
Approximating Attack Surfaces with Stack Traces

Christopher Theisen†, Kim Herzig‡, Patrick Morrison†, Brendan Murphy‡, Laurie Williams†

crtheise@ncsu.edu, kimh@microsoft.com, pjmorris@ncsu.edu, bmurphy@microsoft.com, williams@csc.ncsu.edu

†Department of Computer Science, NCSU, Raleigh, North Carolina
‡Microsoft Research, Cambridge, UK

Abstract – Security testing and reviewing efforts are a necessity
for software projects, but are time-consuming and expensive to
apply. Identifying vulnerable code supports decision-making
during all phases of software development. An approach for
identifying vulnerable code is to identify its attack surface, the
sum of all paths for untrusted data into and out of a system.
Identifying the code that lies on the attack surface requires
expertise and significant manual effort. This paper proposes an
automated technique to empirically approximate attack surfaces
through the analysis of stack traces. We hypothesize that stack
traces from user-initiated crashes have several desirable
attributes for measuring attack surfaces. The goal of this
research is to aid software engineers in prioritizing security efforts
by approximating the attack surface of a system via stack trace
analysis. In a trial on Windows 8, the attack surface
approximation selected 48.4% of the binaries and contained
94.6% of known vulnerabilities. Compared with vulnerability
prediction models (VPMs) run on the entire codebase, VPMs run
on the attack surface approximation improved recall from .07
to .1 for binaries and from .02 to .05 for source files. Precision
remained at .5 for binaries, while improving from .5 to .69 for
source files.

Index Terms—stack traces, security, vulnerability, models,
testing, reliability, attack surface.

I. INTRODUCTION
Howard et al. [17] introduced the concept of an attack

surface, describing entry points to a system that might be
vulnerable along three dimensions: targets and enablers,
channels and protocols, and access rights. Later, Manadhata
and Wing [18] formalized the notion of attack surface,
including methods, channels, untrusted data, and a direct and
indirect entry and exit point framework that identifies methods
through which untrusted data passes. Security professionals can
focus their efforts on code on the attack surface because it
contains vulnerabilities that are reachable, and therefore
exploitable, by malicious users. Code not on the attack surface
may contain latent vulnerabilities, but these are unreachable by
malicious users. With this prioritization, the security
professional could find vulnerabilities more efficiently.

As valuable as the concept of attack surface is, we still lack
a practical means of identifying the parts of the system that are
contained on the attack surface. Manadhata and Wing proposed
metrics to measure attack surface size, and empirically
measured direct entry points by building a call graph, but they
left identifying indirect entry and exit points for future work.
Other approaches to defining the attack surface have been done

at a configuration level without considering code, and other
code using API calls have required significant manual work.

 We propose attack surface approximation, an automated
approach to identifying parts of the system that are contained
on the attack surface through stack trace analysis. We parse
stack traces, adding all code found in these traces onto the
attack surface approximation. By definition, code that appears
in stack traces caused by user activity is on the attack surface
because it appears in a code path reached by users.

We hypothesize that stack traces from user-initiated crashes
have three desirable attributes for measuring attack surfaces:
(a) they represent user activity that puts the system under
stress; (b) they include both direct and indirect entry points;
and (c) they provide automatically generated control and data
flow graphs. We seek to assess the degree to which these
attributes of stack traces support the identification of attack
surfaces. We call our approach attack surface approximation
because code entities will only be added to the attack surface
when a crash has occurred. As such, the attack surface
approximation will evolve over time. We assess our approach
by analyzing the percentage of actual reported vulnerabilities in
the code and whether they occur in our approximated attack
surface.

The goal of this research is to aid software engineers in
prioritizing security efforts by approximating the attack surface
of a system via stack trace analysis.

We explore the following questions as a part of this paper:

RQ1: How effectively can stack traces to be used to
approximate the attack surface of a system?
RQ2: Can the performance of vulnerability prediction be
improved by limiting the prediction space to the
approximated attack surface?

We build an attack surface approximation for the Windows

operating system based on stack traces. This system is a
completely automated process, requiring no human input to
what is considered on the attack surface and what is not, unlike
previous approaches requiring human input. To assess our
approximation, we compared the set of known security
vulnerabilities from earlier versions of Windows 8 against this
attack surface.

The contributions of this paper include:
• A practical, automated attack surface

approximation based upon analysis of stack traces
• An evaluation of attack surface approximation

performance for vulnerability prediction in
Windows 8

• Visualizations of the attack surface approximation
for use during security reviews to find security-
related relationships between code

The rest of the paper is organized as follows: Section II

discusses background and related work, Section III discusses
the stack trace data sources, Section IV presents our
methodology, Section V discusses vulnerability prediction
model (VPM) construction for our evaluation, Section VI
presents our results and a discussion of these results, Section
VII discusses our lessons learned and challenges, Section VIII
presents limitations and threats to validity, and Section IX
discusses future work.

II. BACKGROUND AND RELATED WORK
Vulnerabilities can be seen as a special case of software

defects [1]. Vulnerabilities tend to be sparser than general
software defects [41], as not all defects may allow an attacker
to gain anything. In this section, we provide a brief overview of
related work.

A. Attack Surface
As mentioned previously, Howard et al. [17] provided a

definition of attack surface using three dimensions: targets and
enablers, channels and protocols, and access rights. Not all
areas of a system may be directly or indirectly exposed to the
outside. Some parts of a complex system, e.g. Windows OS,
may be for internal use only and cannot be reached or
exploited by an attacker. For example, installation routines are
left in the system after initialization, but they are never
accessed again and are unlikely to have security implications
for the system.

Knowing the attack surface of a piece of software supports
decision-making during all phases of software development. To
date, approaches to empirical measurement of attack surfaces
have relied on manual effort or on alternative definitions of
‘attack surface’. Tools like Microsoft’s Attack Surface
Analyzer1 determine where potential input vectors exist on a
system. However, this tool currently focuses on delivered
systems that are code-static; it detects configuration changes,
not code changes.

Manadhata et al. [43] describe how an attack surface might
be approximated by looking at API entry points. However, this
approach does not cover all exposed code, as the authors
mention. Specifically, internal flow of data through a system
could not be identified. While the external points of a system
are a useful place to start, they do not encompass the entirety of
exposed code in the system. These intermediate points within

1

 http://www.microsoft.com/en-us/download/details.aspx?id=24487

the system could also contain security vulnerabilities that the
reviewer should be aware of. Further, their approach to
measuring attack surfaces required expert judgment and
manual effort.

B. Exploiting Crash Reports
The use of crash reporting systems, including stack traces

from the crashes, is becoming a standard industry practice2
[24][26]. Bug reports contain information to help engineers
replicate and locate software defects. Liblit and Aiken [20]
introduced a technique automatically reconstructing complete
execution paths using stack traces and execution profiles. Later,
Manevich et al. [21] added data flow analysis information on
Liblit and Aiken’s approach. Other studies use stack traces to
localize the exact fault location [22][23][24]. Lately, an
increasing number of empirical studies use bug reports and
crash reports to cluster bug reports according to their similarity
and diversity, e.g. Podgurski et al. [25] were among the first to
take this approach. Other studies followed [26][27]. Not all
crash reports are precise enough to allow for this clustering.
Guo et al. [28] used crash report information to predict which
bugs will get fixed. Bettenburg et al. [29] assessed the quality
of bug reports to suggest better and more accurate information
helping developers to fix the bug.

With respect to vulnerabilities, Huang et al. [30] used crash
reports to generate new exploits while Holler et al. [31] used
historic crashes reports to mutate corresponding input data to
find incomplete fixes. Kim et al. [32] analyzed security bug
reports to predict “top crashes”—those few crashes that
account for the majority of crash reports—before new software
releases.

However, we are not aware of any study parsing stack
traces to identify and predict vulnerable source files or to
measure vulnerability exposure of software artifacts.

C. Defect Prediction Models
The goal of defect prediction models (DPMs) is to identify

code that is most likely to contain defects. For example,
Nagappan and Ball [3] showed that code churn metrics can be
used to predict defect density, the number of defects per line of
code. Later, Zimmermann et al. [4] used code dependency
information and network metrics to classify defect prone code.
Other studies used change-related [1], developer-related [5],
organizational [6], process [7], change dependency [8], and test
[9] metrics to build DPMs. Hall et al. [10] presented a
systematic literature review of DPMs and showed that model-
building methodology impacts prediction accuracy. DPMs are
the basis for Vulnerability Prediction Models.

D. Vulnerability Prediction Models
Similar to DPMs, Vulnerability Prediction Models (VPMs)

predict code with the highest chance of containing
vulnerabilities. Studying VPMs for Microsoft Windows,
Zimmermann et al. concluded that vulnerabilities are not as

2 http://www.crashlytics.com/blog/its-finally-here-announcing-crashlytics-for
android/

simple to predict as defects [11]. A study on Mozilla’s Firefox
web browser showed that, on Firefox, fault prediction model
and the vulnerability prediction model provided similar
prediction performance [12]. In general, many VPMs presented
in literature are based on the same basic principles as DPMs,
with adjustments to account for the relative rarity of security
vulnerabilities. Transferring the concept of DPMs to VPMs,
many studies use complexity, code churn, or static-alert
measurements to predict vulnerabilities [13][14][15]. Published
VPMs [16] have had challenges achieving precision and recall
rates that DPMs have been able to achieve, presumably due to
the relative rarity of vulnerabilities. As a result, VPMs may not
be considered for practical use. Neuhaus et al. [16] used
historical data on imports and functions. VPMs are used in this
work to evaluate whether attack surface approximation
improves the state of the art in vulnerability prediction.

III. DATA SOURCES
The stack traces used in this research are from the Windows

8 operating system. Stack traces for this research come from
three complementary sources: fuzzing crashes, user mode
crashes, and kernel mode crashes. We keep track of the source
of each crash as we parse each stack trace. We now describe
each crash source.

A. Fuzzing Crashes
Microsoft’s security testing teams generate fuzzing crashes.

Fuzzing is a testing strategy revolving around sending random
or deliberately malformed/malicious data to the input points on
a system. The goal of fuzzing is to simulate attacks and to get
the system to behave in an unexpected manner. Typically, any
response from the system that differs from a standard error
message is flagged and investigated. Possible results from fuzz
testing include crashes, memory leaks, and security bugs such
as data loss or improper access. Fuzzing crashes are a useful
data source as any input generated and fed into the system
under test could also originate from a user and thus from a
potential hacker. Fuzzing aims to discover security

vulnerabilities, and any irregular fuzzing results are relevant for
determining what code areas were involved in handling the
malformed input.

B. User Mode Crashes
Windows users generate user mode crashes. User mode

crashes are field/customer crashes that are not due to hardware
failures. Crashes in applications running without administrator
rights triggers collection of crash information that may be sent
to Microsoft. The system responsible for collecting the data,
Microsoft Error Reporting [19], is executed under the same
user privileges as the user that ran the crashed application.
However, running in user mode limits the stack trace
generator’s ability to access and resolve which resources were
involved in the crash. Thus, user mode crashes may only
identify code areas that are accessible by the user in that mode.

C. Kernel Mode Crashes
Kernel crashes occur on field/customer machines, but unlike
application crashes, they occurred within the Windows kernel.
In general, kernel crashes indicate more severe failures and
usually include full resolutions of code artifacts, as long as they
are part of the Windows system. The kernel is running under
administrative privileges allowing the stack trace generator to
gather more details about the system’s granular details.

D. Known Vulnerabilities
To measure the effectiveness of our approach, we required

a set of vulnerabilities to compare our approach against. For
this purpose, we use the set of vulnerabilities seen in Windows
8 both pre- and post-release of the product. We then check to
see if these vulnerabilities appear on our attack surface
approximation to determine whether they would be missed by
our approach.

Figure 1 - Example of an anonymous stack trace. From the stack trace, we can identify binary, function, and sometimes source file information. Each

of these stack traces can be transformed into a graphical representation. Each stack trace contributes one particular path (see middle) to the
overall attack surface graph (see right hand side).

IV. AUTOMATED APPROXIMATION METHODOLOGY (RQ1)
Stack traces identify code that was loaded in memory at the

time of the crash. Typically used for debugging, traces define
the logical path between an external input and the system crash.
Through the parsing of crashes, we can build a set of artifacts
that users have had influence over. While bugs can appear in
any artifact, the subset of code appearing in these stack traces
has important security implications. Malicious users can only
exploit vulnerabilities that they can access. If a bad check on
incoming data could result in a buffer overflow attack in a
specific function, but no outside user can ever pass input to that
bad check, then that vulnerability has a lower priority unless
code or configuration changes cause it to be exposed. By de-
prioritizing code unlikely to be on the execution path, we can
limit the scope of what security professionals have to review by
having them focus on files that outside users can pass input to.
 To identify artifacts that may be reached and thus exploited
from users, we use stack traces of existing crashes to generate
our data set. These stack traces identify entities that were
executed just before the crash took place. Figure 1 shows an
anonymized example stack trace describing a crash of
Windows. Each line of the stack trace identifies code artifacts
on the memory stack prior to the crash occurring. The order of
lines and thus the order in which these artifacts occur represent
the time sequence of events. The initial entry point is the top
line item on a stack trace, and should in most cases be the first
artifact touched by outside user input. Consecutive lines in a
stack trace identify artifacts that called each other; if a
function in foo.cpp calls a function in bar.cpp, we say that
there is a direct neighbor relationship from foo.cpp to bar.cpp.

Each line of a stack trace is organized as follows. The binary
is shown at the beginning of the string, followed by a “!”
delimiter and the function name. In the square brackets, the full
path of the file associated with this binary/function relationship
is shown. Not all stack traces will include the name of the
source file. Some stack traces may even display anonymous
placeholders for functions and binaries, depending on the
permissions and ability to identify these details during runtime.
For example, Windows stack traces contain no details about
artifacts outside Windows, e.g. a third-party application
causing the crash.

Each stack trace is parsed and separated into individual
artifacts, including binary name, function name, and file name.
We then map each of these artifacts to code as they are named
in Microsoft’s internal software engineering tools. File
information is not always available. In these cases, we make
use of software engineering data indicating relationships
between binaries, files, and functions to find the missing data if
possible. If these symbol tables contain the function name
referenced by the stack trace, we pull the corresponding source
file onto the attack surface. In case the function name is not
unique, e.g. overloading the function in multiple files, we over
approximate the attack surface and pull all possible source files
onto the attack surface. If no function name can be found, e.g.
function not shipped with Windows, we leave the file marked
as unknown. Thus, this approach generates an attack surface
that is an approximation of reality. Over approximating the

attack surface aims for completeness rather than minimization
of size. The accuracy of an attack surface depends on the
accuracy and completeness of the analyzed crash data.

When code is seen in a stack trace, we place information
about that code into a database table containing all code on the
attack surface approximation. When this code is added to the
database, we enter as much information as possible about the
line in the stack trace. In some cases, this is just the binary, as
the file and function cannot be mapped. Other cases may have
the exact file and/or function. We also collect frequency and
neighbor metrics for each entity. This data can be used in a
variety of helpful ways, particularly in visualizing these
relationships in graph format as seen in Figure 1.

When doing mapping from stack traces to actual entities
within the system, sometimes mappings are unable to be made.
Two examples of this are when errors occur storing the stack
trace, such as when the system is under duress, and
mismatched names between the report to crash handlers and
data about the system. When a mapping is unable to be made,
we label that entity as “unknown,” and do not place that entity
on the attack surface.

For this work, we specifically remove hardware related
crashes as errors resulting from such hardware failures do not
indicate a potential input vector for potential attackers. The
identification of hardware crashes is done by an automated
stack trace classification system within Microsoft. Code that is
inaccessible by user activity cannot be manipulated by an
attacker, and therefore is not to be on the attack surface. The
assumption carries forward when discussing our results below.

The ultimate output used by the development and security
teams is a classification of whether an entity is on or off the
attack surface. This classification can be used for prioritizing
defect fixing and validation and verification efforts.

V. VULNERABILITY PREDICTION MODEL CONSTRUCTION
METHODOLOGY (RQ2)

In addition to the classification scheme discussed in Section
IV, we limit the prediction space to the approximated attack
surface for Vulnerability Prediction Models (VPMs) to see if
we get better prediction accuracy measurement when compared
to VPMs that do not use attack surface information.

We replicated VPMs for Windows, as published by
Zimmermann at al. [11]. The experiments conducted by
Zimmerman et al. were conducted on datasets collected for
Windows 8, a product of significant size. Choosing the same
product as the original study enables a comparison with the
original study, giving insight in to how vulnerability prediction
metrics in a codebase change over time.

The VPM described by Zimmermann et al. [11] is based on
static code metrics and pre- and post-release vulnerabilities. As
an analogue to the original study, we gathered these
measurements using the CODEMINE process [33]. Microsoft
developed CODEMINE to allow the company to monitor the
development attributes of its products during development and
after product release. The CODEMINE process provides a
central repository of development and vulnerability metrics that
were used within this research study.

A. Code Metrics
The VPMs developed by Zimmerman et al. and replicated

in our study are based on 29 metrics broadly classified into 6
categories:
• Churn metrics [3]. Churn measures are relative to a time

period; the period for all presented calculations is between
the start and RTM date of the project.

• Complexity metrics [38]. More complicated code is more
likely to exhibit errors.

• Dependency metrics [13]. The degree to which a piece of
code is depended upon, or depends upon other code,
influences its impact on software vulnerabilities.

• Legacy metrics. Metrics of particular interest to
Microsoft. The importance of security in the development
of software at Microsoft began receiving increased
attention after the Bill Gates’ 2002 Trustworthy
Computing Memo [34], with significant investments
made in security training, tools, and process [2]. Code
written after these processes were put in place has had a
higher, more process-driven, level of attention to security
applied in its design, construction and testing. These
metrics verify the theory that code written before the
security reset may be more likely to contain
vulnerabilities.

• Size metrics. Larger source files are more difficult to
mentally manage, and, therefore, are more prone to
defects and vulnerabilities.

• Pre-Release vulnerabilities. For VPMs predicting post-
release vulnerabilities, we used pre-release vulnerabilities
to model usual suspects.
Table 2, in the appendix, identifies all metrics used in the

study and provides a description of each metric. Where noted,
average, maximum and total values were taken for several of
the metrics. Depending on the metric, data was available at
either the source file level or at the function level. In cases
where function level data was present, amounts were
aggregated up to the file level via averages, totals and
maximums. Binary-level data was obtained by aggregating
source-file level data up to the binary in which each source file
is used. This study uses additional metrics that were not
available at the time of the original study by Zimmermann at
al. [11]. The table identifies which metrics are common
between the two studies and which are unique to this study.

All size, churn, complexity, and dependency metrics were
measured as of each releases’ Release to Manufacturing date.

B. Pre and Post-Release Vulnerabilities
As dependent variables, we used the number of post-

release security vulnerabilities detected and fixed within the
corresponding source files and code binaries respectively. Pre-
release vulnerabilities were used as independent variables.
Pre-release vulnerabilities are issues that are identified and
fixed during software development. A post-release
vulnerability is a security issue detected and corrected after
releasing the corresponding software product to the public.
Pre-release vulnerabilities of product version N may also be
post-release vulnerabilities for product version N-1. Post-

release security changes can be considered as ‘escapes’ from
the software development lifecycle (SDL). Escapes may be
worthy of investigation for SDL application in future releases.

To identify post-release vulnerability fixes, we counted the
number of code changes applied in Windows service pack
branches marked as security fix. These branches serve as a
sink of defect fixes that will eventually be shipped to
customers as part of a service pack or hot-fix. No feature
development is permitted on these branches. Pre-release
vulnerabilities were identified by bug reports marked as
security vulnerabilities that resulted in changed source files
and binaries.

C. Prediction Models
We ran our prediction models at both the binary and source

level granularity. For both levels of granularity, we build
classification models to identify code entities that had at least
one vulnerability. For each level of granularity, we split the
overall data collection into a training dataset that contains 2/3
of all data points. The remaining data is used for testing
purposes. To split the data, we used stratified sampling—the
ratio of code entities associated with vulnerabilities from the
original dataset is preserved for both subsets. We repeatedly
sampled the original dataset 100 times (100-cross-fold-
validation). In total, we generated 200 independent training
and testing sets: two levels of granularity and 100-cross folds
each (similar to [4][11]).

We remove all code entities that are not part of the attack
surface of Windows 8.1 from both training and testing sets
before sampling takes place. Thus, classification models
referring to attack surfaces contain less data points.

We conducted the experiments using the R statistical
software [35] (Version 3.10). Instead of using the original
feature vectors provided by the raw metric values, we applied
R’s prcomp [39] procedure to our data to produce principal
components. Principal Component Analysis (PCA) [36]
reduces redundancy in our matrix of metrics and observations
by maximizing the variance of linearly independent variables.
Deciding how many of these variables to use in model
building typically takes one of two forms; either a limit on the
number of terms in the model is set, or some total amount of
variance to be accounted for by the model is set. We selected
principal components that accounted for 95% of variance.

In pursuit of high prediction performance, we used Max
Kuhn’s R package caret [37] to build VPMs based on the
components selected by PCA. We used a Random Forest [40]
machine learning technique to generate our prediction.
Random Forest is a variant of decision trees that can be
represented as a binomial tree, and is popularly used for
classification tasks. We chose Random Forest because this
data set is highly unbalanced (many entities have no
vulnerability, very few have some) and Random Forest is
particularly good in handling unbalanced datasets.

VI. RESULTS AND DISCUSSION
In this section, we present the data collected to address the

research questions. After presenting the results as they related
to our two research questions, we discuss how these results
might benefit practitioners.

A. Attack Surface Approximation (RQ1)
Table 1 contains a summary of our Windows 8 attack

surface approximation from our different data sources. We split
our data sources into three separate columns, indicating user
mode stack traces, kernel mode stack traces, and fuzz testing
stack traces. The first row indicates the total number of binaries
seen in stack traces from that data source. The second row is
the percentage of all shipped binaries that is included in row 1.
For our purposes, shipped binaries are any binary that is
included in a commercial release of the Windows product. For
this example, the 32 binaries seen in fuzzing stack traces
account for 0.9% of all shipped binaries. There can be overlap
between multiple sources of stack traces. The %vulnerabilities
row contains the percentage of all known vulnerabilities seen in
that specific subset of binaries. Similar to the shipped binaries
line, there can also be overlap on this row, which shows why

the percentages add up to over 100%. The table shows that
48.4% of binaries contain 94.6% of the known vulnerabilities
within Windows 8 when considering kernel and user mode
crashes. Fuzzing crashes were left out of our combined column
because it offered no improvement to our approximation. User
and kernel mode covered all known vulnerabilities in the
fuzzing dataset.

Based on this result, we suggest that this approach can
reduce the amount of time spent inspecting code that currently
cannot be exploited directly by malicious users. This time
savings is critical when faced with incoming delivery deadlines
and time crunches.

B. Vulnerability Prediction Models (RQ2)
We explore how limiting the prediction space to the

approximated attack surface affects the accuracy of VPMs. As
discussed earlier, VPMs predict where vulnerabilities might
appear in a particular codebase based on software engineering
metrics, such as code churn, code complexity, code
dependencies, and pre-release vulnerabilities, among others. In
Error! Reference source not found., we display the precision
and recall of our VPM runs when considering the entire
codebase and only code on our attack surface approximation.
Compared with vulnerability prediction models (VPMs) run on
the entire codebase, VPMs run on the attack surface
approximation improved recall from .07 to .1 for binaries and
from .02 to .05 for source files. Precision remained at .5 for
binaries, while improving from .5 to .69 for source files. While
these figures are low due to the scarcity of vulnerabilities, this
represents improvement over the state of the art and is an open
research area.

The initial results of applying the attack surface concept to
VPMs are encouraging. We have demonstrated a statistical
improvement in the accuracy of VPMs when the set of artifacts
is narrowed down at both the binary and file level, and

Figure 2 - Precision and recall of file level comparison of VPMs on all files

and files on the attack surface approximation.

Table 1 - DESCRIPTIVE STATISTICS FOR ATTACK SURFACE AT BINARY
LEVEL, BROKEN DOWN BY TYPE OF STACK TRACE CATEGORY THAT
IDENTIFIED THE BINARY.

 User mode Kernel
mode Fuzzing Kernel and

user mode
%binaries 40.2% 7.1% 0.9% 48.4%
%vulnerabilities 66.7% 40.6% 14.9% 94.6%

Figure 3 - Heatmap visualizing relationships between files on the attack surface

and the frequency of these relationships.

continual improvement based on better targeting of test data is
possible. By continually improving the accuracy of these
VPMs, we hope to allay developer concerns about them and
hope to see additional use of them to detect vulnerabilities.

C. Discussion
Within Microsoft, security teams have already bought in to

the idea that attack surface approximation based upon stack
traces could be useful in their day-to-day operations. Security
professionals were quoted:

“Attack surface approximation would be useful to help
target our review efforts.”
This buy in on the concept of an attack surface being sound

is an important step as we look to take the next steps in
demonstrating the value of such tools.

One of the benefits of this approach is the high degree of
automation possible for this process. The only software-
specific element is the parsing of the individual stack traces.
Everything else in this process is portable and could be applied
to any other software project in development, though the
accuracy and reliability of these results on different systems
have not been tested as a part of this paper. By construction of
our automated stack trace parser, we can provide an
approximation of the attack surface of a system with some
accuracy.

VII. LESSONS LEARNED AND CHALLENGES
One of the difficulties with parsing stack traces is the fact

that the problem reduces to string parsing to pull out code
entities. While string parsing in itself is not a difficult task,
stack traces from different parts of a system may be in different
formats, and some stack traces contain different information.
For example, during this research we found some traces only
contained the file or function that was in the call stack. We then
built a mapping tool to look up which binary these artifacts
belonged to. In other systems with less mature software
engineering tools and data, mapping missing code may not be
as straightforward, though smaller systems may have more
consistent stack traces.

We found that our fuzzing set of stack traces overlapped
with the user and kernel datasets, finding only a few additional
vulnerabilities. While there remained some overlap between
user and kernel mode stack traces, together these sources are
able to account for the majority of known vulnerabilities. Our
results indicate that the attack surface approximation may be
computed using only user and kernel crashes.

As this research progressed, we received a high amount of
feedback related to the visualizations of this data and how it
could be used to strengthen the security review process. In
particular, graph visualizations of this data was of interest to
security professionals within Microsoft. During this process,
we devised a series of different graph formats for the data,
including a graph representation of the entire system with
single node entities, a centralized node example showing all of
the neighboring relationships around that specific artifact, and
the use of color to show the source of specific artifacts in stack
traces. When these visualizations were shown to security

professionals within Microsoft, they were received positively
as a way to understand what the security-relevant relationships
were between code entities.

Heatmaps are another possible way to demonstrate the
relationships between code. A relationship means that one part
of the codebase directly follows another in a stack trace,
typically indicating a direct call from one function to another.
An example heatmap is shown in Figure 3. In this example,
files appear on the X and Y axis of the graph. A file on the Y-
Axis of the chart has the files on the X-Axis of the chart
directly follow it in a stack trace at least once if a purple box
appears at that location. As the color of the box gets darker,
that sequence is seen more often in the set of stack traces. This
visualization can show practitioners at a glance which files
have more appearances in the stack trace data and the variety in
which different files appear around a specific file. For example,
e6 is immediately followed by e1 in many stack traces, but no
other files ever follow e6 in this dataset. One possibility is that
this is crash handling code or a standard path taken during a
crash. In contrast, e2 also appears frequently in stack traces, but
a wide variety of files may immediately follow it in a trace.
This visualization could help developers understand the context
that a function or file operates in, without overwhelming the
user with a graph of the entire system.

Graphs of these relationships may be useful in several
ways. By displaying the graph of security-relevant relationships
to security reviewers while they work, they can focus on
known possible malicious entry points during review rather
than checking all of the input edges into a function or file. An
example of a graph is shown in Figure 1. By presenting this
data to reviewers, they can make more informed decisions
about the context in which a file or function is operating in.
The data is similar to the heatmap data discussed above,
presented in a different visual format.

These visualizations, in the view of the security
professionals that the researchers spoke to, may have an impact
on security reviewer productivity in the same way call graph
displays can assist software developers.

VIII. LIMITATIONS AND THREATS TO VALIDITY
In this preliminary exploration of the research topic, we have

only explored one specific software system. This approach may
not be generalized to other systems without similar studies in
different domains. In the absence of an oracle for the complete
attack surface, we cannot assess the completeness of our
approximation. Our determination of accuracy currently is
based only on known vulnerabilities, which may introduce a
bias towards code previously seen to be vulnerable. While this
may be a good assumption, further exploration is needed. The
set of artifacts set as part of the attack surface is an
approximation, and we do not claim to capture all possible
vulnerable nodes.

We have done our VPM analysis on different levels of
abstraction of code; binary level and file level. In this paper, we
present results reflecting both of these levels. Each of these
levels of abstraction has different strengths and shortcomings.
For example, while binary level allows us to make more

accurate claims about where vulnerabilities might be, we are
painting with a broad brush. A single binary could contain
hundreds of files that need to be looked at, which limits their
usefulness. Running future analysis on file level and continuing
to improve at that abstraction level is one way to mitigate this.
By the reasoning above, our attack surface approximation only
being on binary level is a limitation in the granularity of our
approximation.

Finally, due to code or configuration changes, code that is
not on the attack surface may be moved on to the attack
surface. However, prioritization of code on the attack surface,
using our method or other attack surface identification
methods, can be used to reduce security risk.

IX. FUTURE WORK
We explore several different avenues for the continuation of

this work. A further exploration of statistical data on frequency
of appearance, and number of times a specific sequence of
artifacts appear in user generated stack traces from crashes is
one such avenue. By assigning weights to specific artifacts
based on the frequency in which they appear in stack traces and
in relationships with other artifacts, we may be able to improve
VPM performance in detecting vulnerabilities if there is a
relationship between these metrics and how often
vulnerabilities appear. We hypothesize based on a cursory look
at the data that this sort of exposure metric may be related to
the discovery of security vulnerabilities.

We plan to explore the expansion of the graph visualization
and parsing of the stack traces, as this area seems to hold the
most promise. In particular, discovering particular flow
patterns within the security graph representation of the system
is of particular interest to the security professionals we spoke to
as a part of this research. Empirical studies to show
improvement in the efficiency of security reviews when using
these visualizations is one avenue this research branch could
take.

As mentioned in the limitations, these results cannot be
generalized to all systems. Doing a similar analysis on other
software systems, such as web applications, could give us
insight into how generalizable this approach could be.
Identifying how many stack traces are required to build a
reasonably accurate approximation of the attack surface would
be useful when trying to apply this technique to smaller
software systems.

All current results can be replicated at a finer level of
granularity. The attack surface approximation could be done at
both the file and function level, and the VPMs could be run
with a function level attack surface as well. To do this, we will
need to resolve unmapped file and function data for some of
the entities on our attack surface approximation.

X. ACKNOWLEDGEMENTS
This work was completed as part of a summer internship at

Microsoft Research Cambridge UK in the summer of 2014.
The researchers would like to thank the Windows Security
Teams for their feedback, as well as the intern support staff at
MSR Cambridge for their work. Funding for Laurie Williams

for part of the advising of this proposal was provided by the
National Security Agency. We also thank the Realsearch group
at NCSU for their invaluable feedback.

XI. REFERENCES

[1] R. Moser, W. Pedrycz and G. Succi, "A comparative
analysis of the efficiency of change metrics and static code
attributes for defect prediction," in Proceedings of the 30th
international conference on Software engineering, 2008.

[2] M. Howard and S. Lipner, The Security Development
Lifecycle, Microsoft Press, 2006.

 [3] N. Nagappan and T. Ball, "Use of relative code churn
measures to predict system defect density," in Software
Engineering, 2005. ICSE 2005. Proceedings. 27th
International Conference on, 2005.

[4] T. Zimmermann and N. Nagappan, "Predicting defects
using network analysis on dependency graphs," in
Proceedings of the 30th international conference on
Software engineering, 2008.

[5] M. Pinzger, N. Nagappan and B. Murphy, "Can developer-
module networks predict failures?," in Proceedings of the
16th ACM SIGSOFT International Symposium on
Foundations of software engineering, 2008.

[6] N. Nagappan, B. Murphy and V. Basili, "The Influence of
Organizational Structure on Software Quality: An
Empirical Case Study," in Proceedings of the 30th
International Conference on Software Engineering, 2008.

[7] A. E. Hassan, "Predicting faults using the complexity of
code changes," in Proceedings of the 31st International
Conference on Software Engineering, 2009.

[8] K. Herzig, S. Just, A. Rau and A. Zeller, "Predicting
Defects Using Change Genealogies," in Proceedings of the
2013 IEEE 24nd International Symposium on Software
Reliability Engineering, 2013.

[9] K. Herzig, "Using Pre-Release Test Failures to Build Early
Post-Release Defect Prediction Models," in Accepted at
The 25th IEEE International Symposium on Software
Reliability Engineering (ISSRE), Neaples, 2014.

[10] T. Hall, S. Beecham, D. Bowes, D. Gray and S. Counsell,
"A Systematic Literature Review on Fault Prediction
Performance in Software Engineering," Software
Engineering, IEEE Transactions on, vol. 38, pp. 1276--
1304, 2012.

[11] T. Zimmermann, N. Nagappan and L. Williams,
"Searching for a Needle in a Haystack: Predicting Security
Vulnerabilities for Windows Vista," in Software Testing,
Verification and Validation (ICST), 2010 Third
International Conference on, 2010.

[12] Y. Shin and L. Williams, "Can traditional fault prediction
models be used for vulnerability prediction?," Empirical
Software Engineering, vol. 18, pp. 25--59, 2013.

[13] M. Gegick, L. Williams, J. Osborne and M. Vouk,
"Prioritizing software security fortification throughcode-
level metrics," in Proceedings of the 4th ACM workshop on
Quality of protection, 2008.

[14] Y. Shin, A. Meneely, L. Williams and J. Osborne,

"Evaluating Complexity, Code Churn, and Developer
Activity Metrics as Indicators of Software Vulnerabilities,"
Software Engineering, IEEE Transactions on, vol. 37, pp.
772--787, 2011.

[15] I. Chowdhury and M. Zulkernine, "Using complexity,
coupling, and cohesion metrics as early indicators of
vulnerabilities," Journal of Systems Architecture, vol. 57,
pp. 294--313, 2011.

[16] S. Neuhaus, T. Zimmermann, C. Holler and A. Zeller,
"Predicting vulnerable software components," in
Proceedings of the 14th ACM conference on Computer and
communications security, 2007.

 [17] M. Howard, J. Pincus and J. M. Wing, "Measuring Relative
Attack Surfaces," in Computer Security in the 21st
Century, Springer US, 2005, pp. 109-137.

[18] P. Manadhata and J. Wing, "An Attack Surface Metric,"
Software Engineering, IEEE Transactions on, vol. 37, no.
3, pp. 371-386, 2011.

[19] "Description of the Dr. Watson for Windows," Microsoft
Corporation, [Online]. Available:
http://support.microsoft.com/kb/308538/en-us.

[20] B. Liblit and A. Aiken, "Building a Better Backtrace:
Techniques for Postmortem Program Analysis," University
of California, Berkeley, Berkeley, 2002.

[21] R. Manevich, M. Sridharan, S. Adams, M. Das and Z.
Yang, "PSE: Explaining Program Failures via Postmortem
Static Analysis," in Proceedings of the 12th ACM
SIGSOFT Twelfth International Symposium on
Foundations of Software Engineering, Newport Beach,
CA, USA, 2004.

[22] W. Jin and A. Orso, "F3: Fault Localization for Field
Failures," in Proceedings of the 2013 International
Symposium on Software Testing and Analysis, 2013.

[23] R. Wu, H. Zhang, S.-C. Cheung and S. Kim,
"CrashLocator: Locating Crashing Faults Based on Crash
Stacks," in Proceedings of the 2014 International
Symposium on Software Testing and Analysis, 2014.

[24] S. Wang, F. Khomh and Y. Zou, "Improving bug
localization using correlations in crash reports," in Mining
Software Repositories (MSR), 2013 10th IEEE Working
Conference on, 2013.

[25] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J.
Sun and B. Wang, "Automated support for classifying
software failure reports," in Software Engineering, 2003.
Proceedings. 25th International Conference on, 2003.

[26] Y. Dang, R. Wu, H. Zhang, D. Zhang and P. Nobel,
"ReBucket: A Method for Clustering Duplicate Crash
Reports Based on Call Stack Similarity," in Proceedings of
the 34th International Conference on Software
Engineering, 2012.

[27] S. Kim, T. Zimmermann and N. Nagappan, "Crash graphs:
An aggregated view of multiple crashes to improve crash
triage," in Dependable Systems Networks (DSN), 2011
IEEE/IFIP 41st International Conference on, 2011.

[28] P. J. Guo, T. Zimmermann, N. Nagappan and B. Murphy,
"Characterizing and Predicting Which Bugs Get Fixed: An

Empirical Study of Microsoft Windows," in Proceedings of
the 32th International Conference on Software
Engineering, 2010.

[29] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj
and T. Zimmermann, "What makes a good bug report?," in
SIGSOFT '08/FSE-16: Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of
software engineering, 2008.

[30] S.-K. Huang, M.-H. Huang, P.-Y. Huang, H.-L. Lu and C.-
W. Lai, "Software Crash Analysis for Automatic Exploit
Generation on Binary Programs," Reliability, IEEE
Transactions on, vol. 63, pp. 270-289, March 2014.

[31] C. Holler, K. Herzig and A. Zeller, "Fuzzing with Code
Fragments," in Proceedings of the 21st USENIX
Conference on Security Symposium acmid = 2362831,
2012.

[32] D. Kim, X. Wang, S. Kim, A. Zeller, S. Cheung and S.
Park, "Which Crashes Should I Fix First?: Predicting Top
Crashes at an Early Stage to Prioritize Debugging Efforts,"
Software Engineering, IEEE Transactions on, vol. 37, no.
3, pp. 430-447, 2011.

[33] J. Czerwonka, N. Nagappan, W. Schulte and B. Murphy,
"CODEMINE: Building a Software Development Data
Analytics Platform at Microsoft," Software, IEEE, vol. 30,
no. 4, pp. 64--71, 2013.

[34] "Four Grand Challenges in Trustworthy Computing,"
Computing Research Association, Warrenton, VA, 2003.

 [35] R. D. C. Team, "R: A Language and Environment for
Statistical Computing," 2010.

 [36] K. Pearson, "LIII. On lines and planes of closest fit to
systems of points in space," Philosophical Magazine Series
6, vol. 2, pp. 559-572, 1901.

[37] M. Kuhn, "caret: Classification and Regression Training,"
2011.

 [38] Emam, K.E., Melo, W., and Machado, J.C. The prediction
of faulty classes using object-oriented design metrics. J.
Syst. Softw., 56 (feb 2001), 63–75.

[39] W.N. Venables and B.D. Ripley, Modern Applied Statistics
with S. Fourth Edition. Springer, 2002

[40] L. Breiman, "Random Forests", Machine Learning 1, vol.
6., pp. 5-32, 2001.

[41] Shin, Y. and Williams, L., Can Fault Prediction Models
and Metrics be Used for Vulnerability Prediction?,
Empirical Software Engineering, Vol. 18, No. 1, pp. 25-59,
2013.

[42] Building Security In Maturity Model (BSIMM)
[43] Manadhata, P., Wing, J., Flynn, M., & McQueen, M.

(2006, October). Measuring the attack surfaces of two FTP
daemons. In Proceedings of the 2nd ACM workshop on
Quality of protection (pp. 3-10). ACM.

[44] Younis, A.A., Malaiya, Y.K., Ray, I., “Using Attack
Surface Entry Points and Reachability Analysis to Assess
the Risk of Software Vulnerability Exploitability” In Proc.
of IEEE 15th International Symposium on High-Assurance
Systems Engineering, p. 1-8, 2014

XII. APPENDIX

Table 2 - METRICS DEFINITIONS

Metric Category Definition

Added LOC Churn Lines of code added during the development cycle.

ChurnedLOC Churn Lines of code added, deleted or altered during the development cycle.

DeletedLOC Churn Lines of code deleted during the development cycle.

Editors Churn Count of unique users who have made changes to each file

NumberOfEdits Churn Count of distinct commits made to each file

RelativeChurn Churn Relative code measure, ratio of Churned LOC to LOC Project End

Complexity (Avg, Sum, Max) Complexity McCabe complexity measure, number of linearly-independent paths
through each function, rolled up to source-file level

Arcs (Avg, Sum, Max) Dependency Number of transfer of control points between basic blocks defined in the file

FanIn (Avg, Sum, Max) Dependency Number of calls to functions within each source file

FanOut (Avg, Sum, Max) Dependency Number of calls by functions within each source file to other functions

FanOutExternal
(Avg, Sum, Max)

Dependency Number of calls by functions within each source file to other functions outside
the source file

Incoming Cross Binary Dependency Number of calls from outside a source file's binary to functions within the source
file

Incoming Dependencies (Avg, Sum, Max) Dependency Number of function call, import, export, RPC, COM and Registry access
dependencies on the source file

Outgoing Dependencies (Avg, Sum, Max) Dependency Number of function call, import, export, RPC, COM and Registry access
dependencies by the source file

AddedLOCSinceReset Legacy Lines of code added since the security reset date

AgeinWeeks Legacy Number of weeks since recorded file creation date of source file

ChurnedLOCSinceReset Legacy Lines of code added, deleted or altered between the security reset date and RTM

ChurnSinceReset Legacy Lines of code deleted or altered between the security reset date and RTM.

DeletedLOCSinceReset Legacy Lines of code deleted between the security reset date and RTM

LegacyLOCPct Legacy Relative code measure, percentage of LOC written prior to reset

LOC Pre-Reset Legacy Total lines of code in the file on the security reset date

NumberOfEditsSinceReset Legacy Count of distinct commits made to each file since the reset

Arguments (Avg, Sum, Max) Size Number of function arguments defined within the file

Blocks (Avg, Sum, Max) Size Number of basic blocks contained within the file (a block is a single, contiguous
set of instructions with one entry, one exit and no branches)

Functions Size Number of functions defined within the file

LOC Project End Size Total lines of code in the file at Release-To-Manufacturing (RTM)

LOC Project Start Size Total lines of code in the file at the start of the development cycle

Locals (Avg, Sum, Max) Size Number of local variables defined within the file

Paths (Avg, Sum, Max) Size Number of paths

VulnCount_PreRelease Defects Number of vulnerabilities fixed prior software release

VulnCount_SecurityReview Defects Number of security related changes prior software release

