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Abstract – Security testing and reviewing efforts are a necessity 
for software projects, but are time-consuming and expensive to 
apply. Identifying vulnerable code supports decision-making 
during all phases of software development.  An approach for 
identifying vulnerable code is to identify its attack surface, the 
sum of all paths for untrusted data into and out of a system. 
Identifying the code that lies on the attack surface requires 
expertise and significant manual effort. This paper proposes an 
automated technique to empirically approximate attack surfaces 
through the analysis of stack traces.  We hypothesize that stack 
traces from user-initiated crashes have several desirable 
attributes for measuring attack surfaces. The goal of this 
research is to aid software engineers in prioritizing security efforts 
by approximating the attack surface of a system via stack trace 
analysis. In a trial on Windows 8, the attack surface 
approximation selected 48.4% of the binaries and contained 
94.6% of known vulnerabilities. Compared with vulnerability 
prediction models (VPMs) run on the entire codebase, VPMs run 
on the attack surface approximation improved recall from .07 
to .1 for binaries and from .02 to .05 for source files.  Precision 
remained at .5 for binaries, while improving from .5 to .69 for 
source files. 

Index Terms—stack traces, security, vulnerability, models, 
testing, reliability, attack surface. 

I. INTRODUCTION 
Howard et al. [17] introduced the concept of an attack 

surface, describing entry points to a system that might be 
vulnerable along three dimensions: targets and enablers, 
channels and protocols, and access rights. Later, Manadhata 
and Wing [18] formalized the notion of attack surface, 
including methods, channels, untrusted data, and a direct and 
indirect entry and exit point framework that identifies methods 
through which untrusted data passes. Security professionals can 
focus their efforts on code on the attack surface because it 
contains vulnerabilities that are reachable, and therefore 
exploitable, by malicious users. Code not on the attack surface 
may contain latent vulnerabilities, but these are unreachable by   
malicious users. With this prioritization, the security 
professional could find vulnerabilities more efficiently. 

As valuable as the concept of attack surface is, we still lack 
a practical means of identifying the parts of the system that are 
contained on the attack surface. Manadhata and Wing proposed 
metrics to measure attack surface size, and empirically 
measured direct entry points by building a call graph, but they 
left identifying indirect entry and exit points for future work. 
Other approaches to defining the attack surface have been done 

at a configuration level without considering code, and other 
code using API calls have required significant manual work. 

 We propose attack surface approximation, an automated 
approach to identifying parts of the system that are contained 
on the attack surface through stack trace analysis. We parse 
stack traces, adding all code found in these traces onto the 
attack surface approximation. By definition, code that appears 
in stack traces caused by user activity is on the attack surface 
because it appears in a code path reached by users.  

We hypothesize that stack traces from user-initiated crashes 
have three desirable attributes for measuring attack surfaces: 
(a) they represent user activity that puts the system under 
stress; (b) they include both direct and indirect entry points; 
and (c) they provide automatically generated control and data 
flow graphs. We seek to assess the degree to which these 
attributes of stack traces support the identification of attack 
surfaces.  We call our approach attack surface approximation 
because code entities will only be added to the attack surface 
when a crash has occurred.  As such, the attack surface 
approximation will evolve over time.  We assess our approach 
by analyzing the percentage of actual reported vulnerabilities in 
the code and whether they occur in our approximated attack 
surface. 

The goal of this research is to aid software engineers in 
prioritizing security efforts by approximating the attack surface 
of a system via stack trace analysis.  

We explore the following questions as a part of this paper: 
 
RQ1: How effectively can stack traces to be used to 
approximate the attack surface of a system? 
RQ2: Can the performance of vulnerability prediction be 
improved by limiting the prediction space to the 
approximated attack surface? 
 
We build an attack surface approximation for the Windows 

operating system based on stack traces. This system is a 
completely automated process, requiring no human input to 
what is considered on the attack surface and what is not, unlike 
previous approaches requiring human input.  To assess our 
approximation, we compared the set of known security 
vulnerabilities from earlier versions of Windows 8 against this 
attack surface.  

 
 
 



The contributions of this paper include: 
• A practical, automated attack surface 

approximation based upon analysis of stack traces 
• An evaluation of attack surface approximation 

performance for vulnerability prediction in 
Windows 8 

• Visualizations of the attack surface approximation 
for use during security reviews to find security-
related relationships between code 

 
The rest of the paper is organized as follows: Section II 

discusses background and related work, Section III discusses 
the stack trace data sources, Section IV presents our 
methodology, Section V discusses vulnerability prediction 
model (VPM) construction for our evaluation, Section VI 
presents our results and a discussion of these results, Section 
VII discusses our lessons learned and challenges, Section VIII 
presents limitations and threats to validity, and Section IX 
discusses future work.  

II. BACKGROUND AND RELATED WORK 
Vulnerabilities can be seen as a special case of software 

defects [1]. Vulnerabilities tend to be sparser than general 
software defects [41], as not all defects may allow an attacker 
to gain anything. In this section, we provide a brief overview of 
related work. 

A. Attack Surface 
As mentioned previously, Howard et al. [17] provided a 

definition of attack surface using three dimensions: targets and 
enablers, channels and protocols, and access rights. Not all 
areas of a system may be directly or indirectly exposed to the 
outside. Some parts of a complex system, e.g. Windows OS, 
may be for internal use only and cannot be reached or 
exploited by an attacker. For example, installation routines are 
left in the system after initialization, but they are never 
accessed again and are unlikely to have security implications 
for the system. 

Knowing the attack surface of a piece of software supports 
decision-making during all phases of software development. To 
date, approaches to empirical measurement of attack surfaces 
have relied on manual effort or on alternative definitions of 
‘attack surface’. Tools like Microsoft’s Attack Surface 
Analyzer1 determine where potential input vectors exist on a 
system. However, this tool currently focuses on delivered 
systems that are code-static; it detects configuration changes, 
not code changes. 

Manadhata et al. [43] describe how an attack surface might 
be approximated by looking at API entry points. However, this 
approach does not cover all exposed code, as the authors 
mention. Specifically, internal flow of data through a system 
could not be identified. While the external points of a system 
are a useful place to start, they do not encompass the entirety of 
exposed code in the system. These intermediate points within 

                                                             
1

 http://www.microsoft.com/en-us/download/details.aspx?id=24487 

the system could also contain security vulnerabilities that the 
reviewer should be aware of. Further, their approach to 
measuring attack surfaces required expert judgment and 
manual effort. 

B. Exploiting Crash Reports 
The use of crash reporting systems, including stack traces 

from the crashes, is becoming a standard industry practice2 
[24][26]. Bug reports contain information to help engineers 
replicate and locate software defects. Liblit and Aiken [20] 
introduced a technique automatically reconstructing complete 
execution paths using stack traces and execution profiles. Later, 
Manevich et al. [21] added data flow analysis information on 
Liblit and Aiken’s approach. Other studies use stack traces to 
localize the exact fault location [22][23][24]. Lately, an 
increasing number of empirical studies use bug reports and 
crash reports to cluster bug reports according to their similarity 
and diversity, e.g. Podgurski et al. [25] were among the first to 
take this approach. Other studies followed [26][27]. Not all 
crash reports are precise enough to allow for this clustering. 
Guo et al. [28] used crash report information to predict which 
bugs will get fixed. Bettenburg et al. [29] assessed the quality 
of bug reports to suggest better and more accurate information 
helping developers to fix the bug. 

With respect to vulnerabilities, Huang et al. [30] used crash 
reports to generate new exploits while Holler et al. [31] used 
historic crashes reports to mutate corresponding input data to 
find incomplete fixes. Kim et al. [32] analyzed security bug 
reports to predict “top crashes”—those few crashes that 
account for the majority of crash reports—before new software 
releases. 

However, we are not aware of any study parsing stack 
traces to identify and predict vulnerable source files or to 
measure vulnerability exposure of software artifacts. 

C. Defect Prediction Models 
The goal of defect prediction models (DPMs) is to identify 

code that is most likely to contain defects. For example, 
Nagappan and Ball [3] showed that code churn metrics can be 
used to predict defect density, the number of defects per line of 
code. Later, Zimmermann et al. [4] used code dependency 
information and network metrics to classify defect prone code. 
Other studies used change-related [1], developer-related [5], 
organizational [6], process [7], change dependency [8], and test 
[9] metrics to build DPMs. Hall et al. [10] presented a 
systematic literature review of DPMs and showed that model-
building methodology impacts prediction accuracy. DPMs are 
the basis for Vulnerability Prediction Models. 

D. Vulnerability Prediction Models 
Similar to DPMs, Vulnerability Prediction Models (VPMs) 

predict code with the highest chance of containing 
vulnerabilities. Studying VPMs for Microsoft Windows, 
Zimmermann et al. concluded that vulnerabilities are not as 

                                                             
2 http://www.crashlytics.com/blog/its-finally-here-announcing-crashlytics-for 
android/ 



simple to predict as defects [11]. A study on Mozilla’s Firefox 
web browser showed that, on Firefox, fault prediction model 
and the vulnerability prediction model provided similar 
prediction performance [12]. In general, many VPMs presented 
in literature are based on the same basic principles as DPMs, 
with adjustments to account for the relative rarity of security 
vulnerabilities. Transferring the concept of DPMs to VPMs, 
many studies use complexity, code churn, or static-alert 
measurements to predict vulnerabilities [13][14][15]. Published 
VPMs [16] have had challenges achieving precision and recall 
rates that DPMs have been able to achieve, presumably due to 
the relative rarity of vulnerabilities.  As a result, VPMs may not 
be considered for practical use. Neuhaus et al. [16] used 
historical data on imports and functions.  VPMs are used in this 
work to evaluate whether attack surface approximation 
improves the state of the art in vulnerability prediction. 

III. DATA SOURCES 
The stack traces used in this research are from the Windows 

8 operating system. Stack traces for this research come from 
three complementary sources: fuzzing crashes, user mode 
crashes, and kernel mode crashes. We keep track of the source 
of each crash as we parse each stack trace. We now describe 
each crash source. 

A. Fuzzing Crashes 
Microsoft’s security testing teams generate fuzzing crashes. 

Fuzzing is a testing strategy revolving around sending random 
or deliberately malformed/malicious data to the input points on 
a system. The goal of fuzzing is to simulate attacks and to get 
the system to behave in an unexpected manner. Typically, any 
response from the system that differs from a standard error 
message is flagged and investigated. Possible results from fuzz 
testing include crashes, memory leaks, and security bugs such 
as data loss or improper access. Fuzzing crashes are a useful 
data source as any input generated and fed into the system 
under test could also originate from a user and thus from a 
potential hacker. Fuzzing aims to discover security 

vulnerabilities, and any irregular fuzzing results are relevant for 
determining what code areas were involved in handling the 
malformed input. 

B. User Mode Crashes 
Windows users generate user mode crashes. User mode 

crashes are field/customer crashes that are not due to hardware 
failures. Crashes in applications running without administrator 
rights triggers collection of crash information that may be sent 
to Microsoft. The system responsible for collecting the data, 
Microsoft Error Reporting [19], is executed under the same 
user privileges as the user that ran the crashed application. 
However, running in user mode limits the stack trace 
generator’s ability to access and resolve which resources were 
involved in the crash. Thus, user mode crashes may only 
identify code areas that are accessible by the user in that mode. 

C. Kernel Mode Crashes 
Kernel crashes occur on field/customer machines, but unlike 
application crashes, they occurred within the Windows kernel. 
In general, kernel crashes indicate more severe failures and 
usually include full resolutions of code artifacts, as long as they 
are part of the Windows system. The kernel is running under 
administrative privileges allowing the stack trace generator to 
gather more details about the system’s granular details.  

D. Known Vulnerabilities 
To measure the effectiveness of our approach, we required 

a set of vulnerabilities to compare our approach against. For 
this purpose, we use the set of vulnerabilities seen in Windows 
8 both pre- and post-release of the product. We then check to 
see if these vulnerabilities appear on our attack surface 
approximation to determine whether they would be missed by 
our approach. 

 
Figure 1  - Example of an anonymous stack trace. From the stack trace, we can identify binary, function, and sometimes source file information. Each 

of these stack traces can be transformed into a graphical representation. Each stack trace contributes one particular path (see middle) to the 
overall attack surface graph (see right hand side).  



IV. AUTOMATED APPROXIMATION METHODOLOGY (RQ1) 
Stack traces identify code that was loaded in memory at the 

time of the crash. Typically used for debugging, traces define 
the logical path between an external input and the system crash.  
Through the parsing of crashes, we can build a set of artifacts 
that users have had influence over. While bugs can appear in 
any artifact, the subset of code appearing in these stack traces 
has important security implications. Malicious users can only 
exploit vulnerabilities that they can access. If a bad check on 
incoming data could result in a buffer overflow attack in a 
specific function, but no outside user can ever pass input to that 
bad check, then that vulnerability has a lower priority unless 
code or configuration changes cause it to be exposed. By de-
prioritizing code unlikely to be on the execution path, we can 
limit the scope of what security professionals have to review by 
having them focus on files that outside users can pass input to. 
   To identify artifacts that may be reached and thus exploited 
from users, we use stack traces of existing crashes to generate 
our data set. These stack traces identify entities that were 
executed just before the crash took place. Figure 1 shows an 
anonymized example stack trace describing a crash of 
Windows. Each line of the stack trace identifies code artifacts 
on the memory stack prior to the crash occurring. The order of 
lines and thus the order in which these artifacts occur represent 
the time sequence of events. The initial entry point is the top 
line item on a stack trace, and should in most cases be the first 
artifact touched by outside user input. Consecutive lines in a 
stack trace identify artifacts that called each other; if a 
function in foo.cpp calls a function in bar.cpp, we say that 
there is a direct neighbor relationship from foo.cpp to bar.cpp. 

Each line of a stack trace is organized as follows. The binary 
is shown at the beginning of the string, followed by a “!” 
delimiter and the function name. In the square brackets, the full 
path of the file associated with this binary/function relationship 
is shown. Not all stack traces will include the name of the 
source file. Some stack traces may even display anonymous 
placeholders for functions and binaries, depending on the 
permissions and ability to identify these details during runtime. 
For example, Windows stack traces contain no details about 
artifacts outside Windows, e.g. a third-party application 
causing the crash.  

Each stack trace is parsed and separated into individual 
artifacts, including binary name, function name, and file name. 
We then map each of these artifacts to code as they are named 
in Microsoft’s internal software engineering tools. File 
information is not always available. In these cases, we make 
use of software engineering data indicating relationships 
between binaries, files, and functions to find the missing data if 
possible. If these symbol tables contain the function name 
referenced by the stack trace, we pull the corresponding source 
file onto the attack surface. In case the function name is not 
unique, e.g. overloading the function in multiple files, we over 
approximate the attack surface and pull all possible source files 
onto the attack surface. If no function name can be found, e.g. 
function not shipped with Windows, we leave the file marked 
as unknown. Thus, this approach generates an attack surface 
that is an approximation of reality. Over approximating the 

attack surface aims for completeness rather than minimization 
of size. The accuracy of an attack surface depends on the 
accuracy and completeness of the analyzed crash data. 

When code is seen in a stack trace, we place information 
about that code into a database table containing all code on the 
attack surface approximation. When this code is added to the 
database, we enter as much information as possible about the 
line in the stack trace. In some cases, this is just the binary, as 
the file and function cannot be mapped. Other cases may have 
the exact file and/or function. We also collect frequency and 
neighbor metrics for each entity. This data can be used in a 
variety of helpful ways, particularly in visualizing these 
relationships in graph format as seen in Figure 1. 

When doing mapping from stack traces to actual entities 
within the system, sometimes mappings are unable to be made. 
Two examples of this are when errors occur storing the stack 
trace, such as when the system is under duress, and 
mismatched names between the report to crash handlers and 
data about the system. When a mapping is unable to be made, 
we label that entity as “unknown,” and do not place that entity 
on the attack surface. 

For this work, we specifically remove hardware related 
crashes as errors resulting from such hardware failures do not 
indicate a potential input vector for potential attackers. The 
identification of hardware crashes is done by an automated 
stack trace classification system within Microsoft. Code that is 
inaccessible by user activity cannot be manipulated by an 
attacker, and therefore is not to be on the attack surface. The 
assumption carries forward when discussing our results below. 

The ultimate output used by the development and security 
teams is a classification of whether an entity is on or off the 
attack surface.  This classification can be used for prioritizing 
defect fixing and validation and verification efforts. 

V. VULNERABILITY PREDICTION MODEL CONSTRUCTION 
METHODOLOGY (RQ2) 

In addition to the classification scheme discussed in Section 
IV, we limit the prediction space to the approximated attack 
surface for Vulnerability Prediction Models (VPMs) to see if 
we get better prediction accuracy measurement when compared 
to VPMs that do not use attack surface information. 

We replicated VPMs for Windows, as published by 
Zimmermann at al. [11]. The experiments conducted by 
Zimmerman et al. were conducted on datasets collected for 
Windows 8, a product of significant size. Choosing the same 
product as the original study enables a comparison with the 
original study, giving insight in to how vulnerability prediction 
metrics in a codebase change over time. 

The VPM described by Zimmermann et al. [11] is based on 
static code metrics and pre- and post-release vulnerabilities. As 
an analogue to the original study, we gathered these 
measurements using the CODEMINE process [33]. Microsoft 
developed CODEMINE to allow the company to monitor the 
development attributes of its products during development and 
after product release. The CODEMINE process provides a 
central repository of development and vulnerability metrics that 
were used within this research study. 



A. Code Metrics 
The VPMs developed by Zimmerman et al. and replicated 

in our study are based on 29 metrics broadly classified into 6 
categories: 
• Churn metrics [3]. Churn measures are relative to a time 

period; the period for all presented calculations is between 
the start and RTM date of the project.  

• Complexity metrics [38]. More complicated code is more 
likely to exhibit errors.  

• Dependency metrics [13]. The degree to which a piece of 
code is depended upon, or depends upon other code, 
influences its impact on software vulnerabilities.  

• Legacy metrics. Metrics of particular interest to 
Microsoft. The importance of security in the development 
of software at Microsoft began receiving increased 
attention after the Bill Gates’ 2002 Trustworthy 
Computing Memo [34], with significant investments 
made in security training, tools, and process [2]. Code 
written after these processes were put in place has had a 
higher, more process-driven, level of attention to security 
applied in its design, construction and testing. These 
metrics verify the theory that code written before the 
security reset may be more likely to contain 
vulnerabilities. 

• Size metrics. Larger source files are more difficult to 
mentally manage, and, therefore, are more prone to 
defects and vulnerabilities.  

• Pre-Release vulnerabilities. For VPMs predicting post-
release vulnerabilities, we used pre-release vulnerabilities 
to model usual suspects. 
Table 2, in the appendix, identifies all metrics used in the 

study and provides a description of each metric. Where noted, 
average, maximum and total values were taken for several of 
the metrics. Depending on the metric, data was available at 
either the source file level or at the function level. In cases 
where function level data was present, amounts were 
aggregated up to the file level via averages, totals and 
maximums. Binary-level data was obtained by aggregating 
source-file level data up to the binary in which each source file 
is used. This study uses additional metrics that were not 
available at the time of the original study by Zimmermann at 
al. [11]. The table identifies which metrics are common 
between the two studies and which are unique to this study. 

All size, churn, complexity, and dependency metrics were 
measured as of each releases’ Release to Manufacturing date. 

B. Pre and Post-Release Vulnerabilities 
As dependent variables, we used the number of post-

release security vulnerabilities detected and fixed within the 
corresponding source files and code binaries respectively. Pre-
release vulnerabilities were used as independent variables. 
Pre-release vulnerabilities are issues that are identified and 
fixed during software development. A post-release 
vulnerability is a security issue detected and corrected after 
releasing the corresponding software product to the public. 
Pre-release vulnerabilities of product version N may also be 
post-release vulnerabilities for product version N-1. Post-

release security changes can be considered as ‘escapes’ from 
the software development lifecycle (SDL). Escapes may be 
worthy of investigation for SDL application in future releases. 

To identify post-release vulnerability fixes, we counted the 
number of code changes applied in Windows service pack 
branches marked as security fix. These branches serve as a 
sink of defect fixes that will eventually be shipped to 
customers as part of a service pack or hot-fix. No feature 
development is permitted on these branches. Pre-release 
vulnerabilities were identified by bug reports marked as 
security vulnerabilities that resulted in changed source files 
and binaries. 

C. Prediction Models 
We ran our prediction models at both the binary and source 

level granularity. For both levels of granularity, we build 
classification models to identify code entities that had at least 
one vulnerability. For each level of granularity, we split the 
overall data collection into a training dataset that contains 2/3 
of all data points. The remaining data is used for testing 
purposes. To split the data, we used stratified sampling—the 
ratio of code entities associated with vulnerabilities from the 
original dataset is preserved for both subsets. We repeatedly 
sampled the original dataset 100 times (100-cross-fold-
validation). In total, we generated 200 independent training 
and testing sets: two levels of granularity and 100-cross folds 
each (similar to [4][11]).  

We remove all code entities that are not part of the attack 
surface of Windows 8.1 from both training and testing sets 
before sampling takes place. Thus, classification models 
referring to attack surfaces contain less data points.  

We conducted the experiments using the R statistical 
software [35] (Version 3.10). Instead of using the original 
feature vectors provided by the raw metric values, we applied 
R’s prcomp [39] procedure to our data to produce principal 
components. Principal Component Analysis (PCA) [36] 
reduces redundancy in our matrix of metrics and observations 
by maximizing the variance of linearly independent variables. 
Deciding how many of these variables to use in model 
building typically takes one of two forms; either a limit on the 
number of terms in the model is set, or some total amount of 
variance to be accounted for by the model is set. We selected 
principal components that accounted for 95% of variance.   

In pursuit of high prediction performance, we used Max 
Kuhn’s R package caret [37] to build VPMs based on the 
components selected by PCA. We used a Random Forest [40] 
machine learning technique to generate our prediction. 
Random Forest is a variant of decision trees that can be 
represented as a binomial tree, and is popularly used for 
classification tasks. We chose Random Forest because this 
data set is highly unbalanced (many entities have no 
vulnerability, very few have some) and Random Forest is 
particularly good in handling unbalanced datasets. 
 

 
 
 



 

VI. RESULTS AND DISCUSSION 
In this section, we present the data collected to address the 

research questions. After presenting the results as they related 
to our two research questions, we discuss how these results 
might benefit practitioners. 

A. Attack Surface Approximation (RQ1) 
Table 1 contains a summary of our Windows 8 attack 

surface approximation from our different data sources. We split 
our data sources into three separate columns, indicating user 
mode stack traces, kernel mode stack traces, and fuzz testing 
stack traces. The first row indicates the total number of binaries 
seen in stack traces from that data source. The second row is 
the percentage of all shipped binaries that is included in row 1. 
For our purposes, shipped binaries are any binary that is 
included in a commercial release of the Windows product. For 
this example, the 32 binaries seen in fuzzing stack traces 
account for 0.9% of all shipped binaries. There can be overlap 
between multiple sources of stack traces. The %vulnerabilities 
row contains the percentage of all known vulnerabilities seen in 
that specific subset of binaries. Similar to the shipped binaries 
line, there can also be overlap on this row, which shows why 

the percentages add up to over 100%. The table shows that 
48.4% of binaries contain 94.6% of the known vulnerabilities 
within Windows 8 when considering kernel and user mode 
crashes. Fuzzing crashes were left out of our combined column 
because it offered no improvement to our approximation. User 
and kernel mode covered all known vulnerabilities in the 
fuzzing dataset. 

Based on this result, we suggest that this approach can 
reduce the amount of time spent inspecting code that currently 
cannot be exploited directly by malicious users. This time 
savings is critical when faced with incoming delivery deadlines 
and time crunches. 

B. Vulnerability Prediction Models (RQ2) 
We explore how limiting the prediction space to the 

approximated attack surface affects the accuracy of VPMs. As 
discussed earlier, VPMs predict where vulnerabilities might 
appear in a particular codebase based on software engineering 
metrics, such as code churn, code complexity, code 
dependencies, and pre-release vulnerabilities, among others. In 
Error! Reference source not found., we display the precision 
and recall of our VPM runs when considering the entire 
codebase and only code on our attack surface approximation. 
Compared with vulnerability prediction models (VPMs) run on 
the entire codebase, VPMs run on the attack surface 
approximation improved recall from .07 to .1 for binaries and 
from .02 to .05 for source files.  Precision remained at .5 for 
binaries, while improving from .5 to .69 for source files. While 
these figures are low due to the scarcity of vulnerabilities, this 
represents improvement over the state of the art and is an open 
research area. 

The initial results of applying the attack surface concept to 
VPMs are encouraging. We have demonstrated a statistical 
improvement in the accuracy of VPMs when the set of artifacts 
is narrowed down at both the binary and file level, and 

 
Figure 2 - Precision and recall of file level comparison of VPMs on all files 

and files on the attack surface approximation. 

Table 1 - DESCRIPTIVE STATISTICS FOR ATTACK SURFACE AT BINARY 
LEVEL, BROKEN DOWN BY TYPE OF STACK TRACE CATEGORY THAT 
IDENTIFIED THE BINARY. 

 User mode Kernel 
mode Fuzzing  Kernel and 

user mode 
%binaries 40.2% 7.1% 0.9% 48.4% 
%vulnerabilities 66.7% 40.6% 14.9% 94.6% 

 
Figure 3 - Heatmap visualizing relationships between files on the attack surface 

and the frequency of these relationships. 



continual improvement based on better targeting of test data is 
possible. By continually improving the accuracy of these 
VPMs, we hope to allay developer concerns about them and 
hope to see additional use of them to detect vulnerabilities. 

C. Discussion 
Within Microsoft, security teams have already bought in to 

the idea that attack surface approximation based upon stack 
traces could be useful in their day-to-day operations. Security 
professionals were quoted:  

“Attack surface approximation would be useful to help 
target our review efforts.”  
This buy in on the concept of an attack surface being sound 

is an important step as we look to take the next steps in 
demonstrating the value of such tools. 

One of the benefits of this approach is the high degree of 
automation possible for this process. The only software-
specific element is the parsing of the individual stack traces. 
Everything else in this process is portable and could be applied 
to any other software project in development, though the 
accuracy and reliability of these results on different systems 
have not been tested as a part of this paper.  By construction of 
our automated stack trace parser, we can provide an 
approximation of the attack surface of a system with some 
accuracy. 

VII. LESSONS LEARNED AND CHALLENGES 
One of the difficulties with parsing stack traces is the fact 

that the problem reduces to string parsing to pull out code 
entities. While string parsing in itself is not a difficult task, 
stack traces from different parts of a system may be in different 
formats, and some stack traces contain different information. 
For example, during this research we found some traces only 
contained the file or function that was in the call stack. We then 
built a mapping tool to look up which binary these artifacts 
belonged to. In other systems with less mature software 
engineering tools and data, mapping missing code may not be 
as straightforward, though smaller systems may have more 
consistent stack traces. 

We found that our fuzzing set of stack traces overlapped 
with the user and kernel datasets, finding only a few additional 
vulnerabilities. While there remained some overlap between 
user and kernel mode stack traces, together these sources are 
able to account for the majority of known vulnerabilities.  Our 
results indicate that the attack surface approximation may be 
computed using only user and kernel crashes. 

As this research progressed, we received a high amount of 
feedback related to the visualizations of this data and how it 
could be used to strengthen the security review process. In 
particular, graph visualizations of this data was of interest to 
security professionals within Microsoft. During this process, 
we devised a series of different graph formats for the data, 
including a graph representation of the entire system with 
single node entities, a centralized node example showing all of 
the neighboring relationships around that specific artifact, and 
the use of color to show the source of specific artifacts in stack 
traces. When these visualizations were shown to security 

professionals within Microsoft, they were received positively 
as a way to understand what the security-relevant relationships 
were between code entities. 

Heatmaps are another possible way to demonstrate the 
relationships between code. A relationship means that one part 
of the codebase directly follows another in a stack trace, 
typically indicating a direct call from one function to another. 
An example heatmap is shown in Figure 3. In this example, 
files appear on the X and Y axis of the graph. A file on the Y-
Axis of the chart has the files on the X-Axis of the chart 
directly follow it in a stack trace at least once if a purple box 
appears at that location. As the color of the box gets darker, 
that sequence is seen more often in the set of stack traces. This 
visualization can show practitioners at a glance which files 
have more appearances in the stack trace data and the variety in 
which different files appear around a specific file. For example, 
e6 is immediately followed by e1 in many stack traces, but no 
other files ever follow e6 in this dataset. One possibility is that 
this is crash handling code or a standard path taken during a 
crash. In contrast, e2 also appears frequently in stack traces, but 
a wide variety of files may immediately follow it in a trace. 
This visualization could help developers understand the context 
that a function or file operates in, without overwhelming the 
user with a graph of the entire system.  

Graphs of these relationships may be useful in several 
ways. By displaying the graph of security-relevant relationships 
to security reviewers while they work, they can focus on 
known possible malicious entry points during review rather 
than checking all of the input edges into a function or file. An 
example of a graph is shown in Figure 1. By presenting this 
data to reviewers, they can make more informed decisions 
about the context in which a file or function is operating in. 
The data is similar to the heatmap data discussed above, 
presented in a different visual format. 

These visualizations, in the view of the security 
professionals that the researchers spoke to, may have an impact 
on security reviewer productivity in the same way call graph 
displays can assist software developers. 

VIII. LIMITATIONS AND THREATS TO VALIDITY 
In this preliminary exploration of the research topic, we have 

only explored one specific software system. This approach may 
not be generalized to other systems without similar studies in 
different domains. In the absence of an oracle for the complete 
attack surface, we cannot assess the completeness of our 
approximation. Our determination of accuracy currently is 
based only on known vulnerabilities, which may introduce a 
bias towards code previously seen to be vulnerable. While this 
may be a good assumption, further exploration is needed. The 
set of artifacts set as part of the attack surface is an 
approximation, and we do not claim to capture all possible 
vulnerable nodes.  

We have done our VPM analysis on different levels of 
abstraction of code; binary level and file level. In this paper, we 
present results reflecting both of these levels. Each of these 
levels of abstraction has different strengths and shortcomings. 
For example, while binary level allows us to make more 



accurate claims about where vulnerabilities might be, we are 
painting with a broad brush. A single binary could contain 
hundreds of files that need to be looked at, which limits their 
usefulness. Running future analysis on file level and continuing 
to improve at that abstraction level is one way to mitigate this. 
By the reasoning above, our attack surface approximation only 
being on binary level is a limitation in the granularity of our 
approximation. 

Finally, due to code or configuration changes, code that is 
not on the attack surface may be moved on to the attack 
surface.  However, prioritization of code on the attack surface, 
using our method or other attack surface identification 
methods, can be used to reduce security risk. 

IX. FUTURE WORK 
We explore several different avenues for the continuation of 

this work. A further exploration of statistical data on frequency 
of appearance, and number of times a specific sequence of 
artifacts appear in user generated stack traces from crashes is 
one such avenue. By assigning weights to specific artifacts 
based on the frequency in which they appear in stack traces and 
in relationships with other artifacts, we may be able to improve 
VPM performance in detecting vulnerabilities if there is a 
relationship between these metrics and how often 
vulnerabilities appear. We hypothesize based on a cursory look 
at the data that this sort of exposure metric may be related to 
the discovery of security vulnerabilities. 

We plan to explore the expansion of the graph visualization 
and parsing of the stack traces, as this area seems to hold the 
most promise. In particular, discovering particular flow 
patterns within the security graph representation of the system 
is of particular interest to the security professionals we spoke to 
as a part of this research. Empirical studies to show 
improvement in the efficiency of security reviews when using 
these visualizations is one avenue this research branch could 
take. 

As mentioned in the limitations, these results cannot be 
generalized to all systems. Doing a similar analysis on other 
software systems, such as web applications, could give us 
insight into how generalizable this approach could be. 
Identifying how many stack traces are required to build a 
reasonably accurate approximation of the attack surface would 
be useful when trying to apply this technique to smaller 
software systems. 

All current results can be replicated at a finer level of 
granularity. The attack surface approximation could be done at 
both the file and function level, and the VPMs could be run 
with a function level attack surface as well. To do this, we will 
need to resolve unmapped file and function data for some of 
the entities on our attack surface approximation. 
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XII. APPENDIX 
 

Table 2 - METRICS DEFINITIONS 

Metric Category Definition 

Added LOC Churn Lines of code added during the development cycle.  

ChurnedLOC Churn Lines of code added, deleted or altered during the development cycle.  

DeletedLOC Churn Lines of code deleted during the development cycle.  

Editors Churn Count of unique users who have made changes to each file 

NumberOfEdits Churn Count of distinct commits made to each file 

RelativeChurn Churn Relative code measure, ratio of Churned LOC to LOC Project End 

Complexity (Avg, Sum, Max) Complexity McCabe complexity measure, number of linearly-independent paths  
through each function, rolled up to source-file level 

Arcs (Avg, Sum, Max) Dependency Number of transfer of control points between basic blocks defined in the file 

FanIn (Avg, Sum, Max) Dependency Number of calls to functions within each source file 

FanOut (Avg, Sum, Max) Dependency Number of calls by functions within each source file to other functions 

FanOutExternal  
(Avg, Sum, Max) 

Dependency Number of calls by functions within each source file to other functions outside 
the source file 

Incoming Cross Binary Dependency Number of calls from outside a source file's binary to functions within the source 
file 

Incoming Dependencies (Avg, Sum, Max) Dependency Number of function call, import, export, RPC, COM and Registry access 
dependencies on the source file 

Outgoing Dependencies  (Avg, Sum, Max) Dependency Number of function call, import, export, RPC, COM and Registry access 
dependencies by the source file  

AddedLOCSinceReset Legacy Lines of code added since the security reset date 

AgeinWeeks Legacy Number of weeks since recorded file creation date of source file 

ChurnedLOCSinceReset Legacy Lines of code added, deleted or altered between the security reset date and RTM 

ChurnSinceReset Legacy Lines of code deleted or altered between the security reset date and RTM.  

DeletedLOCSinceReset Legacy Lines of code deleted between the security reset date and RTM  

LegacyLOCPct Legacy Relative code measure, percentage of LOC written prior to reset 

LOC Pre-Reset Legacy Total lines of code in the file on the security reset date 

NumberOfEditsSinceReset Legacy Count of distinct commits made to each file since the reset 

Arguments (Avg, Sum, Max) Size Number of function arguments defined within the file 

Blocks (Avg, Sum, Max) Size Number of basic blocks contained within the file (a block is a single, contiguous 
set of instructions with one entry, one exit and no branches) 

Functions Size Number of functions defined within the file 

LOC Project End Size Total lines of code in the file at Release-To-Manufacturing (RTM) 

LOC Project Start Size Total lines of code in the file at the start of the development cycle 

Locals (Avg, Sum, Max) Size Number of local variables defined within the file 

Paths (Avg, Sum, Max) Size Number of paths  

VulnCount_PreRelease Defects Number of vulnerabilities fixed prior software release 

VulnCount_SecurityReview Defects Number of security related changes prior software release 

 


