
Building a Virtually Air-gapped
Secure Environment in AWS
Erkang Zheng

@erkang

© 2018 LifeOmic, Inc.

Phil Gates-Idem
@philidem

Matt Lavin
@mdlavin

April 2018

© 2018 LifeOmic, Inc. 4/10/18 2

About LifeOmic
Empowering researchers, clinicians and individuals to use data to drive better health outcomes.

Our security challenges

As a technology startup, how do we
• Allow developers to move fast, work anywhere, feel empowered

while ensuring security and compliance?
• Prove to auditors and convince customers that their

data is safe?

About this talk

We will cover
1. Forming an effective security program for cloud-native DevSecOps
2. Building a ”virtually air-gapped” production environment in AWS
3. Using a secure software delivery pipeline to promote code into the “air-gapped” environment
4. Automating production change management review and approval (cm-bot)

What this talk is
• Our own security journey
• An opinionated approach
• A selective portion of our security program strategy and technical implementation

What this talk is not
• Not a marketing/sales pitch
• Not a threat landscape view or scientific research
• Not a one-size-fits-all approach or gold standard
• Not a bulletproof cookbook/recipe

1. The Program
The Assumptions, Assurances, and Culture of an effective security
program for cloud-native DevSecOps

© 2018 LifeOmic, Inc. 4/10/18 5

Our security program journey this past year

APRIL

2017

JULY SEPTEMBER

Assessment and
Implementation

The “Magnificent Seven”

The “Essential Eight”

The “LifeOmic Top Ten”

HIPAA
Compliance

DevSecOps
Automation and

Continuous Improvement

2018

JANUARY MARCH

HITRUST CSF
Certification

Began HITRUST CSF
Adoption and

Assessment

• SSO, MFA
• Cloud, server and container monitoring
• Next Gen EPP
• OSS, SAST, DAST, Pen Testing
• Awareness training
• ...
• 80+ controls/procedures

• Hands-free continuous deployment
• Automated security scans
• Automated production change review

and approval
• Centralized security analysis and

orchestration
• Bug bounty program

© 2018 LifeOmic, Inc. 4/10/18 7

Cloud Security Division of Responsibilities
We assume the security ‘of’ the Cloud can be trusted

SECURITY
‘OF’

THE CLOUD

AWS
responsibility

SOFTWARE

COMPUTE STORAGE DATABASE NETWORKING

AVAILABILITY ZONESREGIONS EDGE LOCATIONS

HARDWARE/AWS GLOBAL INFRASTRUCTURE

EC
2

V
PC

La
m

bd
a

Ba
tc

h

EC
R

EC
S

A
PI

 G
W

S3 RD
S

D
yn

am
oD

B

12
9

Se
rv

ic
es

● ● ●

SECURITY
‘OUTSIDE’
THE CLOUD

OUR
responsibility

ON-PREMISE
NETWORKS

USER ENDPOINT
DEVICES

APPLICATION DESIGN AND DEVELOPMENT

APP
SCANNING

VULNERABILITY MANAGEMENT

POLICY AND PROCEDURES

ACCESS CONTROL & SECRETS MGMT

CI / CD
PROD DEPLOY

EXTERNAL
TESTING

AWARENESS TRAINING

VENDOR RISK

AUDIT AND COMPLIANCE

ALERT ANALYSIS & INCIDENT RESPONSE

ASSET INVENTORY

SECURITY
‘IN’

THE CLOUD

OUR
responsibility

ENVIRONMENT 1

ACCOUNT/ENV CONFIGURATION

OS INSTANCES/CONTAINERS

PLATFORM / APPLICATION

DATA

ENVIRONMENT N

ACCOUNT/ENV CONFIGURATION

OS INSTANCES/CONTAINERS

PLATFORM / APPLICATION

DATA

Manifesto
of a cloud native security program

We believe modern cybersecurity, especially for digital companies with cloud-native operations, requires a different
mindset and operating model such that we should:

• Assume compromise, but expose no single point of compromise.
• Track everything since you cannot protect what you can’t see.
• Automation is key because people don’t scale.
• Build products that are secure by design and secure by default.
• Engage everyone in security for there is power in the crowd; two is stronger than one.
• Favor transparency over obscurity, practicality over process, and usability over

complexity.

Security should be simple, open, collaborative and rewarding.
https://securitymanifesto.net

https://securitymanifesto.net/

2. The “Air-gap”
Building a ”virtually air-gapped” production environment in AWS

© 2018 LifeOmic, Inc. 4/10/18 9

The GOALS

For the production environments in AWS, we want
to provide the highest level of security assurance, in
a way such that

• There is no internal network connectivity into the
environment such as VPN, SSH, or AWS
DirectConnect.

• Internal engineers can only access applications
logs and temporary read-only access in
production for troubleshooting and support

• Internal users should have no access to modify
systems, configurations, resources, workloads;
especially no access to any customer data at all
times, even with temporary privileged access

The GATES

Any privileged access into production environment
requires an approved changed management ticket and
passing four security gates:
• The elevated role must be assigned to the approved

individual in the centralized IdP;

• The user must authenticate and pass MFA
validation;

• An explicit deny access rule to production must be
temporarily lifted for the user to assume a privileged
role in production; and

• Even with the privileged access, certain risky actions
such as making changes to IAM policies, users,
roles or groups and accessing customer data are
explicitly denied.

Creating a virtual "air gap” to our production
AWS account

1
4/10/18 11

Data-centric model; zero-trust architecture

No internal network. 100% cloud.

Fully segregated with Granular policy
enforcements.

Individually secured devices.

No internal access to production data.
Minimized data leakage potential.

No “keys to the kingdom”;
No single points of compromise.

© 2018 LifeOmic, Inc.

2
4/10/18 12

No direct administrative or broad
network connectivity into production.

Processes are short-lived and killed
after use.

Granular security-group policies.

Minimal persistent attack surface
making it virtually impenetrable.

Segregated environments meet short-lived processes

© 2018 LifeOmic, Inc.

3
4/10/18 13

Least-privileged temporary access

Need-based access control for both
employees and computing services.

Access to critical systems and
resources are closed by default,
granted on demand.

Protected by strong multi-factor
authentication.

"Secrets" remain secret at all times.

Split-knowledge and dual-access for root account access.

© 2018 LifeOmic, Inc.

4
4/10/18 14

Watch everything, even the watchers

All environments are monitored;
All events are logged;
All alerts are analyzed;
All assets are tracked.

No privileged access without
prior approval or full auditing.

We even deployed redundancy
to “watch the watchers”.

© 2018 LifeOmic, Inc.

Copyright© 2017 LifeOmic, Inc. 4/10/18 15

Now, the question is, how do we get software
deployed into such an environment without internal
network access?

3. The Pipeline
Using a secure software delivery pipeline to promote code into the “air-
gapped” environment

© 2018 LifeOmic, Inc. 4/10/18 16

The Pipeline Steps

© 2018 LifeOmic, Inc. 4/10/18 17

Code Build Deploy

• Dev
• Test
• Infra
• Prod

© 2018 LifeOmic, Inc. 4/10/18 18

Code

Code review
Tests pass
Code vulnerability scan

Merge to
master

© 2018 LifeOmic, Inc. 4/10/18 19

Build

Tests pass

Code vulnerability scan
Produce Build Artifacts

Docker Images

Build Manifest
JSON File{ }

Publish to S3

Build
Artifacts

(S3)

Build Artifacts

Old Way

• VPN network connection
between CI/CD service
(Jenkins) and target
environment

• Changes to infrastructure via
UI or shell scripts

• Provisioning via SSH
connection

• bastion host / ”jump boxes”

New Way

• Fully automated deploys via
APIs

• Terraform for Infrastructure-
as-Code

• “Share Nothing” environments
• Immutable builds
• Containerized deploy image

Deploy

© 2018 LifeOmic, Inc. 4/10/18 21

• Describe infrastructures in code
• Automatic calculation of diffs between deploys

Infrastructure-as-code

Environment Isolation

L

launch-deploy-job

Build Artifacts (AWS S3)

PRODUCTION AWS ACCOUNT

get-deploy-job-status

AWS
ECS Task

Deploy
Docker Image

DOWNLOAD (signed)

Copyright© 2017 LifeOmic, Inc. 4/10/18 23

How do we ensure that this process has been followed with
each production deploy?
What type of reviews and approvals are required and how
does it scale with CI/CD in a Cloud DevOps operating
environment?

Deploy Workflow

© 2018 LifeOmic, Inc. 4/10/18 24

Trigger
Deploy

Auto-
Create CM

Ticket

Pause
Deploy

Resume
Deploy

Analyze
Changes to

Infrastructure

Verify that
Process was

Followed

Wait for
Human

Approval

Approve
CM Ticket

Auto
Approve?

Change
Management Bot

Yes

No

Deploy Workflow
(continued)

© 2018 LifeOmic, Inc. 4/10/18 25

Stage
Deploy

Files

Launch
deploy job

via
launch-deploy-job

Poll for
job status

via
get-deploy-job-

status

Launch
Deploy
Worker

AWS ECS
Task

ABORT

Job
signature

valid?

No

Yes
Run

Deploy
Docker
Image

Job
Complete

4. The “bot”
Automating production change management review and approval (cm-bot)

© 2018 LifeOmic, Inc. 4/10/18 26

Human Submitter

• How can I figure out what has
changed since my last
deployment?

• How much detail do I really
need?

• Wait … wait … wait … ask
somebody to approve

Human Reviewer

• Were the changes reviewed
by others?

• Was a security scan run?
• Do I trust the list of changes?

(Hint: You should not)

Before the bot

Human Submitter

• Provide summary text
• Provide Jenkins build

reference

Automation

• Compute what changed since
last deploy

• Verify changes were reviewed
• Detect security scanning
• Punt to human on problems

Life with a bot

© 2018 LifeOmic, Inc. 4/10/18 29

Automated approval workflow

© 2018 LifeOmic, Inc. 4/10/18 32

Incentives change culture

Developers like fast approvals

Following process means automated approval

Social pressure to follow the process

LESSONS LEARNED

• Existing DevOps solutions are unfortunately
not “security-first”

• Our implementation has grown a bit too
complex over time

• Influence positive culture change through
automation and incentives

• Developers are not created equal – some
code reviewers are more diligent than others
but indistinguishable to the automation tools

• VPN access is overrated

FUTURE DEVELOPMENT

• Risky change detection in production deploys
• More intelligent rules or even ML to detect

code changes in PRs (e.g. version bumps and
package upgrades)

• Integrating SAST and DAST into the
automation process

• Cross-platform, abstracted automation to help
other organizations achieve the same security
goals

Summary and Next Steps

lifeomic.com

