
Ant-Based Cyber Security

Jereme N. Haack, Glenn A. Fink, Wendy M. Maiden,
A. David McKinnon

Pacific Northwest National Laboratory
Richland WA, USA

Jereme.Haack@pnl.gov

Steven J. Templeton
University of California, Davis, Dept. of Computer Science

Davis, CA, USA
templets@omsoft.com

Errin W. Fulp
Wake Forest University, Computer Science Department

Winston-Salem, NC, USA
fulp@wfu.edu

Abstract—We describe a swarming-agent-based, mixed-
initiative approach to infrastructure defense where teams of
humans and software agents defend cooperating organizations
in tandem by sharing insights and solutions without violating
proprietary boundaries. The system places human
administrators at the appropriate level: where they provide
system guidance while lower-level agents carry out tasks
humans are unable to perform quickly enough to mitigate
today’s security threats. Cooperative Infrastructure Defense,
or CID, uses our ant-based approach to enable dialogue
between humans and agents to foster a collaborative problem-
solving environment, to increase human situational awareness
and to influence using visualization and shared control. We
discuss theoretical implementation characteristics along with
results from recent proof-of-concept implementations.

Keywords—agents; security; digital ants; digital pheromone

I. INTRODUCTION
Accomplishing concerted, infrastructure-wide cyber-

defensive action that spans organizational boundaries is
difficult. Infrastructures have unique cyber-security needs
that cannot be adequately addressed by individual enterprise
solutions, and the complicated relationships in infrastructures
make it possible for defensive actions by one organization to
affect the others adversely [1]. Both legal [2],[3] and
practical issues require that the consequences of change be
managed through coordination across organizations in a
near-real-time manner.

Cyber adversaries, on the other hand, are not hindered by
central coordination—they can rapidly and concertedly
disrupt multi-organizational computer infrastructures.
Therefore, enclave defenders need to be able to coordinate
the activities of their defenses without violating the
sensitivities of cooperating organizations. For example, if
one organization is an Internet service provider, it might be
convenient to be able to push security updates to reliant
organizations to keep all of them up to date. These
organizations, however, would wish to retain control for
themselves, because new updates may break mission-critical

legacy applications. Humans must not become a bottleneck,
but automated defenses must strictly observe access policies
that differ across cooperating organizations. The mixed-
initiative approach provides a basis for shared control among
humans at different sites and for humans and software agents
at different sites to collaborate.

Current cyber-defense systems involve humans at
multiple levels, but people are often far down in the control
structure, requiring them to make too many time-critical
decisions. Information flow between humans is slow and
frequently asynchronous. In a crisis, humans may be unable
to cooperate because of cultural, language, legal, proprietary,
availability, or other obstacles. Such systems cannot adapt to
rapid cyber threats. Effective cyber defense requires a
framework that simultaneously capitalizes on the adaptability
of humans and the speed of machines. Humans must have a
correct balance of decision making and delegation to
maximize their effectiveness and to acknowledge their legal
responsibility for the actions of their automated systems [3].

This paper presents the Cooperative Infrastructure
Defense (CID). CID implements the mixed-initiative
hierarchical framework of humans and agents called
DigitalAnts™ for cyber security. While DigitalAnts™ can
apply to many domains, CID is its application to cyber
security and the topic of this work.

CID is designed to rapidly and automatically adapt to
new cyber attacks while enabling humans to supervise the
system at an appropriate level. We interpose a hierarchy of
rational software agents between the swarm and the human
supervisors to provide a channel for system guidance and
feedback. Each type of agent is rational (in that it has logical
reasons for its actions), but the types of rationality include
human thought, logic-based programming, and supervised,
semi-supervised, and unsupervised learning. As explained
later, employing a mix of these diverse kinds of rationalities
improves system performance. Particularly, apparent false
positives at the lowest level of the hierarchy produce
feedback loops that help the system collect information and
autonomously differentiate potential problems from

2011 Eighth International Conference on Information Technology: New Generations

978-0-7695-4367-3/11 $26.00 © 2011 IEEE
DOI 10.1109/ITNG.2011.159

918

previously unknown safe states. In CID, software agents
share the decision-making power, handling most of the real-
time portion autonomously but enabling human involvement
at all levels. The human supervisor does not directly control
the system; rather, humans exert supervisory influence,
sharing the initiative for action with their software agents.
CID is designed to be a scalable, dynamic, and robust
framework for securing increasingly complex computational
infrastructures. CID makes humans an intrinsic part of the
solution by engaging them without requiring them to directly
control the agents.

In our research, we have created simulations of the entire
framework, prototypes of the UI, and prototypes of the
mobile sensor agents. Our initial prototype, built in an agent
simulation framework, was demonstrated at the VizSec 2008
[4] conference. We have implemented the framework in Java
using the JADE agent framework [5] on a network of virtual
machines and on a set of Emulab nodes in the DETER
network (http://www.isi.deterlab.net/). Currently we are
conducting DigitalAnts™ research for a variety of
application domains in addition to CID.

This paper starts by giving an overview of the system
including the types of agents, their roles, and how trust
between them is managed. Section III discusses a prototype
implementation of the system giving more concrete details of
system functionality. Section IV contains directions for
future research. Our conclusion follows in Section V along
with acknowledgements in Section VI.

II. SYSTEM OVERVIEW
In CID, humans and various types of software agents

share the responsibilities of securing a cyber infrastructure
consisting of enclaves that belong to member organizations.
Figure 1 shows how one human can supervise a multi-
enclave system with a few enclave-level agents, a host-level
agent at each machine or group of similar machines, and a
large swarm of simple mobile agents.

Using agents—especially ones modeled on biological
organisms—can lead to overly anthropomorphizing concepts
in the system. When biological terms such as “spawn” or
“die” are used in this paper, it is meant as shorthand for “one
agent creating another agent” and “terminating agent
execution”. These terms are not meant to imply that anything
more complex or that true “artificial life” is taking place.

Our terminology is as follows:
• Humans function as Supervisors. They provide

guidance to and receive feedback from one or more
enclaves. They take action only when the lower-
level agents encounter a problem that requires
human involvement. Supervisors may take initiative
as desired to inspect and guide any element of the
system. However, direct human control of the
system is discouraged, because such involvement
would adversely impact its natural adaptive abilities.

• Enclave-level agents, called Sergeants, are
responsible for the security state of an entire enclave.
Sergeants may make service agreements with
Sergeants of other enclaves. Sergeants dialogue with
humans to gain guidance for running the system

according to business drivers and human security
policies. Sergeants create and enforce executable
policies for the entire enclave.

• Host-level agents, called Sentinels, protect and
configure a single host or a collection of similarly
configured hosts such as a cluster or storage
network. Sentinels interact with human supervisors
only when they need clarification about how to
classify ambiguous evidence from the swarm.

• Swarming agents, called Sensors, roam from
machine to machine within their enclave searching
for problems and reporting to the appropriate
Sentinel. Sensors are diverse; their classifiers are
each uniquely derived from the set of known
problem indicators. Sensors use stigmergic messages
called digital pheromone [6] to communicate.

The concept of Supervisors and agents of the CID
framework operating within a hierarchical structure is
supported by the research of Parunak [7], Smieja [8], and
Selfridge [9], who each suggested hierarchical arrangements
of heterogeneous agents. Interposing logic-based rational
agents between the humans and the swarm provides a basis
for communication, interaction, and shared initiative. The
hierarchical arrangement gives humans a single point of
influence that allows multiple points of effect. Figure 2
shows the relationships among CID actors, and the
subsequent sections describe the roles of the actors. It may
be useful to illustrate CID in terms of autonomic computing
[10] since CID is a system of autonomous agents that
manages and protects an enclave of computers. We have
drawn comparisons to autonomics where useful, but CID
concentrates on maintaining a concerted cyber defense
without considering the other functions of autonomics.

Figure 1. CID is a hierarchical framework of human supervisors, enclave-
level rational agents, and swarming agents. A single human may supervise

multiple enclaves via the agent hierarchy.

A. Supervisors
At the top layer of Figure 1 and Figure 2 are human

supervisors who may direct one or more enclaves.
Supervisors may belong to one or more interdependent
organizations within the infrastructure, while the cyber assets

919

in every enclave all belong to a single organization by
definition. A Supervisor might also be a member of a
regulatory organization or law enforcement agency and only
monitor the equipment in the enclaves. Human supervisors
translate business policy into guidance via natural-language
and graphical controls for top-level agents called Sergeants.

Figure 2. Cooperation among humans and agents in CID.

B. Seargents
Each enclave has a top-level agent called a Sergeant. In

autonomic computing terms, the Sergeant corresponds to the
orchestrating Autonomic Manager. Sergeants provide
situational awareness to the Supervisor, via an information
visualization interface. Sergeants translate the guidance from
the human Supervisor into actionable policy across all the
machines within an enclave. Sergeants will employ
supervised learning algorithms so that interactions with them
become more efficient over time. Sergeants are “heavy-
weight” rational agents that make decisions based on logic.
One possible implementation we have considered for
Sergeants is Belief-Desire-Intention logic [11]. The Sergeant
presents the activities of lower-level agents to the human
Supervisor and functions as an interface to influence system
operation. Supervisors use Sergeants to enact environmental
settings and policies that govern the general operation of the
lower-level agents without controlling the lower-level agents
directly. Sergeants define the “geography” (a two-
dimensional representation of the network) for the enclave.
The geography concept will be further defined under the
System Architecture subsection. Sergeants also broker
agreements between CID enclaves on behalf of the
Supervisors. To ensure that their actions are properly
attributable, Sergeants must have a separate digital
identification from the Supervisor to which they report.
Since they negotiate on behalf of humans, they may incur
liability for their owning organization. Thus, there must be a
mechanism to describe the types and degrees of authority the
Supervisor has delegated to the Sergeant. This authorization
could be quantified, for example, in terms of maximum
dollars that can be spent or types of service contracts that can
be negotiated.

C. Sentinel
Sentinels are mid-level rational software agents that, with

their managed host(s), function as the autonomic elements in
an autonomic computing system. In autonomics parlance, the
Sentinel is the Autonomic Manager, and the host
corresponds to the Managed Element. Each Sentinel is
responsible for a single machine or group of machines that
are similarly configured. For example, a Sentinel might be
responsible for a single server, a router, a storage area
network, a group of web servers, or even a set of managed
user workstations. Sentinels implement the policy they
receive from the Sergeant.

Sentinels also interface with the lowest-level agents: the
swarming Sensor agents that gather information on potential
problems found on the hosts. Sentinels provide the local
geography to Sensors and provide mobility by negotiating
with their destination. Sentinels also provide rewards and
spawning capabilities to Sensors. The Sentinels combine
evidence from the Sensors with their own historical data,
shared knowledge from other Sentinels, guidance from
Sergeants and Supervisors (interpreted by the Sergeant), and
contextual host information to determine whether a problem
exists and to devise potential solutions. Mechanisms similar
to this are used in survivability architecture [12].

Sentinels give feedback on the utility of Sensor findings
in the form of “rewards” to the Sensors that visit their nodes.
We use the analogy of foraging ants to illustrate the effect of
this feedback on the system. By rewarding visiting Sensors,
the Sentinel will cause them to deposit digital pheromone
message trails that will attract more Sensors to visit. A
variety of visiting Sensors will provide more information on
the potential problems experienced by the Sentinel and
provide data to help diagnose and fix the problems.

D. Sensor
Sensors are lightweight, swarming, mobile software

agents that move from machine to machine and collect
evidence of potential problems. Technically, CID does not
fully implement the DigitalAnts™ notion of true mobile
agents because of security concerns. Instead, CID moves
Sensor state from one Sentinel to another while the actual
Sensor code resides on the Sentinel itself. The resulting
system resembles a remote procedure call system plus
message passing. Sensors are modeled after behaviors of
social insects and they employ a form of ant-colony
algorithms and swarm intelligence [13]. The Sensors’ logic
is as simple as possible; their power is in their numbers and
their diversity. Sensors wander across the geography
superimposed on the enclave, randomly adjusting their
current heading similar to the movement of real ants. Unlike
a true random walk, the new heading chosen is a perturbation
on their existing heading rather than a truly random new
heading. Each Sensor uses a learning classifier [14] to match
a particular set of conditions in the hosts they visit. There are
two broad categories of Sensors: Markovian (memoryless)
and differential. Markovian Sensors look for static conditions
that may either define signatures of known problems or well-
known anomalous conditions. Differential Sensors look for
differences in conditions between hosts in recent memory

920

and their current host. For example, there may be an unusual
rate of network connections, a large number of open files,
many “zombie” processes (those hung just before
termination), or unusually high processor utilization levels.
Evidences used by differential Sensors are not specific
signatures of any type of intrusion—they are general
indicators that one might use to determine whether anything
unusual was happening on a machine.

Sensors communicate with each other stigmergically via
trails of digital pheromone [6] messages. Decentralized,
pheromone-based systems have been demonstrated to simply
and effectively solve highly constrained problems where
logic-based, optimizing approaches prove intractable [15].
Pheromone-based techniques have been shown to be robust
and therefore appropriate for dynamic applications, such as
network routing [16].

Sergeants and Sentinels select successful Sensors (those
that are most frequently rewarded for useful findings) as
templates for spawning new Sensors. New Sensor types may
also be created at any time by the Supervisor. The
interactions between Sentinels and Sensors provide highly
flexible classification and unsupervised learning. The
resulting classification resembles the random forest [17]
approach, except the members of the forest are not tree-
structured classifiers but learning agents. Also, the voting
mechanism is different because there is no central consensus;
all decisions are made locally and influenced by transient
pheromone pathways.

E. Managing Trust
Trust management serves to protect the system from

malicious behavior by insiders and entities that have
penetrated network defenses. In previous research [18],[19]
we examined the trust relationships, evidence, and decisions
in CID and found that by monitoring the trustworthiness of
the Sentinels rather than the swarming Sensors, the trust
management problem became much more scalable and still
served to protect the swarm. We then proposed the
DualTrust conceptual trust model [19],[20] for managing
trust. By addressing the Sentinel’s bi-directional (vertical and
horizontal) primary relationships in the CID architecture,
DualTrust is designed to monitor the trustworthiness of the
Sentinels, protect the Sensor swarm in a scalable manner,
and provide global trust awareness for the Sergeant.

In addition, in future work, trust delegation techniques
and authorization credentials will be used to safely delegate
the types and degrees of authority the Supervisor delegates to
the Sergeant, and trust negotiation techniques will be used to
negotiate agreements between Sergeants of different
enclaves.

III. PROTOTYPE IMPLEMENTATIONS
During the development of CID one simulation and two

prototype systems have been developed. The Netlogo
(http://ccl.northwestern.edu/netlogo/) simulation was initially

developed at Pacific Northwest National Laboratory to help
guide the design of CID and understand its behavior given a
large set of nodes. This later became the prototype UI for the
system. Next, Pacific Northwest National Laboratory and
Wake Forest University faculty and students developed the
first prototype of a true implementation system using the
JADE framework. This implementation provided insight to
the approach’s ability to protect a small enclave of
computers when exposed to a computer worm. The latest
version of CID was developed by University of California,
Davis faculty and students as a lightweight implementation
designed for limited resource use and to have minimal
impact on the monitored system. This test bed
implementation has been successfully tested on a collection
of networked computers on the University of California,
Davis campus and on the DETER [21],[22] and ProtoGENI
[23] test beds (both as part of the NSF GENI project [24]).
DETER and GENI allow experimenters to request
collections of hosts (referred to as slices) for use in network
research. One goal of our CID work is to investigate
supporting security services for GENI. The first phase of this
work includes adding security monitoring to slices by using
DigitalAnts™. It will be important for the monitoring system
to have negligible impact on GENI experimenters’ research
whenever timing is an important factor. The following
sections discuss the Netlogo UI and the most recent testbed
implementation of CID.

A. Netlogo Supervisor Interface
The Supervisor interacts with the Sergeant through an

information visualization and graphical UI that gives the
Supervisor situational awareness of state of the enclave.
Utilizing the Netlogo agent simulation toolkit, we have
implemented variations of the Sergeant interface. These are
conceptual interfaces, suitable for research purposes. The
eventual UI will require usability engineering to achieve the
desired level of human interaction effectiveness. Using slider
bars, the user can adjust the parameters of the environment to
influence the behavior of the agents involved. As mentioned
earlier, the Supervisor uses this interface to adjust the
activation and crowding tolerance target levels.

In the simulation UI shown in Figure 3, the Sergeant
provides enclave-wide situational awareness to the
Supervisor and enables interaction with various agents. Each
square in the visualization represents the status of a Sentinel
that reports to the Sergeant. The color of the squares could
indicate activity levels, security conditions, or any encoding
the Supervisor prefers. In the simulation, we use the red,
green, and blue components of the color to represent file
system, memory, and CPU activity levels respectively.
Systems performing similar tasks typically have similar
colors. In Figure 3, workstations appear reddish, web servers
are shades of blue, and file servers appear gray. A color
change would indicate a change in behavior and function and
could indicate a problem.

921

Figure 3. Prototype of Sergeant UI

B. Test Bed Implemetantion
The goal of our test bed is to create a lightweight

framework useful for experimentation and as a prototype for
future implementations. All code was written using the
Python language to allow rapid prototyping and a
development path to C++. This implementation, while true to
the spirit of the DigitalAnts™ concept, for performance and
security reasons digresses somewhat from the general model.
This implementation is described below.

A Sentinel process runs on each monitored host. The key
function of the Sentinel in the test bed implementation is to
manage Sensor movement. This involves executing the
Sensors’ specified classifiers, updating its state and routing
Sensors to neighboring Sentinels. Sensors are not full mobile
agents but are implemented as network messages containing
a classifier type and other state information. Sentinels are
also responsible for Sensor state changes, Sensor creation
and destruction, Sensor evaluation, and communication with
the Sergeant. In the test bed implementation, the Sergeant
process runs on a dedicated host separate from the Sentinels,
and its primary function is to initialize and monitor the
Sentinels. Sergeants create new sensor types, report alerts
and other information from the Sentinels. Sensors are
implemented as single packets. Sensor movement is simply
the passing of Sensor packets between neighboring
Sentinels. Communication occurs only between neighboring
Sentinels, and between Sentinels and their Sergeant. Details
of our implementation are described below.

1) Sensors: In the test bed implementation Sensors are
called “Ants”. These are not true agents carrying mobile
code. Ants are simply messages that carry an Ant’s identity,
type and state. Ant data fields are described in Table 1. Ants
are implemented as IPv4 network packets. Because
lightweight design was important, we investigated both TCP
and UDP protocols. Although undetected packet loss may
occur with UDP, if the drop rate is acceptably low locally
and globally, the overhead of TCP can be avoided without
adverse effects. This may be important in some
implementations with particularly limited resources.
Because Ants are transmitted as single packets, the entire
state must be very small. While efficient, this limits the
length of allowed parameters and the possibility of carrying
mobile code.

Configurable system parameters for Ant creation and
termination rates can be adjusted to tradeoff the amount of
network bandwidth consumed vs. the detection effectiveness.

2) Sentinels: Sentinels maintain local state, manage
sensor functions and Ants, and communicate with their
Sergeant. Their functions include:

• Evaporate Pheromone: the pheromone trail is not
permanent, but dissipates over time. This prevents Ants
from taking action (i.e., following trails) based on old
information. The Sentinel monitors the age of the
pheromone and removes it after a set interval.

922

TABLE I. ANT PACKET DEFINITION

Field Description Use
id unique identifier

for the ant.
Used to determine if a
pheromone was left by
itself.

sensor_
type

the evidence type
the ant is seeking.

This tells the Sentinel
what sensor function to
execute.

sensor_
parameters

parameters for a
particular sensor
type.

Allows for variants of the
same sensor, e.g.
thresholds, filenames,
character sequences, etc.

state foraging,
following,
dropping, idle.

Determines an ant’s
actions.

age how long the ant
has been traveling.

After a period of time ants
will die (i.e. be removed).

direction the direction vector
for the ant.

This is used to determine
the next node for the ant
when the ant is not
following a pheromone
trail.

prior node the host the ant
was received from.

Used to direct ants along
pheromone trail.

time_
dropping

how long the ant
has been dropping
pheromone.

After a period of time an
ant will stop dropping and
wander idle

time_
idle

how long the ant
has been idle.

After a period of idle
wandering ant’s will
return to foraging.

where_
found

the location the
evidence was
found.

Used in experiments for
alternative ways for
pheromone to direct ants
to a target.

• Receive Ant: Ant packets are read from a network
queue and processed sequentially.

• Kill Ant: based on crowding and an Ant’s age, the Ant
may die. Both of these are implemented
probabilistically. The age of the Ant is tracked and
updated in the Ant’s state. Once it reaches a set
threshold, it may die, with increasing likelihood with
increased age. Similarly, depending on the crowding
factor (i.e., how many Ants have been seen at this node
in a preceding window of time) the likelihood of the
Ant’s death increases. Depending on the Ant’s state
(foraging, following, dropping, idle), the Sentinel will
carry out different actions. In general, this means
checking for conditions that would change the Ant’s
state, updating any local (i.e., host) state, and
determining the Ant’s next destination.

• Foraging: The primary Ant state is “foraging”. When
the Sentinel receives a foraging Ant, it executes the
sensor function specified for the Ant’s type. If this
result indicates something of significant interest exists,
the Ant’s state will be changed to “dropping”. If instead
the node managed by the Sentinel is part of a

pheromone trail, the Sentinel will, with high
probability, change the Ant’s state to “following”.

• Following: This state is similar to foraging. The
Sentinel executes the Ant’s sensor function, and may
change state to dropping. The difference is that rather
than determine the Ant’s next location using its
direction parameter, the Ant is directed along the
pheromone trail toward the location where another Ant
found evidence. If the pheromone trail ends, the Ant’s
state is changed back to foraging. In either of the above
cases, if the Ant enters the dropping state, a new
random direction for the Ant is selected.

• Dropping: When the Sentinel receives dropping Ant, its
sensor function is not executed. Instead, the Sentinel
updates its state to indicate that it is part of the
pheromone trail and from which neighbor node the
dropping Ant came (i.e., toward the evidence). Because,
pheromone is dropped for a limited number of steps, the
Sentinel will decrement the drop counter of the Ant. If
it reaches zero, the Ant’s state is changed to idle.

• Idle: An idle Ant simply moves about the mesh; no
sensor functions are executed, nor does it follow any
pheromone trails it encounters. This causes the Ant to
move away from where it last found something it
returns to the foraging state and again looks for
evidence. Idle Ants remain in this state for a fixed
number of steps. The Sentinel decrements the Ant’s idle
counter. When it reaches zero the Ant’s state is changed
back to foraging.

• Create Ant: new Ants are created in response to a low
crowding factor and a high utility of a particular Ant
type. This allows us to maintain a sufficient number of
Ants for threat detection, and to bias this towards Ants
that are currently helpful in detecting a threat.

• Send Ant: connect to the node for the Ant’s next
destination and send the Ant packet with its updated
state information.

• Receive_Sergent_Message: accepts messages from the
Sergeant and takes the appropriate action. Examples
include: report status, and add new sensor type.

3) Sensor Functions: Sensor functions refer to the code
executed on a Sentinel to collect the information requested
by an Ant. These can be either some current state for a
summary of recent activity, such as “is port 31373/tcp
open?” or “how many page faults have occurred in the last
minute?” respectively. An Ant’s type determines the
particular sensor function the Sentinel is to execute. Any
associated parameters may be used to modify the particular
sensor function. In this way a sensor function for “is a
process named X running?” can become “is a process
named cmd.exe running?” The results of this, modified by
the Sentinel’s determination if this is a false-positive (i.e.,

923

not significant for the Sentinel under current circumstances),
determine if the Ant begins to leave a pheromone trail.

Sensor functions are cached in the Sentinels. An initial
set is predefined upon Sentinel initialization. When a
Sentinel receives an Ant type of an unknown sensor
function, the Sentinel will request the function definition
from its Sergeant. This enhances flexibility, eliminates the
need to support mobile code, simplifies Ant structure, and
increases security.

4) Sergeants: During system initialization, Sergeants
identify the Sentinels they monitor and determines each
Sentinel’s neighbors. The following section on geography
describes how neighbors are assigned. At runtime, Sergeants
reply to sensor function definitions requests, and collect
activity reports from the Sentinels. This information is used
to track alerts, Ant motion and state More advanced
features such as a Sergeant UI and the ability to create new
sensor types have not yet been implemented. However, via a
related support utility, a user may create Ants with new
parameter values using an existing sensor type.

5) Geography and Direction: This implementation
constructs a geography based on a two-dimension square
mesh with edge wrapping. That is each node has four
neighbors (up, down, right, left); edge nodes’ neighbors are
at the opposite parallel position. Nodes in the mesh
represent monitored hosts. The Sergeant creates a
rectangular mesh as close to square as possible and assigns
neighbors from a list of hosts to be monitored.

Direction in this mesh is based on four directions: zero
for up, 90 for left, 180 for down, and 270 for left. Each Ant’s
direction is an integer from 0 to 359. If the Ant’s direction
exactly matched a neighbor’s position the Ant would tend
move to that neighbor. Otherwise, we pick from its
neighbors weighted by how close the Ant matches their
position. If the Ant’s direction was 45, there is an equal
chance the Ant will move up or left. To add a controllable
amount of randomness to the Ant’s wandering, the Ant’s
effective direction is modified by a random value using a
uniform distribution. This will cause Ant’s path to diverge
slightly from its set direction.

The hosts used in our initial work are representative of
computers connected on the same subnet or with ready inter-
host communication. We are also actively investigating the
use of DigitalAnts™ in other settings such as wireless sensor
networks. Our initial model is based on wireless mesh
networks similar to those seen with the ZigBee [25] and
WirelessHART (IEC 62591) [26] protocols. WirelessHART
is a common protocol in industrial control systems. ZigBee
is a widely adopted IEEE 802.15.4-based wireless protocol
used in sensor networks, building automation and Smart
Meters currently being deployed worldwide. Unlike our
original implementation where an artificial geography must
be imposed on the host being monitored, for these networks
a real geography exists. Devices are capable of
communicating directly with only devices near enough (and
unobstructed) to have sufficiently strong and noise free radio
communications. Unlike the original design, here a device

will have a varying number of neighbors, both in number and
availability over time.

Because the mesh may change and Sentinels do not know
the location of their neighbors, rather than have the Ants
wander using a direction, we use a random walk of the mesh.
To prevent Ants from wandering the same paths, the Ants
leave a pheromone trail indicating where they have been.
Ants will preferentially not take paths with a strong self-
pheromone trail. Also, unlike the original implementation,
the Sergeant is not required for initialization of neighbor
relations; instead, the geography is self-organizing based on
connectivity.

We are implementing this via simulation on the DETER
test bed. To initialize our simulation, each node will
randomly generate (or be assigned) an (x,y) position within a
set range. These coordinates are sent to a central simulator
process that tracks node position, inter-device distances, and
sends messages to nodes that are their neighbors (relative to
a set distance). This allows for dynamic changes in future
testing.

In these systems, because of the low transmission power,
most nodes cannot directly communicate with the Sergeant,
but must route packets through the mesh to a node that has
connectivity. Each of the above mentioned protocols has
methods for routing packets through the mesh. Because the
Sergeant may be associated with a different type of device
with a much higher transmit power, in some configurations it
may be possible to send messages to Sentinels directly.
However, except for gains from a more sensitive antenna and
receive circuitry, it is likely that Sentinels may not send
messages to the Sergeant. For the purpose of our initial tests,
we assume that messages between Sentinels and Sergeant
require routing through the mesh.

Through our implementation effort, we have concluded
that implementation details must vary to best fit the
particular domain. This must take into account processing
resources, networking characteristics and threat profile.

In our prototype, we took no effort to protect the code
from malicious users. Future GENI implementation plans
include integrating it into the virtualization process (e.g.,
hypervisor) and deploying it to monitor infrastructure hosts,
not just slice hosts. Authentication of Ants to Sentinels and
other system communications must be implemented.

C. Preliminary Results
The JADE prototype system has been a valuable resource

for gaining an initial understanding of system performance,
such as threat detection time and system efficiency, under
varying conditions. For example, an important system aspect
to consider is the impact of the Sensor population size on
threat detection, where is it expected that larger populations
will reduce the detection time. Consider the number of
Sensors in the system as a density, where 100% density
represents an equal number of Sensors per type as there are
computers to protect, while a 50% Sensor density represents
half as many Sensors per type as computers. Using the
prototype system and a simple grid of computers to protect, a
density of 75% Sensors was found to perform as well as a
traditional IDS modeled as one resident static agent per

924

computer [27]. Adding Sensors beyond a 75% density level
for this experiment yielded diminishing marginal returns,
reducing the detection time variance.

Another important factor to system performance is the
use of pheromone. If pheromone is not used then the Sensors
randomly select their next destination. For example consider
a 75% Sensor density with and without pheromone as
compared to a traditional IDS configuration (again, static
agents; one per computer). Preliminary results showed that
the impact of pheromone was significant, resulting in a 34%
reduction in detection time as compared to no pheromone.
Therefore, the 75% Sensor density performed comparably to
a traditional IDS deployment in terms of detection time, but
it also required 11% fewer CPU cycles than the static IDS
approach [27]. Although these initial results are informative
more experiments are needed to further understand system
performance, deployment, and management.

IV. FUTURE RESEARCH
We have focused our research mainly on the Sentinel and

Sensor behavior in our implementations, thoroughly
mapping out the behavior of the Sensors and their
interactions with the Sentinels. We have created a
demonstration system of the Sensor-Sentinel interactions in
JADE and have created vertical prototypes of interactions at
the Supervisor, Sergeant, and Sentinel levels. We intend to
conduct usability studies on our prototype Sergeant interface
to determine how best to enable the Supervisor’s situational
awareness. The next step would be to develop a functionally
complete interface between Supervisors and Sergeants that
translates human guidance into executable policy for the
Sentinels. Further, we wish to experiment with our Sensor-
Sentinel implementations on larger network topologies in
order to characterize the scalability of our framework. We
also intend to test the framework against real-world attacks
and learn to generalize knowledge gained from solutions to
those attacks. Similar problems could be solved with similar
approaches and this would help generalize the system and
enable adaptive responses to new attacks.

V. CONCLUSION
The CID framework enables security event monitoring

for distributed systems with multiple overlapping and
decentralized administrative domains in a way that
traditional NIDS do not. Additionally, the system allows for:

• Specifying and simulating a framework suitable for
multi-organizational cyber security.

• Developing feedback mechanisms that keep Sensor
populations under control with minimal resource
usage.

• Specifying a mixed-initiative approach that is highly
scalable and difficult to disrupt.

• Deployment into a variety of interconnected
systems, not just across IP networks.

Our experiments have shown that our framework of
shared system control using a hierarchy of agents and the
adaptive capabilities of swarm intelligence, has greatly

enhanced the security of key, critical, interconnected
infrastructures.

ACKNOWLEDGEMENTS
The authors thank Sean Peisert for his thoughtful review

and valued comments which improved the quality of this
paper.

The Pacific Northwest National Laboratory is operated
for the U.S. Department of Energy by Battelle Memorial
Institute under Contract DE-AC06-76RL01830.

This work is funded by the U. S. Department of Energy
under U.S. Department of Energy Contract DE-AC05-
76RL01830.

The implementation protecting GENI was supported in
part by the National Science Foundation and the GENI
Project Office under Grant Number CNS-0940805.

Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect those of any of the
sponsors of this work.

REFERENCES
[1] D. Frincke, A. Wespi, and D. Zamboni, “From intrusion detection to

self-protection,” Comput. Networks, vol. 51, 2007, pp. 1233–1238.
[2] E.A.R. Dahiyat, “Intelligent agents and intentionality: Should we

begin to think outside the box?,” Comput. Law Secur. Rep., vol. 22,
2006, pp. 472–480.

[3] M.B. Scher, “On doing ‘being reasonable’,” ;login:, vol. 31, 2006, pp.
40–47.

[4] J. Haack., G. Fink, E. Fulp, and W. Maiden, “Cooperative
Infrastructure Defense,” presented at the Workshop on Visualization
for Computer Security (VizSec), 2008,
www.vizsec.org/workshop2008/fink.pdf.

[5] F. Bellifemine, G. Caire, D. Greenwood, Developing Multi-Agent
Systems with JADE, Wiley & Assoc, 2007.

[6] S. Brueckner, Return From the Ant: Synthetic Ecosystems For
Manufacturing Control, PhD Dissertation, Berlin: Humboldt
University, Department of Computer Science, 2000.

[7] H.V.D. Parunak, P. Nielsen, S. Brueckner, and R. Alonso, “Hybrid
multi-agent systems: Integrating swarming and BDI agents,” in
ESOA 2006, LNAI, vol. 4335, S.A. Brueckner., S. Hassas, M.
Jelasity, and D. Yamins, Eds. Heidelberg: Springer, 2007, pp. 1–14.

[8] F. Smieja, “The pandemonium system of reflective agents,” IEEE
Transactions on Neural Networks, vol. 7, 1996, pp. 97–106.

[9] O.G. Selfridge, “Pandemonium: a paradigm for learning,” In
Neurocomputing: Foundations of Research, J.A.D. Anderson and, E.
Rosenfeld, Eds. Cambridge, MA: MIT Press, 1988, pp. 115–122.

[10] J.O. Kephart and D.M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, 2003, pp. 41–50.

[11] A.S. Rao and M.P. Georgeff, “BDI agents: From theory to practice,”
First International Conference on Multi-Agent Systems (ICMAS-95),
AAAI Press, 1995, pp. 312–319.

[12] J. Knight et al., “The Willow architecture: Comprehensive
survivability for large-scale distributed applications,” Distributed
Applications: Intrusion Tolerance Workshop, Dependable Systems
and Networks (DSN 2002), 2002.

[13] M. Dorigo and L.M. Gambardella, “Ant colony system: A
cooperative learning approach to the traveling salesman problem,”
IEEE Trans. Evolutionary Computation, vol. 1, 1997, pp. 53–66.

[14] J.H. Holland, et al., “What is a learning classifier system?,” Learning
Classifier Systems: From Foundations to Applications (LCS 99), vol.
1813, P.L. Lanzi, W. Stolzmann, and S.W. Wilson, Eds., Heidelberg :
Springer-Verlag, 2000, pp. 3–32.

925

[15] D. Di Caro and M. Dorigo, “AntNet: Distributed stigmergetic control
for communications networks,” in J. Artificial Intelligence Research,
vol. 9, 1998, pp. 317–365.

[16] E. Bonabeau, et al., “Routing in telecommunications networks with
‘smart’ ant-like agents,” Working Papers 98-01-003, Santa Fe
Institute, 1998.

[17] L. Breiman, “Random forests,” Mach. Learning, vol. 45, 2001, pp. 5–
32.

[18] W.M. Maiden, J.N. Haack, G.A. Fink, A.D. McKinnon, and E.W.
Fulp, “Trust management in swarm-based autonomic computing
systems,” Symposia and Workshops on Ubiquitous, Autonomic and
Trusted Computing (UIC-ATC 09), 2009, pp. 46–53.

[19] W.M. Maiden, DualTrust: A Trust Management Model for Swarm-
Based Autonomic Computing Systems, Master’s Thesis, Pullman,
WA: Washington State University, 2010,
http://www.dissertations.wsu.edu/Thesis/Spring2010/W_Maiden_604
1310.pdf.

[20] W.M. Maiden, I. Dionysiou, D.A. Frincke, G.A. Fink,and D.E.
Bakken, “DualTrust: A distributed trust model for swarm-based
autonomic computing systems,” Data Privacy Management and
Autonomous Spontaneous Security (DPM/SETOP 2010), LNCS
6514, J. Garcia-Alfaro et al., Eds. Springer-Verlag, 2011, in press.

[21] T. Benzel, et al., “Experience with DETER: A testbed for security
research,” Proceedings of Tridentcom (International Conference on
Testbeds and Research Infrastructures for the Development of
Networks & Communities), March 2006.

[22] T. Benzel, et al., “Design, deployment, and use of the DETER
testbed”, Proceedings of the DETER Community Workshop on Cyber
Security Experimentation and Test (DETER 2007), Berkeley, CA:
USENIX Association, 2007.

[23] ProtoGENI, http://www.protogeni.net/trac/protogeni.
[24] “GENI: Exploring Networks of the Future”, http://www.geni.net.
[25] ZigBee Alliance, http://www.zigbee.org/en/index.asp.
[26] “IEC 62591: Industrial communication networks – WirelessHart

Communication Network and Communication Profile”, International
Electrotechnical Commission (IEC),
http://en.wikipedia.org/wiki/WirelessHART.

[27] B.C. Williams, A Comparison of Static to Biologically Modeled
Intrusion Detection Systems, Master's Thesis, Wake Forest
University, 2010,
http://wakespace.lib.wfu.edu/jspui/handle/10339/14740.

926

