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Hard Problemsin Assurance for Al

Specification
When is, e.g., a convolutional neural network for
image classification “correct”?
— Performance on test set?
— Performance in real world?

— Proof of generalizability to some well-specified
distribution over inputs?

Resilience to Adversarial Input

Practitioners often (incorrectly) assume that test set
accurately models inputs in the field.

— But quite easy to generate adversarial NN inputs

that cause misclassification with high confidence
|Goodfellow et al., “14]



This is not the number ...

« 28*28 (784) input features
* 1 hidden layer with 256 neurons, rectified linear unit (ReLU) activation
 softmax output 97.97% accuracy on original test data (MNIST)
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Daniel Kahneman > Quotes > Quotable Quote
i

“This is the essence of intuitive heuristics: when faced with a difficult

T "I question, we often answer an easier one instead, usually without noticing the
M substitution.”

— Daniel Kahneman, Thinking, Fast and Slow

http://www.goodreads.com/quotes/754455-this-is-
the-essence-of-intuitive-heuristics-when-faced-with 5




Online Learning in Adversarial Environments
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Online Learning in Adversarial Environments

Agent

Environment
‘ MARYLAND \

Round 1: AGENT pays 0.7

MARYLAND
Actions

Costs

Actions

Costs

Round 2: AGENT pays 0.2

Agent pays 0.9 total



Online Learning in Adversarial Environments

Agents may randomize over set of possible actions
|mixed strategies]
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Good Learners Have No Regret

Regret*(A) =

How well adaptive

E[Ctot (A)] alg. A performs (in

expectation)

min C;,;(a)
a

Ais No Regretif Regret(A)approaches0QasT — oo.

*External Regret



Good Learners Have No Regret

Actions

Costs

Regret = 0.9-0.3

Actions

Costs

Round 2: AGENT pays0.2




No-Regret Online Learning

Inputs:
« Aset of fixed decision rules / classifiers / “experts”
* Sequence of points with unknown labels {red, white}

e

Decision Rules —

S——

No-Regret Algorithm Outputs:
* online classification performance on input sequence nearly as

good as best fixed decision rule.
11



No-Regret Game Dynamics

No-regret algorithms: natural distributed execution model for
games, converging to approximate equilibria*

AGENT 1.
Regret<=¢€ A\

AGENT 2:
Regret<=¢€
AGENT N:
Regret <=¢€

converges to

e-Approximate Equilibrium

—

Intuition:

At time T, each AGENT has
regretat most €.

Unilateral deviation from e-regret algorithm A to any fixed action a
E[CL(A, )] < E[Ci(a, )] + €

allows agent to gain at most e.

*Approximate Coarse Correlated Equilibria



Multiplicative Weights (MW)

Associate to each action a € ACT weightw(a) (=1)

Choose actions by drawing from the distribution
w(a)

2.pW(b)
Adversary sends cost vector
c: A-|—1,1]
Update weights according to the followingrule

p(a) =

wt(a) = wi(a) * (1 — € *c'(a))

/

PARAMETER € € (0, 2]

Exploration vs. Exploitation



MW Is No Regret

Theorem: MW is no regret.

. In|A]|
(ElCoe (MW)] —min Cype(a)) /T <€+ _T
\ v [ } \ €
cumulative expected cost of best
cost of MW fixed action  number of size. of
steps action
space

Proof: Potential function I'* = ¥, w'(a)

In |A|
T

Corollary: (E[Ciot (MW)] —min Cspe(a)) /T < 2

In |A]

Letting 0 < € = <-



A Rose By Any Other Name...

“Combining Expert Advice”

Winnow
— an algorithm for learning linear classifiers
— |Littlestone ‘88]

Weighted Majority Hedging
— Exponential update rule: |
witl(a) = wi(a) * (1 — €€ @)

AdaBoost / Boosting
— |Freund and Schapire ‘97]



PART I

* Assurance for Al
* No-RegretLearning & Why
* Multiplicative Weights (MW)

PART II
* Formalizing MW
* Verifying Regret

VERIFIED MW



MW Formalized

The Coq Proof Assistant

Core Files
spec proof comments
390 939 35 weights.v
842 1073 80 weightslang.v
322 892 68 weightsextract.v
1554 2904 183 total

Auxiliary Files

spec proof comments
300 1168 20 numerics.v
217 1015 31 dyadic.v
144 9 1l strings.v
117 87 3 dist.v
60 109 11 extrema.v
77 111 3 bigops.v TOTAL.:

915 2499 69 total 7862 LOC



Theorem: MW Is Bounded Regret

Formal:

Notation astar:=(best_action a0 cs).
Notation OPT :=(\sum_(c <- cs) c astar).
Notation OPTR:=(rat_to_ R OPT).

... more definitions and notations ...

Lemma perstep_weights_noregret :
((expCostsR — OPTR) / T <= epsR + 1n size_A / (epsR *x T))%R.

Informal:
. In|A|
(ElCtoe (MW)] —min Cipe(a)) /T <€+
a el
\ v I } \
cumulative expected cost of best .
cost of MW fixed action  number of size of
steps action

space



A Hierarchy of Refinements

High-Level Functional Specification

Definition update_weights (w:weights) (c: costs) 1 weights :=
finfun (fun a : A =>w a *x (1 - eps x c a)

A"ﬁﬂﬂﬂNES

MW DSL _ _
Binary Arith. Operations Operational Semantics
b ri=+ | - | * |—C,O'$C',0"
Expressions
I D G ——
| eps REFINES
C lde b e | . Fixpoint interp (c:com A.t) (s:cstate)
ommands : option cstate := match c with .. end.
c ::= skip
| update f | .. Executable Interpreter

Even moderate-size proof developments (just like moderate-
size software developments!) benefit from abstraction



Update Weights

Definition update_ weights (w:weights) (c:costs) : weights :=
finfun (fun a : =>w a *x (1 - eps x c a)).

f REFINES

Definition update_weights (f : A.t —> expr A.t) (s : cstate)
: option (M.t D) :=
M.fold .
(fun a  acc => Data Refinement

match acc with
| None => None

| Some acc’ => | tREFINES
match evalc (f a) s with
| None => None Sweights s
| Some q =>

match 0 ?= g with
| Lt => Some (M.add a (Qred q) acc')
| _ => None
end end end) Efficient AVLTree over

(SWeights s) dyadic rational weights
(Some (M.empty Q)).

weights = {ffun A.t —> rat}




Specifying the Environment

MW Send

Receive

Class ClientOracle {A} :=

mkOracle { T : Type (* oracle private state )
; oracle_init _state : T
; oracle_chanty : Type
Receive cost ; oracle_bogus_chan : oracle_chanty
vector FROM —=ploracle_recv : T -> oracle_chanty -> (list (AxD) * T)

environment ; loracle_send : T —> list (AxD) -> (oracle_chanty x T)
/oracle_recv_ok : forall st ch a,

Send (mixed) exEStsId'( d) ( 1 h).1
action TO /\ In (a, oracle_recv st ch).

, Dle (-D1) d & Dle d D1]
; oracle_recv_nodup : forall st ch,
NoDupA (fun p g => p.1 = q.1) (oracle_recv st ch).1

environment

21



Experiment: Multi-Agent Affine Routing

Affine Latencies

AGENT 1: N 4
Regret <=¢€ A —
’ AGENT 2: | 10x+10
Regret<=¢€ !
AGENT 5: 10x+10
Regret <= €
- Regret Bound
. Verified Per-Step MWU §°St
. A e « MW
Multl'Agent R egret Bound — Bes:J Fi::cirel:ction
Distributed Routing _ 1.00 e
* 5 players § ...............
* 50 iterations ST e
e 10 trials o . ~2x reduction in cost
F R et t
+ €=0.1325 % o010 BRE I it e
_ SR (ITLI T
Environment oracle:
Coq server +
extraction to OCaml 0.01

e 0 10 20 30 40 50
network primitives lterations 22



Extensions, Connections

Linear Programming
— Verified MW as a verified LP solver

AdaBoost [Freund & Schapire ‘97]

— From weak to strong learners

Bandit Model

— revealing cost of all actions at each step imposes high
communication overhead

— assume, instead, only chosen action’s cost is revealed

— slightly more complex algorithms, slightly worse bounds,
but perhaps faster in practice?

[Aroraetal., ‘12]

— a treasure trove of additional connections!



Certified Multiplicative Weights Update

Machine-verified implementation of a simple yet powerful
algorithm for online learning in adversarial environments

Proof strategy: layered program refinements, from high-
level specification to executable MW

Freely available online: https://github.com /gstew5 /cage

)
The Coq Proof Assistant k(’/




Thank Youl!
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