n of partial models

R — — — - —_— ——

e Promise matching has a practical aspect with respect to supporting
model expression

e The remaining proposed promises, after promise matching, can
be proposed by the tool to the developer -- e.g., using a specially
flagged annotation (“is this your intent?”)

e The computation that produces verification results computes a
“weakest prerequisite assertion” using remaining proposed
promises

e Computed in a manner analogous to weakest precondition in the
classic verification literature -- but with very different semantics

e Example: BoundedFIFO (with code repaired) from one promise

= == = = ——— —_—— -

31

Usmg proposed prom|ses (I)

The programmer enters the @RegonLock promise Into BoundedFIFO '

@RegionLock ("FIFOLock is this protects Instance")
public class BoundedFIFO {

W N

LoggingEvent[] buf;

JSure can't verify the promise, but it proposes “missing” promises

o2 RegionLock FIFOLock is this protects Instance on BoundedFIFO at linel
s 27 unprotected field accesses; possible race condition detected

(@’ Proposed Promises (BoundedFIFQJSure) 57 =)
Description Resource Line

: (@ Aggregate rg/apache/logd/helpers/BoundedFIFO.java 8
@ Unique (Add promises to code... }rg/apache/log4j/helpers/BoundedFIFO.java 8
@ Unique("return") ure/src/org/apache/logdj/helpers/BoundedFIFO.java 12
(@’ RequiresLock("FIFOLock") /BoundedFIFOJSure/src/org/apache/logdj/helpers/BoundedFIFO.java 19
(@’ RequiresLock("FIFOLock") /BoundedFIFOJSure/src/org/apache/logdj/helpers/BoundedFIFO.java 29
@ RequiresLock("FIFOLock") /BoundedFIFOJSure/src/org/apache/logdj/helpers/BoundedFIFO.java 38
(@ RequiresLock("FIFOLock") /BoundedFIFOJSure/src/org/apache/logdj/helpers/BoundedFIFO.java 42
(@’ RequiresLock("FIFOLock") /BoundedFIFOJSure/src/org/apache/logdj/helpers/BoundedFIFO.java 46
(@’ RequiresLock("FIFOLock") /BoundedFIFOJSure/src/org/apache/logdj/helpers/BoundedFIFO.java 50
(@’ RequiresLock("FIFOLock") /BoundedFIFOJSure/src/org/apache/logdj/helpers/BoundedFIFO.java 54

32

Using

proposed promises (2)

Using the context menu the programmer directs the tool to add the promises l

& N

Changes to be performed 44 | v
a @3 Changes to BoundedFIFOJSure
@~ BoundedFIFQ.java - BoundedFIFOJSure/src/org/apache/logdj/helpers
[J) BoundedFIFQ.java ot WLl
Original Source Refactored Source
public class BoundedFIFO { | @Unique -~
S @RAggregate 0
LoggingEvent[] buf; LoggingEvent[] buf; e
int numkElts = 0, first = 0, int numkElts = 0, first = 0,
public BoundedFIFO(int size) ‘| @Unique ("return") I
if (size < 1) public BoundedFIFO(int size) =
throw new IllegalArg if (size < 1)
this.size = size; throw new IllegalArg =
buf = new LoggingEvent([s this.size = size; =
} buf = new LoggingEvent([s =
] }
public LoggingEvent get() { | *,
if (numElts == 0) ™~ @RequiresLock ("FIFOLock") | +
< 1 » < 1 »

[ok || conce |

With the |0 additional promises, |Sure can verify the model
RegionLock FIFOLock is this protects Instance on BoundedFIFO at linel
g P

33

—

e The approach is abductive—working from a desired consequent to a
possible antecedent

e Our example worked because we supplied the lock use policy — the
remaining annotations were proposed by the tool (typical)

e Everything is tool-verified, so we remain sound

e Composition (key to scale-up) in this case can assist the tool user with
model expression

e Most of our underlying analyses have low “perplexity,” which
facilitates practical abduction

——— = -

34

@Promises({

P
We introduce @Promise public class BoundedFIFO {
to help avoid repetitive i
annotation @Aggregate

. . LoggingEvent[] buf;
One intent—one annotation

Uses an aspect-like syntax |3

@RegionLock("FIFOLock 1is this protects Instance™)

@Promise("@Unique(return) for new(**)"),
@Promise("@RequiresLock(FIFOLock) for *(**)")

Semantics: all (even in future) > G5 29 protected field access(es)

. V= k precondition(s)
Constituent analyses see 3 quiresLock FIFOLock on

virtual promises 4PV RequiresLock FIFOLock on
» {2V RequiresLock FIFOLock on

» 42V RequiresLock FIFOLock on

4@ RegionLock org.apache.log4j.BoundedFIFO.FIFOLock

org.apache.log4j.B
org.apache.log4j.B
org.apache.log4j.B
org.apache.log4j.B

35

Thread coloring [Sutherland]

e Allows developers to specify and verify thread usage policies
e Non-lock concurrency (thread-confinement)
e Benefits
e @Promise is effective for documenting thread usage policies

® “By using scoped promises, we replace over 1,700 color
constraint annotations with six scoped promises in each of the
nine packages”

@Promises ({
@Promise("@Color (DBExaminer | DBChanger) for getx(k*) | isx(**) | samex(**)"),
@Promise ("@Color (DBExaminer | DBChanger) for compare(**) | connectsTo(x*)"),
@Promise ("@Color (DBExaminer | DBChanger) for contains*(**) | describe()"),
@Promise("@Color (DBExaminer | DBChanger) for find*(k*) | numx(**)"),
@Promise ("@Color (DBChanger) for setx(**x) | makex(**) | modifyx(xx)"),
@Promise ("@Color (DBChanger) for clearx() | new(k*) | add*(*x*)")

b

package com.sun.electric.database.network; TékesadvaﬂﬁgecﬁsUMZedI___

naming schemes

Sutherland and Scherlis, Composable Thread Coloring, in Proc. PPOPP, 2010, pp.233-244.

36

Supporting contingencies

S

e Our approach supports three kinds of unverified contingencies:
e @Vouch — Vouches for presumptive false positives

e @Assume — Assume truth of unverified assertion
(e.g., about a library component)

e Turning off a constituent analysis — promises that need to be
verified by that analysis will show as correct with contingency

e The “red dot”

_ e The impact of all contingencies are visibly indicated with a trail
of “red dot”s in the user interface

. o A programmer must be willing to prick a finger and vouch for the
unverified contingency with a small drop of virtual blood

37

@Vouch —

MapReduce

adoop

e — == B

QRegion("StatusState")
O@RegionLock("StatusLock is this protects StatusState")
public class JobInProgress {

@InRegion("StatusState")

JobStatus status;

Vouching for test
code as an exception
to a lock use policy

public class CapacityTestUtils {
(@Vouch("This code is used only for testing"))
static class FakeJobInProgress extends JobInProgress { ... }

} o This vouch only applies to results within the
declaration of FakeJoblnProgress

42 RegionlLock StatusLock is this protects StatusState on JobInProgress at JobInPregress.java line 102
4 &= 21 unprotected field access(es); possible race condition detected
4 43 org.apache.hadoop.mapred (21 issues)
4 A9 CapacityTestUtils.FakelobInProgress (3 issues)
4 mp Lock "<this=:StatusLock” not held when accessing this.status at line 319
4 = 1 prerequisite assertion:
- .?@T Vouch "This code 15 used only for testing” at Capacity TestUtils,java line 299
. a7 Lock "<this»:StatusLock” not held when accessing this.status at line 323
- s Lock "<this=:StatusLock” not held when accessing this.status at line 324
. #® CapacityTestUtils.FakeTaskTrackerManager (1 issue)

38

Example: A bug in Oswego util.concurrent

File Edit Source Refactor

Help

MBI % -

(=]
F5 [Resource | §'1ava

=101

Mavigate Search Project Run Window

E’ |~ Resource ,w

File Edit Source Refactor Navngate Search Project Run Window Help
Jrs-lo s -k -&- || a e
@2 [[&-Blé-0- 00O

J o & @\ e - IJ B < |J i - Problems ([} Code Assurance Information £3 |Ca|| Hierarchyl ,T v =8
J & IJ {} b ‘0 S eReRNph El@ Concurfency detector (44 issues))
|:=Pajkage Explorer 23|Hierarchyl PO | e -%9: v = 5] v : 321;3:::;‘.;1:::I;Tl::fb:;s;yi::t:;z::cr:tri:t(l:;(s)
[=-5=> util.concurrency . , = s . .
’a”%gm n@‘-b RegionLock EDU.oswego.cs.dl.util.concurrent.SynchronizedVariable.VarLock is this)
.05Wego.cs, ues
S el ¥ s> 1 unprotected field access(es); possible race condition detected)
D W43 EDU.oswego.cs.dl.util.concurrent (1 issue)
PipedChat .) ssues)
) Swingwor ¥ 49 SynchronizedLong (1 issue)

[#-4J] Synchroni
[4) Barrier.java
[BoundedBuffe
[4) BoundedChan
[BoundedLinke;
[4) Boundedpriori

[J) callable.java

[channel.]ava

(@ proposed promise: @RequiresLock("VarLock") at SynchronizedLong.
@ BrokenBarrierl » & 221 pl"OteCted ﬁﬁld aCCGSS(ES)
> @ Region protected EDU.oswego.cs.dl.util.concurrent. SynchromzedVarlabIe VarSta

Lock "<this>:VarLock" not held when accessing this.value_ at line 114 &2

5)
ues)

#-

3

#-

3

#-

3

#-

3

o

¢ m ConcurrentHashMap java
#-- @ ConcurrentReaderHashMap.java
¢ [J] Condvar.java

- @ CopyOnWriteArrayList.java
¢ @ CopyOn'WriteArraySet.java
- [d] CountDown.java

¢ @ CyclicBarrier.java

- [J] DefaultChannelCapacity.java
) @ DirectExecutor.java

- [J] Executor.java

- [f] FIFOReadwriteLock.java
t-[J] FIFOSemaphore.java

i [d) FITask.java

- 4J] FITaskRunner.java

) @ FITaskRunnerGroup.java
1 [J] FutureResult.java

) @ Heap.java

i [J) Latch.java

i [J] Layeredsync.java

- [J] LinkedNode.java

o [0 LinkedQueue.java

- [J] LockedExecutor.java

7 [d] Mutex.java

b [0 Mullsync.java

t-[J] ObservableSync.java

- [J] PooledExecutor.java

/- [J] PrioritySemaphore.java
t-[J1_PropertvChanaeMulticaster.iava

rm O I O o O I O o O B O O O O O O O o O O o O e O O e B O O O O O O O o O IO o O e OO e O B

Model ObservableSync.Lock at ObservableSync.java line 37 (S issues)

% Model ReentrantLock.MetaLock at ReentrantLock.java line 25 (25 issues)
I E] <k 25 protected field access(es)

[=-1& util.concurrency (25 issues)

B -## EDU.oswego.cs.dl.util.concurrent {25 issues)
& [ReentrantLock.java (25 issues)

] Model Rendezvous.RendezvousLock at Rendezvous.java line 108 (29 issues)

Model Semaphore.Lock at Semaphore.java line 88 (35 issues)
- Bﬁ Model Slot.ItemLock at Slot.java line 30 (4 issues)

+-98 9 @synchronlzed constructor(s) wn:h escaping receivers,
#-< 9 "@synchronized" constructor(s) with thread-local receivers.

<k 221 protected field access(es)

<k 1 return statement{s) returning the correct lock

[+ 98 1 unprotected field access{es); possible race condition detected

[+ ﬁ Model TaskMode.NodeLock at ClockDaemon.java line 60 {7 issues)

[+ % Model TestedClass.L at SynchronizationTimer . java line 293 (S issues)

[+ Eﬁ Model ThreadFactoryUser.FactoryLock at ThreadFactoryUser.java line 23 (S issues)

#--5 Model ThreadInfo.L at SynchronizationTimer java line 471 (6 issues)

[7 non-final lock expression(s); analysis cannot determine which lock is being acquired

[+ i 189 protected reference(s) to a possibly shared unprotected object; possible race condition detected
[#- § 46 synchronized blocks not protecting any state; what state is being protected?

[#- § 176 unidentifiable lock{s); what is the name of the lock? what state is being protected?

= @ Uniqueness Assurance (573 issues)

[+ 247 method body(s) respect uniqueness constraints

[+ 321 method calls) respect uniqueness constraints

[+ 5 correct assignment{s) to unshared field{s)

e

| EDU.oswego.cs...currency/src

|

39

Evaluation activity: Field trials

Conducted nine field trials of the JSure tool with disinterested
practitioners

e Field trials were conducted in the client’s facilities
On-site at client’s location (code access limited)

Experienced client engineers worked side-by-side work with JSure

Chris Douglas (of Yahoo!) and
Nathan Boy (of SurelLogic) working
inside Yahoo Building E

40

A small sample of code examined
Duration Code Size
(days) | Organization Software Examined (KSLOC)
3 Company-A Commercial J2EE Server-A 350
3 NASA/JPL Distributed Object Manager 42
MER Rover Sequence Editor 20
File Exchange Interface 12
Space InfeRed Telemetry Facility 18
3 Sun Electric — VLSI Design Tool 140
3 Company-B Commercial J2EE Server-B 150
3 Lockheed Martin | Sensor/Tracking (CSATS) 50
Weapons Control Engagement 30
1 Lockheed Martin | Equipment Web Portal 75
3 NASA/JPL Testbed 65
Service Provisioning (SPS) 40
Mission Data Processing (MPCS) 100
Next-Generation DSN Array 50
3 NASA/JPL Maestro 17
Command GUI 139
Accountability Services Core 48
3 Yahoo! Hadoop HDF'S 107
Hadoop MapReduce 281
Hadoop ZooKeeper 62

Two broad categories: (1) server/infrastructure and

(2) naval and aerospace mission support

Fvaluation of appro

ach

———————

1. Scalability with respect to code size
e Tool scales linearly, 64-bit JVM, uniqueness (turned-off/red-dot)

2. Effectiveness with respect to defects found and perceived value
e Identified 79 race conditions in 1.6 million lines of Java code

e Developed 376 models of programmer intent about lock use

e 1,603 annotations added to 1.6 million lines of Java code

3. Compatibility with the incremental reward principle

o “We found a number of significant issues with just a few hours of work.
We really like the iterative approach. We really like the start-with-
nothing approach (We hate tools that spew thousands of problems
that are not actionable).”

4. Support for adoption late in the software lifecycle
e Most systems examined were in operations and maintenance
e Some very mature (JavaEE Server-B released for 3 years)
e C(Code had passed acceptance evaluation for deployment

42

Perception of client participants

—— = — == -

® “It would have been difficult if not impossible to find these issues
without [JSure].”

® “The instances uncovered in this analysis were in very mature
operational code.”

® “Team developed 63 lock models and [JSure] identified logic and
programming errors in the Common Sensor and Tracking (CSAT)
servers and Weapons Control Engagement segments that extensive
review and testing did not discover.”

® “To me the most valuable thing is the basic fact that you've given us a
methodology to document the concurrency related design intent. I'm
actually considering implementing a policy that you can’t add a
synchronize to the code without documenting [in JSure] what region it
applies to.”

® “[JSure] was reported by all participants as helping them to understand
and document the thread interactions they had already designed and
implemented. This was an unanticipated, and indirect, benefit from the
study.”

e To amanager, “one mistake and the phone starts to ring.”

JSure Modeling Language

e Released under Apache open source license

File Edit View History Bookmarks Tools Help

| ©! Stomping out Java *concurrency coc... | -+ | - e http://surelogic.com/promises/index.html

° http://promises.sourceforge.net/
e Primarily for use on Apache Hadoop
2 Yahoo! Developer Network Blog «Frevous [Man et

Yaa | e Mm

YaHOO!, DEVELOPER NETWORK

SERVICERETOOLE. RESOURCES. BUPPORT-

MY PROJECTS

JANUARY 26, 2010
Stomping out Java "concurrency cockroaches" with SurelLogic's
Flashlight and JSure tools

Used by the Timing Framework
e Animation in Swing
e Haase - Filthy Rich Clients

" o Goetz, et al. (JCIP) annotations are
supported by the tool

e e.g., @GuardedBy

44

ava Secure Coding standards

“E— = | h
CON33-J. Document thread-safety and use annotations re applicable - re Coding Sta s - Mozilla Firefox JE@‘Q‘
File Edit View History Bookmarks Tools Help
3 CON33-J. Document thread-safetya... | - | [~
-
CERT Software Assurance Secure Systems Organizational Security Coordinated Response Training
Dashboard » java 11. Concurrency (CON) * CON33-J. Document thread-safety and use annotations where applicable [EEETs
Legln|Sanus & =
CON33-J. Document thread-safety and use annotations where applicable
Standards A v Dhruv Mohindra, la=t edited by Dhruv Mohindra on Mar 12, 2010 (view change)
Overview Ls incomplete T
C Language
C++ The Java language annotation facility is useful for documenting the design intent behind specific concurrency properties of
Java code, Source code annotation is @ mechanism for associating metadata with a program element and making it available to the
compiler, tools such as debuggers, or the VM for examination. Several annotations are available for documenting thread-
safety, or the lack thereof.
CERT
Websites
CERT A—f =
= Obtaining Concurrency Annotations
Coding
Tech Tips There are two sets of concurrency annotations that are freely available and Jj
consists of four annotations described in Java Concurrency in Practice (JCL
(iar, javadoc, source). The JCIP annotations are released under the Ci i emeads afe
Relftgd The second, larger, set of concurrency annotations is available

3 - are d under the The Apache Software License, Versio
Build Security. source). These annotations can be verified by the SureLo.
o unavailable. The SureLogic annotations also include th
(JISure also supports use of the JCIP Jar file).

L @Region ("private Aircrafcitate”)
@Regionlock ("Statelock is statelock protects Aircrafes
public final class Aircrafet {
Documenting Intepded Thread-safety))
Y oisionswdsscrememeemesed PEAVate f£inal Lock statelock = new Reentrantlock();

ation is applied to a class to indicate that it is thread
writes to public fields, calls to public methods) may leay L
of these accesses by the runtime or any synchronization ol

, the dircrafe class shown below specifies thatitis thread-safe a - " - -
e thexand 3 B wing Beeeraion, @InRegion("Aircraft3tate")

private long x, ¥,

oth of the above Jar files td
ussed below.

To use the annotations, download and add one
Titz CERT C annotations to document thread-safety is dj

ECURE CODING
STANDARD

JCIP provides three classy

The @ThreadSafe a
accesses (reads
of the interleay

Secure Coding
in C and C-+

#Ragion("privata Aizcsafritate
= 1a Lock protacts Aizoral

public final elasa Aizesaft {

Privata final Lack atatalock — naw Raentzantlock();

Rglated #InRegion("Aizcsafritata”)
Sites peivate long x, yi

public void setPosition(leng x, long y) {
atatalock.lock() s

=y { 1
this.x - x; 1
this.y - ys 1

} zinally { 1

statalock.unlock() s

45

Summary

e Vision: Create focused analysis-based verification for software
quality attributes' as a scalable? and adoptable3 approach to
verifying4 consistency of code with its design intent5

1. Quality attributes: E.g., safe concurrency with locks, data
confinement to thread roles, static layer structure, many others

2. Scalable: Adapt constituent analyses to enable composition

e Keys: chosen quality attributes, drop-sea (composition), scoped
promises, contingencies

Adoptable: Before-lunch test (incremental reward principle)

4. Verification: No false negatives from analysis targeted to an
attribute and a model

5. Design intent: Fragmentary models/specifications focused on
quality attributes

Soundness at scale that ordinary programmers
can use on non-trivial program properties

46

