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Abstract—We describe a swarming-agent-based, mixed-
initiative approach to infrastructure defense where teams of 
humans and software agents defend cooperating organizations 
in tandem by sharing insights and solutions without violating 
proprietary boundaries. The system places human 
administrators at the appropriate level: where they provide 
system guidance while lower-level agents carry out tasks 
humans are unable to perform quickly enough to mitigate 
today’s security threats. Cooperative Infrastructure Defense, 
or CID, uses our ant-based approach to enable dialogue 
between humans and agents to foster a collaborative problem-
solving environment, to increase human situational awareness 
and to influence using visualization and shared control. We 
discuss theoretical implementation characteristics along with 
results from recent proof-of-concept implementations.   
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I. INTRODUCTION 
Accomplishing concerted, infrastructure-wide cyber-

defensive action that spans organizational boundaries is 
difficult. Infrastructures have unique cyber-security needs 
that cannot be adequately addressed by individual enterprise 
solutions, and the complicated relationships in infrastructures 
make it possible for defensive actions by one organization to 
affect the others adversely [1]. Both legal [2],[3] and 
practical issues require that the consequences of change be 
managed through coordination across organizations in a 
near-real-time manner.  

Cyber adversaries, on the other hand, are not hindered by 
central coordination—they can rapidly and concertedly 
disrupt multi-organizational computer infrastructures. 
Therefore, enclave defenders need to be able to coordinate 
the activities of their defenses without violating the 
sensitivities of cooperating organizations. For example, if 
one organization is an Internet service provider, it might be 
convenient to be able to push security updates to reliant 
organizations to keep all of them up to date. These 
organizations, however, would wish to retain control for 
themselves, because new updates may break mission-critical 

legacy applications. Humans must not become a bottleneck, 
but automated defenses must strictly observe access policies 
that differ across cooperating organizations. The mixed-
initiative approach provides a basis for shared control among 
humans at different sites and for humans and software agents 
at different sites to collaborate.  

Current cyber-defense systems involve humans at 
multiple levels, but people are often far down in the control 
structure, requiring them to make too many time-critical 
decisions. Information flow between humans is slow and 
frequently asynchronous. In a crisis, humans may be unable 
to cooperate because of cultural, language, legal, proprietary, 
availability, or other obstacles. Such systems cannot adapt to 
rapid cyber threats. Effective cyber defense requires a 
framework that simultaneously capitalizes on the adaptability 
of humans and the speed of machines. Humans must have a 
correct balance of decision making and delegation to 
maximize their effectiveness and to acknowledge their legal 
responsibility for the actions of their automated systems [3]. 

This paper presents the Cooperative Infrastructure 
Defense (CID). CID implements the mixed-initiative 
hierarchical framework of humans and agents called 
DigitalAnts™ for cyber security. While DigitalAnts™ can 
apply to many domains, CID is its application to cyber 
security and the topic of this work. 

CID is designed to rapidly and automatically adapt to 
new cyber attacks while enabling humans to supervise the 
system at an appropriate level. We interpose a hierarchy of 
rational software agents between the swarm and the human 
supervisors to provide a channel for system guidance and 
feedback. Each type of agent is rational (in that it has logical 
reasons for its actions), but the types of rationality include 
human thought, logic-based programming, and supervised, 
semi-supervised, and unsupervised learning. As explained 
later, employing a mix of these diverse kinds of rationalities 
improves system performance. Particularly, apparent false 
positives at the lowest level of the hierarchy produce 
feedback loops that help the system collect information and 
autonomously differentiate potential problems from 
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previously unknown safe states. In CID, software agents 
share the decision-making power, handling most of the real-
time portion autonomously but enabling human involvement 
at all levels. The human supervisor does not directly control 
the system; rather, humans exert supervisory influence, 
sharing the initiative for action with their software agents. 
CID is designed to be a scalable, dynamic, and robust 
framework for securing increasingly complex computational 
infrastructures. CID makes humans an intrinsic part of the 
solution by engaging them without requiring them to directly 
control the agents.  

In our research, we have created simulations of the entire 
framework, prototypes of the UI, and prototypes of the 
mobile sensor agents. Our initial prototype, built in an agent 
simulation framework, was demonstrated at the VizSec 2008 
[4] conference. We have implemented the framework in Java 
using the JADE agent framework [5] on a network of virtual 
machines and on a set of Emulab nodes in the DETER 
network (http://www.isi.deterlab.net/). Currently we are 
conducting DigitalAnts™ research for a variety of 
application domains in addition to CID. 

This paper starts by giving an overview of the system 
including the types of agents, their roles, and how trust 
between them is managed. Section III discusses a prototype 
implementation of the system giving more concrete details of 
system functionality. Section IV contains directions for 
future research. Our conclusion follows in Section V along 
with acknowledgements in Section VI. 

II. SYSTEM OVERVIEW 
In CID, humans and various types of software agents 

share the responsibilities of securing a cyber infrastructure 
consisting of enclaves that belong to member organizations. 
Figure 1 shows how one human can supervise a multi-
enclave system with a few enclave-level agents, a host-level 
agent at each machine or group of similar machines, and a 
large swarm of simple mobile agents.  

Using agents—especially ones modeled on biological 
organisms—can lead to overly anthropomorphizing concepts 
in the system. When biological terms such as “spawn” or 
“die” are used in this paper, it is meant as shorthand for “one 
agent creating another agent” and “terminating agent 
execution”. These terms are not meant to imply that anything 
more complex or that true “artificial life” is taking place. 

Our terminology is as follows: 
• Humans function as Supervisors. They provide 

guidance to and receive feedback from one or more 
enclaves. They take action only when the lower-
level agents encounter a problem that requires 
human involvement. Supervisors may take initiative 
as desired to inspect and guide any element of the 
system. However, direct human control of the 
system is discouraged, because such involvement 
would adversely impact its natural adaptive abilities. 

• Enclave-level agents, called Sergeants, are 
responsible for the security state of an entire enclave. 
Sergeants may make service agreements with 
Sergeants of other enclaves. Sergeants dialogue with 
humans to gain guidance for running the system 

according to business drivers and human security 
policies. Sergeants create and enforce executable 
policies for the entire enclave. 

• Host-level agents, called Sentinels, protect and 
configure a single host or a collection of similarly 
configured hosts such as a cluster or storage 
network. Sentinels interact with human supervisors 
only when they need clarification about how to 
classify ambiguous evidence from the swarm. 

• Swarming agents, called Sensors, roam from 
machine to machine within their enclave searching 
for problems and reporting to the appropriate 
Sentinel. Sensors are diverse; their classifiers are 
each uniquely derived from the set of known 
problem indicators. Sensors use stigmergic messages 
called digital pheromone [6] to communicate. 

The concept of Supervisors and agents of the CID 
framework operating within a hierarchical structure is 
supported by the research of Parunak [7], Smieja [8], and 
Selfridge [9], who each suggested hierarchical arrangements 
of heterogeneous agents. Interposing logic-based rational 
agents between the humans and the swarm provides a basis 
for communication, interaction, and shared initiative. The 
hierarchical arrangement gives humans a single point of 
influence that allows multiple points of effect. Figure 2 
shows the relationships among CID actors, and the 
subsequent sections describe the roles of the actors. It may 
be useful to illustrate CID in terms of autonomic computing 
[10] since CID is a system of autonomous agents that 
manages and protects an enclave of computers. We have 
drawn comparisons to autonomics where useful, but CID 
concentrates on maintaining a concerted cyber defense 
without considering the other functions of autonomics. 

 
Figure 1.  CID is a hierarchical framework of human supervisors, enclave-
level rational agents, and swarming agents. A single human may supervise 

multiple enclaves via the agent hierarchy. 

A. Supervisors 
At the top layer of Figure 1 and Figure 2 are human 

supervisors who may direct one or more enclaves. 
Supervisors may belong to one or more interdependent 
organizations within the infrastructure, while the cyber assets 
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in every enclave all belong to a single organization by 
definition. A Supervisor might also be a member of a 
regulatory organization or law enforcement agency and only 
monitor the equipment in the enclaves. Human supervisors 
translate business policy into guidance via natural-language 
and graphical controls for top-level agents called Sergeants. 

 
Figure 2.  Cooperation among humans and agents in CID. 

B. Seargents 
Each enclave has a top-level agent called a Sergeant. In 

autonomic computing terms, the Sergeant corresponds to the 
orchestrating Autonomic Manager. Sergeants provide 
situational awareness to the Supervisor, via an information 
visualization interface. Sergeants translate the guidance from 
the human Supervisor into actionable policy across all the 
machines within an enclave. Sergeants will employ 
supervised learning algorithms so that interactions with them 
become more efficient over time. Sergeants are “heavy-
weight” rational agents that make decisions based on logic. 
One possible implementation we have considered for 
Sergeants is Belief-Desire-Intention logic [11]. The Sergeant 
presents the activities of lower-level agents to the human 
Supervisor and functions as an interface to influence system 
operation. Supervisors use Sergeants to enact environmental 
settings and policies that govern the general operation of the 
lower-level agents without controlling the lower-level agents 
directly. Sergeants define the “geography” (a two-
dimensional representation of the network) for the enclave. 
The geography concept will be further defined under the 
System Architecture subsection. Sergeants also broker 
agreements between CID enclaves on behalf of the 
Supervisors. To ensure that their actions are properly 
attributable, Sergeants must have a separate digital 
identification from the Supervisor to which they report. 
Since they negotiate on behalf of humans, they may incur 
liability for their owning organization. Thus, there must be a 
mechanism to describe the types and degrees of authority the 
Supervisor has delegated to the Sergeant. This authorization 
could be quantified, for example, in terms of maximum 
dollars that can be spent or types of service contracts that can 
be negotiated.  

C. Sentinel 
Sentinels are mid-level rational software agents that, with 

their managed host(s), function as the autonomic elements in 
an autonomic computing system. In autonomics parlance, the 
Sentinel is the Autonomic Manager, and the host 
corresponds to the Managed Element. Each Sentinel is 
responsible for a single machine or group of machines that 
are similarly configured. For example, a Sentinel might be 
responsible for a single server, a router, a storage area 
network, a group of web servers, or even a set of managed 
user workstations. Sentinels implement the policy they 
receive from the Sergeant.  

Sentinels also interface with the lowest-level agents: the 
swarming Sensor agents that gather information on potential 
problems found on the hosts. Sentinels provide the local 
geography to Sensors and provide mobility by negotiating 
with their destination. Sentinels also provide rewards and 
spawning capabilities to Sensors. The Sentinels combine 
evidence from the Sensors with their own historical data, 
shared knowledge from other Sentinels, guidance from 
Sergeants and Supervisors (interpreted by the Sergeant), and 
contextual host information to determine whether a problem 
exists and to devise potential solutions. Mechanisms similar 
to this are used in survivability architecture [12].  

Sentinels give feedback on the utility of Sensor findings 
in the form of “rewards” to the Sensors that visit their nodes. 
We use the analogy of foraging ants to illustrate the effect of 
this feedback on the system. By rewarding visiting Sensors, 
the Sentinel will cause them to deposit digital pheromone 
message trails that will attract more Sensors to visit. A 
variety of visiting Sensors will provide more information on 
the potential problems experienced by the Sentinel and 
provide data to help diagnose and fix the problems.  

D. Sensor 
Sensors are lightweight, swarming, mobile software 

agents that move from machine to machine and collect 
evidence of potential problems. Technically, CID does not 
fully implement the DigitalAnts™ notion of true mobile 
agents because of security concerns. Instead, CID moves 
Sensor state from one Sentinel to another while the actual 
Sensor code resides on the Sentinel itself. The resulting 
system resembles a remote procedure call system plus 
message passing. Sensors are modeled after behaviors of 
social insects and they employ a form of ant-colony 
algorithms and swarm intelligence [13]. The Sensors’ logic 
is as simple as possible; their power is in their numbers and 
their diversity. Sensors wander across the geography 
superimposed on the enclave, randomly adjusting their 
current heading similar to the movement of real ants. Unlike 
a true random walk, the new heading chosen is a perturbation 
on their existing heading rather than a truly random new 
heading. Each Sensor uses a learning classifier [14] to match 
a particular set of conditions in the hosts they visit. There are 
two broad categories of Sensors: Markovian (memoryless) 
and differential. Markovian Sensors look for static conditions 
that may either define signatures of known problems or well-
known anomalous conditions. Differential Sensors look for 
differences in conditions between hosts in recent memory 
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and their current host. For example, there may be an unusual 
rate of network connections, a large number of open files, 
many “zombie” processes (those hung just before 
termination), or unusually high processor utilization levels. 
Evidences used by differential Sensors are not specific 
signatures of any type of intrusion—they are general 
indicators that one might use to determine whether anything 
unusual was happening on a machine.  

Sensors communicate with each other stigmergically via 
trails of digital pheromone [6] messages. Decentralized, 
pheromone-based systems have been demonstrated to simply 
and effectively solve highly constrained problems where 
logic-based, optimizing approaches prove intractable [15]. 
Pheromone-based techniques have been shown to be robust 
and therefore appropriate for dynamic applications, such as 
network routing [16].  

Sergeants and Sentinels select successful Sensors (those 
that are most frequently rewarded for useful findings) as 
templates for spawning new Sensors. New Sensor types may 
also be created at any time by the Supervisor. The 
interactions between Sentinels and Sensors provide highly 
flexible classification and unsupervised learning. The 
resulting classification resembles the random forest [17] 
approach, except the members of the forest are not tree-
structured classifiers but learning agents. Also, the voting 
mechanism is different because there is no central consensus; 
all decisions are made locally and influenced by transient 
pheromone pathways. 

E. Managing Trust 
Trust management serves to protect the system from 

malicious behavior by insiders and entities that have 
penetrated network defenses. In previous research [18],[19] 
we examined the trust relationships, evidence, and decisions 
in CID and found that by monitoring the trustworthiness of 
the Sentinels rather than the swarming Sensors, the trust 
management problem became much more scalable and still 
served to protect the swarm. We then proposed the 
DualTrust conceptual trust model [19],[20] for managing 
trust. By addressing the Sentinel’s bi-directional (vertical and 
horizontal) primary relationships in the CID architecture, 
DualTrust is designed to monitor the trustworthiness of the 
Sentinels, protect the Sensor swarm in a scalable manner, 
and provide global trust awareness for the Sergeant. 

In addition, in future work, trust delegation techniques 
and authorization credentials will be used to safely delegate 
the types and degrees of authority the Supervisor delegates to 
the Sergeant, and trust negotiation techniques will be used to 
negotiate agreements between Sergeants of different 
enclaves. 

III. PROTOTYPE IMPLEMENTATIONS 
During the development of CID one simulation and two 

prototype systems have been developed. The Netlogo 
(http://ccl.northwestern.edu/netlogo/) simulation was initially 

developed at Pacific Northwest National Laboratory to help 
guide the design of CID and understand its behavior given a 
large set of nodes. This later became the prototype UI for the 
system. Next, Pacific Northwest National Laboratory and 
Wake Forest University faculty and students developed the 
first prototype of a true implementation system using the 
JADE framework. This implementation provided insight to 
the approach’s ability to protect a small enclave of 
computers when exposed to a computer worm. The latest 
version of CID was developed by University of California, 
Davis faculty and students as a lightweight implementation 
designed for limited resource use and to have minimal 
impact on the monitored system. This test bed 
implementation has been successfully tested on a collection 
of networked computers on the University of California, 
Davis campus and on the DETER [21],[22] and ProtoGENI 
[23] test beds (both as part of the NSF GENI project [24]). 
DETER and GENI allow experimenters to request 
collections of hosts (referred to as slices) for use in network 
research. One goal of our CID work is to investigate 
supporting security services for GENI. The first phase of this 
work includes adding security monitoring to slices by using 
DigitalAnts™. It will be important for the monitoring system 
to have negligible impact on GENI experimenters’ research 
whenever timing is an important factor. The following 
sections discuss the Netlogo UI and the most recent testbed 
implementation of CID. 

A. Netlogo Supervisor Interface 
The Supervisor interacts with the Sergeant through an 

information visualization and graphical UI that gives the 
Supervisor situational awareness of state of the enclave. 
Utilizing the Netlogo agent simulation toolkit, we have 
implemented variations of the Sergeant interface. These are 
conceptual interfaces, suitable for research purposes. The 
eventual UI will require usability engineering to achieve the 
desired level of human interaction effectiveness. Using slider 
bars, the user can adjust the parameters of the environment to 
influence the behavior of the agents involved. As mentioned 
earlier, the Supervisor uses this interface to adjust the 
activation and crowding tolerance target levels.  

In the simulation UI shown in Figure 3, the Sergeant 
provides enclave-wide situational awareness to the 
Supervisor and enables interaction with various agents. Each 
square in the visualization represents the status of a Sentinel 
that reports to the Sergeant. The color of the squares could 
indicate activity levels, security conditions, or any encoding 
the Supervisor prefers. In the simulation, we use the red, 
green, and blue components of the color to represent file 
system, memory, and CPU activity levels respectively. 
Systems performing similar tasks typically have similar 
colors. In Figure 3, workstations appear reddish, web servers 
are shades of blue, and file servers appear gray. A color 
change would indicate a change in behavior and function and 
could indicate a problem.  
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Figure 3.  Prototype of Sergeant UI

B. Test Bed Implemetantion 
The goal of our test bed is to create a lightweight 

framework useful for experimentation and as a prototype for 
future implementations. All code was written using the 
Python language to allow rapid prototyping and a 
development path to C++. This implementation, while true to 
the spirit of the DigitalAnts™ concept, for performance and 
security reasons digresses somewhat from the general model. 
This implementation is described below. 

A Sentinel process runs on each monitored host. The key 
function of the Sentinel in the test bed implementation is to 
manage Sensor movement. This involves executing the 
Sensors’ specified classifiers, updating its state and routing 
Sensors to neighboring Sentinels. Sensors are not full mobile 
agents but are implemented as network messages containing 
a classifier type and other state information. Sentinels are 
also responsible for Sensor state changes, Sensor creation 
and destruction, Sensor evaluation, and communication with 
the Sergeant. In the test bed implementation, the Sergeant 
process runs on a dedicated host separate from the Sentinels, 
and its primary function is to initialize and monitor the 
Sentinels. Sergeants create new sensor types, report alerts 
and other information from the Sentinels. Sensors are 
implemented as single packets. Sensor movement is simply 
the passing of Sensor packets between neighboring 
Sentinels. Communication occurs only between neighboring 
Sentinels, and between Sentinels and their Sergeant. Details 
of our implementation are described below. 

1) Sensors: In the test bed implementation Sensors are 
called “Ants”. These are not true agents carrying mobile 
code. Ants are simply messages that carry an Ant’s identity, 
type and state. Ant data fields are described in Table 1. Ants 
are implemented as IPv4 network packets. Because 
lightweight design was important, we investigated both TCP 
and UDP protocols. Although undetected packet loss may 
occur with UDP, if the drop rate is acceptably low locally 
and globally, the overhead of TCP can be avoided without 
adverse effects. This may be important in some 
implementations with particularly limited resources. 
Because Ants are transmitted as single packets, the entire 
state must be very small. While efficient, this limits the 
length of allowed parameters and the possibility of carrying 
mobile code. 

Configurable system parameters for Ant creation and 
termination rates can be adjusted to tradeoff the amount of 
network bandwidth consumed vs. the detection effectiveness.  

2) Sentinels: Sentinels maintain local state, manage 
sensor functions and Ants, and communicate with their 
Sergeant. Their functions include: 

• Evaporate Pheromone: the pheromone trail is not 
permanent, but dissipates over time. This prevents Ants 
from taking action (i.e., following trails) based on old 
information. The Sentinel monitors the age of the 
pheromone and removes it after a set interval. 
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TABLE I.  ANT PACKET DEFINITION 

Field Description Use 
id unique identifier 

for the ant. 
Used to determine if a 
pheromone was left by 
itself. 

sensor_ 
type 

the evidence type 
the ant is seeking. 

This tells the Sentinel 
what sensor function to 
execute. 

sensor_ 
parameters 

parameters for a 
particular sensor 
type. 

Allows for variants of the 
same sensor, e.g. 
thresholds, filenames, 
character sequences, etc. 

state foraging, 
following, 
dropping, idle. 

Determines an ant’s 
actions. 

age how long the ant 
has been traveling. 

After a period of time ants 
will die (i.e. be removed). 

direction the direction vector 
for the ant. 

This is used to determine 
the next node for the ant 
when the ant is not 
following a pheromone 
trail. 

prior node the host the ant 
was received from. 

Used to direct ants along 
pheromone trail. 

time_ 
dropping 

how long the ant 
has been dropping 
pheromone. 

After a period of time an 
ant will stop dropping and 
wander idle 

time_ 
idle 

how long the ant 
has been idle. 

After a period of idle 
wandering ant’s will 
return to foraging. 

where_ 
found 

the location the 
evidence was 
found. 

Used in experiments for 
alternative ways for 
pheromone to direct ants 
to a target. 

• Receive Ant: Ant packets are read from a network 
queue and processed sequentially. 

• Kill Ant: based on crowding and an Ant’s age, the Ant 
may die. Both of these are implemented 
probabilistically. The age of the Ant is tracked and 
updated in the Ant’s state. Once it reaches a set 
threshold, it may die, with increasing likelihood with 
increased age. Similarly, depending on the crowding 
factor (i.e., how many Ants have been seen at this node 
in a preceding window of time) the likelihood of the 
Ant’s death increases. Depending on the Ant’s state 
(foraging, following, dropping, idle), the Sentinel will 
carry out different actions. In general, this means 
checking for conditions that would change the Ant’s 
state, updating any local (i.e., host) state, and 
determining the Ant’s next destination. 

• Foraging: The primary Ant state is “foraging”. When 
the Sentinel receives a foraging Ant, it executes the 
sensor function specified for the Ant’s type. If this 
result indicates something of significant interest exists, 
the Ant’s state will be changed to “dropping”. If instead 
the node managed by the Sentinel is part of a 

pheromone trail, the Sentinel will, with high 
probability, change the Ant’s state to “following”.  

• Following: This state is similar to foraging. The 
Sentinel executes the Ant’s sensor function, and may 
change state to dropping. The difference is that rather 
than determine the Ant’s next location using its 
direction parameter, the Ant is directed along the 
pheromone trail toward the location where another Ant 
found evidence. If the pheromone trail ends, the Ant’s 
state is changed back to foraging. In either of the above 
cases, if the Ant enters the dropping state, a new 
random direction for the Ant is selected. 

• Dropping: When the Sentinel receives dropping Ant, its 
sensor function is not executed. Instead, the Sentinel 
updates its state to indicate that it is part of the 
pheromone trail and from which neighbor node the 
dropping Ant came (i.e., toward the evidence). Because, 
pheromone is dropped for a limited number of steps, the 
Sentinel will decrement the drop counter of the Ant. If 
it reaches zero, the Ant’s state is changed to idle. 

• Idle: An idle Ant simply moves about the mesh; no 
sensor functions are executed, nor does it follow any 
pheromone trails it encounters. This causes the Ant to 
move away from where it last found something it 
returns to the foraging state and again looks for 
evidence. Idle Ants remain in this state for a fixed 
number of steps. The Sentinel decrements the Ant’s idle 
counter. When it reaches zero the Ant’s state is changed 
back to foraging.  

• Create Ant: new Ants are created in response to a low 
crowding factor and a high utility of a particular Ant 
type. This allows us to maintain a sufficient number of 
Ants for threat detection, and to bias this towards Ants 
that are currently helpful in detecting a threat. 

• Send Ant: connect to the node for the Ant’s next 
destination and send the Ant packet with its updated 
state information. 

• Receive_Sergent_Message: accepts messages from the 
Sergeant and takes the appropriate action. Examples 
include: report status, and add new sensor type. 

3) Sensor Functions: Sensor functions refer to the code 
executed on a Sentinel to collect the information requested 
by an Ant. These can be either some current state for a 
summary of recent activity, such as “is port 31373/tcp 
open?” or “how many page faults have occurred in the last 
minute?” respectively. An Ant’s type determines the 
particular sensor function the Sentinel is to execute. Any 
associated parameters may be used to modify the particular 
sensor function. In this way a sensor function for “is a 
process named X running?” can become “is a process 
named cmd.exe running?” The results of this, modified by 
the Sentinel’s determination if this is a false-positive (i.e., 
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not significant for the Sentinel under current circumstances), 
determine if the Ant begins to leave a pheromone trail.  

Sensor functions are cached in the Sentinels. An initial 
set is predefined upon Sentinel initialization. When a 
Sentinel receives an Ant type of an unknown sensor 
function, the Sentinel will request the function definition 
from its Sergeant. This enhances flexibility, eliminates the 
need to support mobile code, simplifies Ant structure, and 
increases security.  

4) Sergeants: During system initialization, Sergeants 
identify the Sentinels they monitor and determines each 
Sentinel’s neighbors.  The following section on geography 
describes how neighbors are assigned. At runtime, Sergeants 
reply to sensor function definitions requests, and collect 
activity reports from the Sentinels. This information is used 
to track alerts, Ant motion and state  More advanced 
features such as a Sergeant UI and the ability to create new 
sensor types have not yet been implemented. However, via a 
related support utility, a user may create Ants with new 
parameter values using an existing sensor type.  

5) Geography and Direction: This implementation 
constructs a geography based on a two-dimension square 
mesh with edge wrapping. That is each node has four 
neighbors (up, down, right, left); edge nodes’ neighbors are 
at the opposite parallel position. Nodes in the mesh 
represent monitored hosts. The Sergeant creates a 
rectangular mesh as close to square as possible and assigns 
neighbors from a list of hosts to be monitored.  

Direction in this mesh is based on four directions: zero 
for up, 90 for left, 180 for down, and 270 for left. Each Ant’s 
direction is an integer from 0 to 359. If the Ant’s direction 
exactly matched a neighbor’s position the Ant would tend 
move to that neighbor. Otherwise, we pick from its 
neighbors weighted by how close the Ant matches their 
position. If the Ant’s direction was 45, there is an equal 
chance the Ant will move up or left. To add a controllable 
amount of randomness to the Ant’s wandering, the Ant’s 
effective direction is modified by a random value using a 
uniform distribution. This will cause Ant’s path to diverge 
slightly from its set direction.  

The hosts used in our initial work are representative of 
computers connected on the same subnet or with ready inter-
host communication. We are also actively investigating the 
use of DigitalAnts™ in other settings such as wireless sensor 
networks. Our initial model is based on wireless mesh 
networks similar to those seen with the ZigBee [25] and 
WirelessHART (IEC 62591) [26] protocols. WirelessHART 
is a common protocol in industrial control systems. ZigBee 
is a widely adopted IEEE 802.15.4-based wireless protocol 
used in sensor networks, building automation and Smart 
Meters currently being deployed worldwide. Unlike our 
original implementation where an artificial geography must 
be imposed on the host being monitored, for these networks 
a real geography exists. Devices are capable of 
communicating directly with only devices near enough (and 
unobstructed) to have sufficiently strong and noise free radio 
communications. Unlike the original design, here a device 

will have a varying number of neighbors, both in number and 
availability over time. 

Because the mesh may change and Sentinels do not know 
the location of their neighbors, rather than have the Ants 
wander using a direction, we use a random walk of the mesh. 
To prevent Ants from wandering the same paths, the Ants 
leave a pheromone trail indicating where they have been. 
Ants will preferentially not take paths with a strong self-
pheromone trail. Also, unlike the original implementation, 
the Sergeant is not required for initialization of neighbor 
relations; instead, the geography is self-organizing based on 
connectivity. 

We are implementing this via simulation on the DETER 
test bed. To initialize our simulation, each node will 
randomly generate (or be assigned) an (x,y) position within a 
set range. These coordinates are sent to a central simulator 
process that tracks node position, inter-device distances, and 
sends messages to nodes that are their neighbors (relative to 
a set distance). This allows for dynamic changes in future 
testing. 

In these systems, because of the low transmission power, 
most nodes cannot directly communicate with the Sergeant, 
but must route packets through the mesh to a node that has 
connectivity. Each of the above mentioned protocols has 
methods for routing packets through the mesh. Because the 
Sergeant may be associated with a different type of device 
with a much higher transmit power, in some configurations it 
may be possible to send messages to Sentinels directly. 
However, except for gains from a more sensitive antenna and 
receive circuitry, it is likely that Sentinels may not send 
messages to the Sergeant. For the purpose of our initial tests, 
we assume that messages between Sentinels and Sergeant 
require routing through the mesh. 

Through our implementation effort, we have concluded 
that implementation details must vary to best fit the 
particular domain. This must take into account processing 
resources, networking characteristics and threat profile. 

In our prototype, we took no effort to protect the code 
from malicious users. Future GENI implementation plans 
include integrating it into the virtualization process (e.g., 
hypervisor) and deploying it to monitor infrastructure hosts, 
not just slice hosts. Authentication of Ants to Sentinels and 
other system communications must be implemented. 

C. Preliminary Results 
The JADE prototype system has been a valuable resource 

for gaining an initial understanding of system performance, 
such as threat detection time and system efficiency, under 
varying conditions. For example, an important system aspect 
to consider is the impact of the Sensor population size on 
threat detection, where is it expected that larger populations 
will reduce the detection time. Consider the number of 
Sensors in the system as a density, where 100% density 
represents an equal number of Sensors per type as there are 
computers to protect, while a 50% Sensor density represents 
half as many Sensors per type as computers. Using the 
prototype system and a simple grid of computers to protect, a 
density of 75% Sensors was found to perform as well as a 
traditional IDS modeled as one resident static agent per 
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computer [27]. Adding Sensors beyond a 75% density level 
for this experiment yielded diminishing marginal returns, 
reducing the detection time variance. 

Another important factor to system performance is the 
use of pheromone. If pheromone is not used then the Sensors 
randomly select their next destination. For example consider 
a 75% Sensor density with and without pheromone as 
compared to a traditional IDS configuration (again, static 
agents; one per computer). Preliminary results showed that 
the impact of pheromone was significant, resulting in a 34% 
reduction in detection time as compared to no pheromone. 
Therefore, the 75% Sensor density performed comparably to 
a traditional IDS deployment in terms of detection time, but 
it also required 11% fewer CPU cycles than the static IDS 
approach [27]. Although these initial results are informative 
more experiments are needed to further understand system 
performance, deployment, and management. 

IV. FUTURE RESEARCH 
We have focused our research mainly on the Sentinel and 

Sensor behavior in our implementations, thoroughly 
mapping out the behavior of the Sensors and their 
interactions with the Sentinels. We have created a 
demonstration system of the Sensor-Sentinel interactions in 
JADE and have created vertical prototypes of interactions at 
the Supervisor, Sergeant, and Sentinel levels. We intend to 
conduct usability studies on our prototype Sergeant interface 
to determine how best to enable the Supervisor’s situational 
awareness. The next step would be to develop a functionally 
complete interface between Supervisors and Sergeants that 
translates human guidance into executable policy for the 
Sentinels. Further, we wish to experiment with our Sensor-
Sentinel implementations on larger network topologies in 
order to characterize the scalability of our framework. We 
also intend to test the framework against real-world attacks 
and learn to generalize knowledge gained from solutions to 
those attacks. Similar problems could be solved with similar 
approaches and this would help generalize the system and 
enable adaptive responses to new attacks. 

V. CONCLUSION 
The CID framework enables security event monitoring 

for distributed systems with multiple overlapping and 
decentralized administrative domains in a way that 
traditional NIDS do not. Additionally, the system allows for:  

• Specifying and simulating a framework suitable for 
multi-organizational cyber security. 

• Developing feedback mechanisms that keep Sensor 
populations under control with minimal resource 
usage. 

• Specifying a mixed-initiative approach that is highly 
scalable and difficult to disrupt.  

• Deployment into a variety of interconnected 
systems, not just across IP networks. 

Our experiments have shown that our framework of 
shared system control using a hierarchy of agents and the 
adaptive capabilities of swarm intelligence, has greatly 

enhanced the security of key, critical, interconnected 
infrastructures.  
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