Automating Network Monitoring on Experimental Testbeds

Michael Golightly Jack Brassil
Princeton University HP Laboratories
mgolight@gmail.com jack.brassil@hp.com
Abstract The tool was developed to automatically collewtt-

_)) _ flow [1] information for any Emulab [2] experiment’s
Despite experimental testbeds’ rapid growth and conting,atwork topology. NetFlow is a powerful flow monitor-
ued strong demand by researchers, the power of testbeglgy too| heavily used by large-scale network administra-
can be further increased by providing additional to0lsiqrs hyt has been relatively lightly useddxperimenters
to help experimenters instrument their experiments. Exi, testbed settings. The ability to export NetFlow data
perimenters with improved instrumentation support cans g native capability on all but the least expensive IP

deepen their understanding of experiment operation, anghyters and L2/3 switches, and the tools available to pro-
have an easier task of generating high quality datasets .55 collected data are numerous.

share with the community.)
We introduce a prototype tool that automatically de- Though conceived as a general purpose network mea-

ploys an instrumentation overlay on an existing testbedwrement p"?“form dV\gtn appllllca"illo nsr:o trt‘;iﬁ'c engtl)neer- q
experiment. Netflowize modifies instantiated experi- Il::]g’ ﬁccountlngkan hing, et or\:v as been em Srace
ments to collect experiment-wide flow statistics. The y the network security research community. Some

resources consumed by the flow collection process argecent appllpatlons of NetFIPW include studle§ n net-
specified by the experimenter. NetFlow records arework f_oren5|cs [3], botnet qlscovery [4], anq |n_C|dent
widely used by the networking and security researchdete<_:t|on; many other security research applications are
communities for tasks ranging from traffic engineering considered at conferences such as CERFaCon [5].

to detecting anomalous behaviors associated with zero-[hough NetFlow itself is of immediate interest to many

day attacks. We discuss tool design and implementatione,Xpe”memers' our extensible deployment framework

present usage examples, and highlight the many chalvas designed to generalize beyond NetFlow to support

lenges of auto-deploying an experiment-wide monitoringOther monitoring tools. _Hence what we learned about
automated deployment is of general interest to readers

infrastructure. L 2 . .
considering automated monitoring of experiments using
various other tools.

1 Introduction But deploying such network monitoring tools effec-

tively — consuming minimal experiment resources and
Cyber security research continues to be hampered by thexperiment behavior — takes fairly sophisticated users
lack of quality data sets available to the research comeeeply familiar with each individual tool, and often
munity. One factor contributing to this scarcity is the experience with implications of instrumentation design
difficulty experimenters face in collecting and preserv-choices. While many experimenters could benefit from
ing useful data. Yet experimental testbeds offer relativelyenhancing instrumentation of their experiment, only
few services specifically targeted at instrumenting expersome choose to. Yet we envision future testbeds with
iments. thousands of physical servers each with tens or hundreds
In this paper we outline the design, functionality, and of virtual machines, and in this setting individual exper-
performance characteristics of Netflowize, an automatednent size will likely grow enormously. Automated de-
deployment tool for experimental network monitoring. ployment promises to be a tractable approach to monitor

such large-scale experiments. in principal be deployed with our framework. In par-
In this paper we highlight the challenges faced in de-ticular, we imagine it to be straightforward to use other
veloping automated testbed instrumentation though theoftware-based measurement systems sudfiasand
lens of netflowize development. In Sections 2 & 3 we packet sniffers such @aspdump
introduce our motivation, and briefly review background
on NetFlow. Section 4 describes our design goals, an%
details our implementation, including our approaches
to the tradeoff between system resources and NetFIO\Af

probe and collector placement. The next section dis- stems to collect flow information for various account
cusses some simple application examples. The final Seéy Wi ! variou u

tion presents our conclusions, and argues that automatedd PU'POSES. versions 5 and 9 are the most V\."del.y
deployment tools will be valuable in diverse settings be-used formats toda_y. V9 is template-based, allowmg_ I
yond experimental testbeds, including commercial |oub-t0 b_e_ more exte_n5|ble a_nd easily adaptab_le to recording
lic clouds. additional flow information. The netflowize tool cur-
rently supports only the v5 protocol, though extending
the framework to v9 is straightforward. A NetFlow v5
2 Methodology packet payload consists of a 24 byte header followed by
at least one 48 byte flow record.
Despite the wide acceptance and success of experimental There are two main components to a NetFlow deploy-
testbeds, services for instrumenting experiments have derent, the probe and collector. A probe monitors traf-
veloped slowly. We believe that lack of instrumentation fic on a network device and generates NetFlow records
support is a key contributing factor to the rarity of useful that are sent to a collector. NetFlow probes are natively
data sets collected by — and available to — the securitpupported on most routers and many enterprise class L2-
and networking research communities. Yet instrument-3 ethernet switches, and are usually configured through
ing individual experiments of unknown type and purposea CLI that allows specific interfaces to be monitored
seems possibly beyond what a testbed can hope to pr@nd filters to be constructed to monitor specific flows.
vide. In the face of the additional complexity and cost, Software-based NetFlow probes, collectors, visualizers,
experimental testbed operators have provided some limetc, are available with packages suchflas/-tools[21]
ited hardware and software tools (e.g., Endace DAG capandSiLK [22] that can be run on most Unix-based sys-
ture hardware [6]), but have largely left the experimentertems.
to use standard platforms and create measurement sys-A network flow is informally defined to be a unidi-
tems for themselves. rectional sequence of packets with some logical associ-

In this paper we challenge testbed operators to sharpe#tion (e.g., those packets belonging to a TCP connec-
their focus on offering services that enable the expertion). More precisely, a widely accepted definition is a
imenter to deploy an experiment-specific instrumenta-sequence of packets whose headers match a specified n-
tion overlay. To investigate the feasibility and challengestuple observed during an interval of time at a single point
of automated instrumentation deployment, we set out tde.g., router egress link). An example of such a tuple
build a prototype based ametflow Creating a NetFlow might be
overlay manually is not out-of-reach for many sophisti- < src IP, dest IP, src port, dest port, IP
cated users, but is less likely to be considered by certaiprotocol, IP Type of Service>
testbed users such as students. The tool, which we be- Each newly observed flow triggers creation of a 48-
lieve will provide insights to other tool developers, hasbyte NetFlow record; NetFlow v5 records contain the
been made publicly available. following fields:

Though we have chosen to deploy NetFlow becaus®y analyzing flow data at multiple vantage points, an
of its immediate relevance to experimenters in both theexperiment-wide picture of traffic flow and traffic vol-
network systems and network security research commudme can be built.
nities, we have striven to create an extensible framework For efficiency, NetFlow records are usually trans-
which is largely independent of the underlying measureported periodically via a UDP packet containing a 24
ment tool deployed. In particular, we have made nobyte NetFlow header and multiple flow records, up to
changes to the open source NetFlow probes and colle@0 (24 for v9) in a 1500 byte datagram. Consequently,
tors we deploy automatically. Hence, and tool that carrecords might be lost due to network error or conges-
operate in a client-server (or sensor-collector) mode cation, particularly if experiment instrumentation support

Background

he NetFlow protocol was originally developed by Cisco

Table 1: Partial NetFlow Record

Byte position Contents Description
0-3 srcaddr Source IP address
4-7 dstaddr
8-11 nexthop
12-13 input
14-15 output
16-19 dPkts Total packets
20-23 dOctets
32-33 srcport TCP/UDP source port
34-35 dstport TCP/UDP destination port
37 tcpflags TCP flags seen
38 prot IP protocol type
39 tos IP type of service (ToS)

is poorly designed to support record generation rates.

4 Goals, Design and Implementation

Instrumenting testbeds has received considerable atten-
tion in recent years [7], [8]. However testbed opera-

Destination IP address o5 have first focused on offeringstbed-widerather
IP address of next hop routghan experiment-wide tools, and have made these tools
SNMP index of interface yjisible to experimenters. One such example is Planet-
SNMP index of interface | 51y's [9] CoMon[11], which tracks compute system per-

formance and operation. CoMon data is archived, and

Total number of L3 bytes eyperimenters may view either node-level or slice-level

statistics to better understand experiment behavior.

The benefit of this approach for operators is that a
tool of manageable complexity provides a service to both
the operator and experimenters. But this approach pro-
vides little flexibility for experimenters who might seek,
say, a finer grain view of their experiment. We envision
the testbed operator providing tools that offer a targeted,
controllable view of each individual active experiment.

Maintaining NetFlow data can be computationally ex- The goals we set for designing netflowize included:

pensive for a router (or software probe’s host machine)

and burden the host CPU or hardware to the point where ® EXxtensibility — Though our prototype deploys Net-

it runs out of capacity. To avoid loading problems and re-
duce the volume of collection data, packets may be sam-
pled; rather than examine every packet in a flow, sam-
pled NetFlow records are estimates of the actual mea-
sured flow volume.

3.1 NetFlow in Emulab

Multi-tenant environment instrumentation presents a
fundamental design challenge. The testbed operator re-
quires system-wide monitoring to maintain overall sys-
tem health, while experimenters require experiment-
wide monitoring for performance validation and mea-
surement. Testbeds such as Emulab emulate arbitrary
network topologies using a flat L2 infrastructure and vir-
tualization techniques such as VLANs. In some cases,
switches such as the Cisco Catalyst 65xx-class used in
schoonel[6] provide native NetFlow support. However
relatively few devices offered as client test resources
currently support NetFlow natively. Though of poten-
tial benefit to experimenters, most testbeds don’t export

Flow probes and collectors, it is extensible and can
be readily modified to create monitoring overlays
intended to measure other network behaviors.

Flexibility Experimenters need to be able to
specify the granularity of monitoring data they col-
lect. We expect the degree of granularity demanded
by experimenters to evolve as an experiment pro-
gresses from a debugging phase to a final data col-
lection phase.

Coverage Though many tools focus on measure-
ment at specific points in a topology, our emphasis
was on building an experiment-wide data collection
system.

Resource Usage Control Monitoring demands
compute and storage resources, and experimenters
should be offered alternative overlay approaches
that require use of varying quantities of resources,
particularly in testbeds where node utilization is
high.

NetFlow data that can be obtained from infrastructureAs we will see in the following section, these design
switches, nor offer mechanisms to interact (e.g., througigoals drove various design decisions.

NetFlow filters) with such data.

In Emulab LANs and links requiring traffic shaping 4.1 Design

operations such as packet loss or rate limits are emulated

by compute nodes (i.eshapernodes). As we will see AN experimenter must be able to balance instrumentation
in Section 4 this presents additional complexity for auto-n€eds and available hardware support. Consider the net-

mated monitoring deployments.

work first. Hardware devices can easily generate tens of
thousands of NetFlow records per second; a probe gener-
ating 10,000 NetFlow packets/second can consume 120

Mbits/sec of bandwidth. Since collectors aggregate trafeither above example, parsing the script to determine
fic from many probes, their ingress links can be expecteshode naming is challenging; in some complicated scripts
to reach capacity first. A collector running on a moderneven determining the number of nodes requested is
commodity server is roughly capable of processing 40Kformidable.
flows per second. We note that PlanetLab nodes may The challenges of topology identification are further
generate 100s of thousands of flows in a day. Today ircomplicated by factors such as the insertion of nodes to
practice we see much smaller numbers of active flows oimplement link traffic shaping, which are invoked im-
Emulab. In our own project use, we rarely had occasiorplicitly. While the need for shaping nodes can be de-
to exceed 500 simultaneous active flows on a 100 Mitermined from the script, multiple shapers can be im-
link. plemented on a single shaper node; one can not eas-
A key design problem we face with a netflow over- ily determine the number of physical shaper nodes used
lay is where to place probes and collectors in a arbitraryin a given experiment instantiation. We note that other
experiment topology, while seeking to strike a balancetools have circumvented the complexity of parsing and
between 1) avoiding duplicate flow counting, 2) using modifying scripts by choosing experimenter interaction.
the minimal required hardware support, and 3) obtainingDeterlab’s [10] Security Experimentation Environment

complete experiment coverage. (SEER) [13], [14], instructs the user to explicitly enter
nscommands to create a control node, and install tarfiles
4.2 Determining the Overlay Topology and perform an initialization.

Suppose we propose to modify an experiment to provide - e -
additional hardware and/or software resources for instru4-3 Post-Instantiation Modifications

mentation (including probes and collectors). Determin-rq gifficulties encountered in attempting to automati-
ing the topology of such an overlay obviously demands;g)\y determine a topology accurately and overlay an in-

knowledge of the experimental network. strumentation infrastructure by modifying asfile sug-

A naive approach to overlay creation proceeds as folyagt that in many cases it is preferable to instantiate an
lows; extract a network topology from its specification

! ; o experiment first — prior to its modification. The process
— the experimentis topology description — and then ,5c664s as follows: instantiate an experiment, obtain
modify it to add required overlay hardware and softwaréy,g etails associated with assigned resources, swap out

components. In principle, this approach can be executeghe experiment, modify the ns-script (e.g., add nodes, de-
prior to the experiment’s instantiation. Yet consider thep|0y tarballs) and make other changes necessary for the
following example of a perfectly valid topology descrip- jnstrymentation overlay, and swap the instrumented ex-
tion: periment back in.

Example 1 The feasibility of such an approach relies upon 2 Em-

$ns duplex—link [$ns node] [$ns node]\\ ulab resource allocation system properties:
10Mb Oms DropTail

o Persistence of resource assignmentsEmulab re-
source assignments are 'sticky’. Resources assigned
to an experiment are not immediately decommis-
sioned and placed in the resource pool available for
other experiments. Swapping an experiment out and
back in will use the same resources. Persistent re-
sources support powerful features such as an exper-

imenter’s ability to 'modify’ an instantiated experi-

create nodes ment.

for { set i 0 } { $i < 2} { incr i } {
set node($i) [$ns node]
tb—set—node—os $node($i) FBSD410—STD

Though perhaps bad form, Emulab will fill in unspeci-
fied details and create 2 nodes running the default operat-
ing system, and assign the nodes’ names (tagade-n1
andtbnode-n2, and perhaps name the connecting link
tblink-13. Next consider a more common topology spec-
ification:

Example 2

e Exposure of experiment resource instantiation de-

) tails Emulab exposes low-level details of experi-
create link ment instantiation (e.g., switch ports) via AML-
set 1ink0 [$ns duplex—link $node(0) $node(1) RPCinterface. Experimenters can get a list of all

10Mb Oms DropTail] nodes, links, and associated names. The following

Extracting node names is necessary to configure the example illustrates available low-level information
collector that each probe instance is assigned to. In for traffic shaping nodes.

server

Figure 1: The number of 'shaper’ nodes used to instan

tiate the 3 emulated links in this 3 node network can be>

difficult to predict.

4.4 Building the Overlay

The next step is to build an overlay. Experimenters
should have considerable control over how the overlay
is constructed. In particular, an experimenter should be
able so specify whether an instrumentation overlay uses
existing experiment resources, or whether new resources
are to be requested.

Experimenters seeking to create the least intrusive or
heavyweighbverlay choose to incur the cost of acquiring
additional nodes and links to run collector(s) and probes
positioned as network taps. In doing so, experimenters
ensure the least possible impact of measurement on their
experiment’s operation and performance, maximum ex-
periment coverage, and the ability to generate the finest-
grain measurement information. One case where a re-

earcher might prefer this option is during the ’results
collection’ phase of their experiment’s lifetime. Another
example might be where a security researcher is inter-
ested in rapid detection of a malicious flow associated

Suppose we seek to implement the simple 3 node‘,’Vith a virus spread, and seeks frequent record updates

fully connected mesh topology depicted in Fig-
ure 1. The number of physically distinct shaper

sent to a collector. As an alternative, an experimenter
might choose to collect as much netflow information as

nodes used to emulab the links can be difficult toPOsSible using spare capacity on existing compute re-

know, and is determined in part by the number of

sources. An experimenter might select thightweight

physical interfaces available on shaper nodes. IrPPtion during the 'debugging’ phase of an experiment's
this case two nodes are used to emulate the 3 linkdifetime.

and theXML-RPCinvocation reveals node names,

Observations of our own experiments suggested that

which can then be directly queried for the interfaceswhile compute node CPU usage was often high (see Fig-

mapped to links between nodes:

tbdelayO: cat /var/emulab/boot/delay_mapping
link2 duplex client monitor fxp2 fxp3 60130 60140
1linkO duplex client server fxp4 fxpl 60110 60120

tbdelayl: cat /var/emulab/boot/delay_mapping
linkl duplex monitor server fxpO fxpl 60110 60120

Given link information gathered througkML-RPGC we

ure 2), and the number of network interfaces on some
nodes was exhausted, utilization of the Emulab control
network infrastructure was mostly modest throughout
experiment run-time. Hence, for either overlay construc-
tion mode we choose to conserve resources by always us-
ing the control network to serve as the measurement dis-
tribution network (i.e., transport network between probes
and collector(s)) rather than create a dedicated measure-
ment network. Of course, these starting points do not

are now prepared to construct a graph of our experimenprohibit an experimenter from subsequently modifying
tal topology. However our call only reveals details aboutthe initial overlay construction to realize their desired
links between compute nodes, and must still determinaneasurement network infrastructure.

how shaping nodes fit in. As described above, we con
tact those nodes directly (e.g., via ssh) for attached lin
information, and construct the graph as follows:

lQ1.4.1 Lightweight Mode

e Probe placement To find the minimal number of

1. Add all nodes to the graph (compute and shaping probes needed to cover all network flows, we be-

nodes).

2. Add links to graph starting with shaping nodes.
Keep track of links to avoid redundant links.

3. Add links from compute nodes to graph.

gin with an algorithm motivated by theet cover
problem. We first consider each link’s and LAN's
attached nodes as a set, and start by picking the
node that belongs to the most sets. On the selected
node we run a probe responsible for monitoring the
node’s attached links. Repeat, but only on those sets

fprobe CPU usage

n 6 .
(&
X
4 -
2 |- 300 ms. duration
1 Mbs transmission link
packet size 28 bytes
O 1 1 1 1 1 1 1 1 1
0 0.5 1 1.5 2 25 3 3.5 4
log(# flows)
Figure 2: CPU utilization by probe on an Emulab PC850 node.
that have yet to be covered. resource consumption. One can imagine a more flexi-

One complication is that a lossless LAN can be im- ble approach would be to query a user for the number of
plemented on some systems with an actual switcrfdditional resources that should be assigned for instru-
(i.e., not a shaper bridge), and hence all traffic will mentation purposes, and have the tool deploy exactly Fhat
not be forwarded to all attached links. Here the On|ynumber of resources to support probes or collectors in a

approach ensuring traffic coverage is to run a probé“OSt efficient manner. A related deficiency in our cur-
on every attached node. rent approach to 'heavyweight’ operational mode is that

a user has no advance warning of the number of addi-
e Collector placement Though many optimiza- tional resources that will be required for the instrumented
tions are possible, we select a node at randomexperiment. As a consequence, the experimenter can not
preferably from the set of nodes not operating asbe certain that sufficient resources are available in the
probes (if nonempty). system’s resource pool.

4.4.2 Heavyweight Mode 5 Examples

¢ Probe placement Each link in our experiment A few simple examples demonstrate netflow overlay cre-
is replaced by a LAN connecting the attached end- P P y

. ation. Figure 3 depicts an experiment with 3 nodes in-
points, as well as a new node we attach to run

probe. A lossless LAN simply has an additionalierconnected with a LAN and no requested traffic shap-

new node attached to run the associated probe'.ng' End node shaping is explicitly enable to ensure that

Lossy LANs continue to be probed from attached Superfluous delay nodes_ are not m_stantlated. Exact_ly 3
nodes. compute nodes are assigned and interconnected with a

switch. Netflowize’s lightweight overlay deploys probes
e Collector placement Each collector is assigned ©on 2 of the compute 3 nodes, recognizing that design’s
to a newly assigned standalone node by default. sufficiency to observe all flows. Minimizing network
traffic, a single collector is also placed on a probe node.
Before considering examples of tool operation in each In heavyweight mode on the same topology, netflow-
mode, we note that there are several potential shortcormze modifies thens script in a simple yet clever fash-
ings with our current approach. First, it is unnecessaryon. The single script modification is to disable end node
to force an experimenter to make a binary choice aboushaping. When the experimented is swapped out and

nonitor(bc)
10.1.1.4

1

~”{0m;f;;rver(pc)
10.1.1.3

-

client{pc)}
10.1.1.2

Figure 3: A simple 3 node topology.

back in (as necessary in heavyweight mode), two ad-
ditional delay nodes are invoked to implement shaping
(tbdelayOandtbdelayl, one between each of 2 end sys-
tems. NetFlow taps these two delay nodes to run probes
to ensure full experiment coverage, and one of the delay
nodes is also chosen as the collector.

5.1

Implementation

Netflowize comprises approximately 700 lines of
Python code, and employs the widely us@dw-
tools open-source package for netflow record genera-

tion

and collection. The tool is publicly available at

http://66.92.233.103/netflowize-0.3.tar.bz2

6

Related Work

A wide range of distributed monitoring systems and ap-
proaches are closely related to our work, including:

PlanetFlow?2 PlanetFlow [15] provides a testbed-
wide view of flows on all PlanetLab node interfaces.
PlanetLab operations relies on the data to investi-
gate and resolve complaints received from third par-
ties about suspicious or malicious traffic originating
on a system node. A public web interface to the data
set permits experimenters (and other researchers) to
guery either their own slice’s or various aggregate
node or system flow statistics.

A custom version offprobe is deployed on each
PlanetLab node, the only major modification be-
ing support for collecting slice level flow infor-
mation. The CPU overhead of the probe was re-
ported to only be 1-3% under maximum load; Plan-
etFlow uses the substantially more efficifmbbe-
ulog probe software. Under this configuration, it
is reported that there is no need to resort to flow
sampling. Rather than probes sending NetFlow
records directly to a collector, they are stored on
each node locally and periodically collected by a
separate polling-based aggregation process. Real-
time flow monitoring is of course prohibitive with
this design, but it is sufficient for operational needs.
The system as a whole is reported to generate up to
4 TB of data per day, the equivalent of roughly 390
Mbps of netflow packets.

Orbit Measurement Framework and Library (OML)

With its focus on experimenter control of instru-
mentation on the Orbit wireless testbed, OML [12]
seeks to reduce the burden on experimenters of in-
strumenting their experiments. OML provides an
API that permits individual experimenters to define
measurement points and parameters, and collect and
process measurement data.

SEER

SEER is an instrumentation workbench that enables
DETER experimenters to simply conduct security
experiments by providing agents for attack and traf-
fic generation, collection and analysis. SEER in-
tegrates various tools for configuring and execut-
ing experiments and provides a user-friendly GUI
for experimenters to use the tools. Like netflow-
ize, SEER strives to make experiment instrumenta-
tion available to users at all skill levels. Netflowize
could be viewed as a tool existing within a multi-
purpose workbench like SEER.

e Emulab Link/Node Tracing

By providing a native, testbed supported instrumen-
tation tool that experimenters can flexibly employ
on their experiment, Emulab’s powerftrhce fea-

ture is close in spirit to our approach. Trace per-
mits packet capture and storage of packet traces at
any link specified in an experimentiss topology
description.

Distributed MonitoringThe topic of probe place-
ment for the fullest possible network coverage has

been widely studied [23], [24], [25]. Of particu- [3] E. Pilli, R. C. Joshi, R. Niyogi, "A Generic Framework

lar interest, CSAMP [19] relies on feedback from for Network Forensics,International Journal of Com-
netflow-capable routers on current traffic conditions puter Applications1(11):1.6, 2010.

to determine data collection points. Their goal was [4] Uddin, A., "Detecting Botnets Based on their Behav-
to reduce redundant flow collection and thereby iors on Perceived from NetflowAttp://courses.cs.ut.ee

increase flow coverage. Their work was focused /2009/security-seminar/uploads/Main/mohammad-1.pdf
from a network administrators standpoint where full [5] proceedings oFlowCon 2011
topology, routing, and traffic matrix information http://www.cert.net/flocon.
was known. [6] Schoonerhttp://www.schooner.wail.wisc.edu
« DIMAPI DIMAPI [20] creates an APl to enable [7] Barford, Paul (Ed), "GENI Instrumentation and Mea-
rs to express complex distributed monitoring surement Systems (GIMS) SpecificatioGENI Design
use . . Document 06-12Facility Architecture Working Group,
needs, choose only the amount of information they 2007.
are interested in, and therefore balance the overhead)
8] "INSTOOLS: Instrumentation Tools for a GENI

: ity of i - [8]
with the granularity of information collected. Prototype”. http://groups. geni.net/geniwiki/
InstrumentationTools
7 Discussion [9] PlanetLabhttp://www.planet-lab.org

[10] Deterlabhttp://www.isi.deterlab.net

We have described the development ﬂﬂtﬂOWIZe a [11] CoMon,http://comon.cs.princeton.edu

new tool for researchers to analyze their testbed exper-lz] M. Singh, Ot, M, Seskar, I, Kamat, P. "ORBIT
iments. We believe that the tool will be particularly Measurements Framework and Library (OML): Motiva-
valuable for students and those unfamiliar with deploy- tions, Implementation and Feature®foc. of Trident-
ing and analyzing netflow. The tool might also be help- Com 20052005.

ful for experiments that are exposed to the public inter- [13] Security Experimentation Environment (SEER)
net to observe actual in-the-wild attacks. Security re- nttp://seer.deterlab.net ’
searchers using contained environments such as DETER) o

will likely find the tool useful for application to anoma- ™ ﬁ{y%ilvgﬁﬁ;eﬁiamfgﬁvi%nﬁén?];o';';SES_?I'EnéDéTSE;C”'
lous flow detection, and perhaps tracking malware evo- : . .

lution [29], [30], [31], [32]. The tool might eventu- Community Workshop on Cyber Security Experimenta

- - ; S . tion and Test (CSET'072007.

ally also find benefit in traffic characterization in public
multi-tenant clouds. [15] PlanetFlow2http://planetflow.planet-lab.org

Many compelling topics were considered outside the[16] K. Sklower and A. Joseph, "Very Large Scale Coopera-
scope of our project. This included crucial components tive Experiments in Emulab-Derived SystemBETER
of a complete system such as the visualization of gath- QommgnTlty Vgork%mp on Eyber 260‘;”“’ Experimenta-
ered netflow data. We have also not directly addressed tion and Test 2007Boston, August 2007.
the specific monitoring needs that are related to the vir-[17] K. Sklower and A. Joseph, J. Mirkovic, S. Wei, A. Hus-
tualization of end hosts and interfaces. sain, B. Wilson, R. Thomas, S. Schwab, S. Fahmy, R.

Some key lessons we learned included the benefits — EZ?;Y&?:}S;‘(E:AZEr];orDtEgsDE?E%h%zﬁg?:fgf en-
and perhaps necessity — of experiment post-instantiation the 3rd IEEE Conf. on Testbeds and Research Infrastruc-
instrumentation. Just as crucial is the need for shared re- {,1es for the Development of Networks and Communities
source systems to expose even the lowest-level resource (TridentCom 2007)2007
allocation and instantiation details to facilitate experi-

L [18] Global Environment for Network Innovation,
ment monitoring.

http://www.geni.net

[19] V. Sekar, M. Reiter, W. Willinger, H. Zhang, R. Kom-
pella, D. Andersen, "CSAMP: A System for Network-
Wide Flow Monitoring”, Proceedings of NSDI'Q&008.

[1] Cisco 10S NetFlow, http:/www.cisco.com/en/us/ [20] P. Trimintzios, M. Polychronakis, A. Papadogiannakis,

products/ps6601/productes_protocolgrouphome.html M. Foukarakis, E. Markatos, Arne Oslebo, "DiIMAPI: An
Application Programming Interface for Distributed Net-

[2] Emulab,http://www.emulab.net work Monitoring”, Proc. of NOMS’062006

References

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Flow-tools http://www.splintered.net/sw/flow-tools
/docs/flow-tools.html

System for internet-Level Knowledge (SiLK),
http://tools.netsa.cert.org/silk/

Cantieni, G. R., lannaccone, G., Barakat, C., Diot, C.,
Thiran, P., "Reformulating the Monitor Placement Prob-
lem: Optimal Network-Wide Sampling’RProc. of ACM
CoNeXT 20062006

Chadet, C., Fleury, E., Lassous, |., Herve , Voge, M.-E.,
"Optimal Positioning of Active and Passive Monitoring
Devices,"Proc. of CoNeXT 2002005

Suh, K., Guo, Y., Kurose, J., Towsley, D., "Locating Net-
work Monitors: Complexity, heuristics and coverage”,
Proc. of IEEE INFOCOM 20052005

Estan, C., Keys, K., Moore, D., Varghese, G., "Building
a Better NetFlow”Proc. of ACM SIGCOMM’042004

Kompella, R., Estan, C., "The Power of Slicing in Inter-
net Flow MeasurementRroc. of IMC 20052005

Sharma, M., Byers, J., "Scalable Coordination Tech-
niques for Distributed Network Monitoring”Proc. of
PAM 2005 2005

Lakhina, A., Crovella, M., Diot, C., "Diagnosing
Network-Wide Traffic Anomalies”Proc. of ACM SIG-
COMM’04, 2004

Mai, J., Chuah, C.-N., Sridharan, A., Ye, T., Zang, H., "Is
Sampled Data Sufficient for Anomaly DetectionPtpc.
of IMC 2006 2006

Sekar, V., Duffield, N., Van Der Merwe, K., Spatscheck,
0., Zhang, H., "LADS: Large-scale Automated DDoS
Detection System”, Proc. of USENIX ATC 2006, 2006

White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad,
S., Newbold, M., Hibler, M., Barb, C., Joglekar, A., "An
Integrated Experimental Environment for Distributed
Systems and NetworksRroc. of OSDI'02 2002

