Certified Multiplicative Weights Update Verified Learning Without Regret

Sam Merten (PhD) Gordon Stewart

HCSS - May 10, 2017

Alex Bagnall (MSc)

Hard Problems in Assurance for AI

Specification

When is, e.g., a convolutional neural network for image classification "correct"?

- Performance on test set?
- Performance in real world?
- Proof of generalizability to some well-specified distribution over inputs?

Resilience to Adversarial Input

Practitioners often (incorrectly) assume that **test set** accurately models inputs in the field.

 But quite easy to generate adversarial NN inputs that cause misclassification with high confidence [Goodfellow et al., '14]

This is not the number π ...

- 28*28 (784) input features
- 1 hidden layer with 256 neurons, rectified linear unit (ReLU) activation
- softmax output 97.97% accuracy on original test data (MNIST)

https://www.mathworks.com/examples/matlab-computer-vision/mw/vision_product-DeepLearningRCNNObjectDetectionExample-object-detection-using-deep-learning#6

Daniel Kahneman > Quotes > Quotable Quote

"This is the essence of intuitive heuristics: when faced with a difficult question, we often answer an easier one instead, usually without noticing the substitution."

Daniel Kahneman, Thinking, Fast and Slow

Online Learning in Adversarial Environments

Online Learning in Adversarial Environments

Agent pays 0.9 total

Online Learning in Adversarial Environments

Agents may randomize over set of possible actions [mixed strategies]

Good Learners Have No Regret

$$Regret^*(\mathbf{A}) \coloneqq \underbrace{\left[\sum_{t=1}^T \mathbf{E}[C_t(\mathbf{A})]\right]}_{\text{How well adaptive alg. } \mathbf{A} \text{ performs (in expectation)}}_{\text{action a with lowest otal cost}} \mathbf{E}[C_{tot}(\mathbf{A})] \xrightarrow{\mathbf{E}[C_{tot}(\mathbf{A})]}_{\text{expectation}} \mathbf{E}[C_{tot}(\mathbf{A})]$$

A is **No Regret** if Regret(**A**) approaches 0 as $T \to \infty$.

Good Learners Have No Regret

$$Regret^*(A) := \sum_{t=1}^{T} E[C_t(A)] - \min_{a} \sum_{t=1}^{T} C_t(a) T$$

$$E[C_{tot}(A)] \quad \text{How well adaptive alg. A performs (in expectation)} \quad \text{against tixed accioptimal bes Agent lowest Lapsening} \quad \text{Actions} \quad \text{Optimal bes Agent accioptimal bes Agent lowest Lapsening} \quad \text{Osts} \quad \text{O.1} \quad \text{O.7} \quad \text{Round 1: AGL: NT pays 0.7}$$

$$A \text{ Regret} = 0.9 - 0.3 \quad \text{A pactions} \quad \text{Costs} \quad \text{O.2} \quad \text{O.3} \quad \text{NARYLAND and Solve the pays 0.2}$$

$$\text{Costs} \quad \text{Costs} \quad \text{Costs} \quad \text{Costs} \quad \text{Costs} \quad \text{O.2} \quad \text{O.3} \quad \text{Round 2: AGENT pays 0.2}$$

No-Regret Online Learning

Inputs:

- A set of fixed decision rules / classifiers / "experts"
- Sequence of points with unknown labels {red, white}

No-Regret Algorithm Outputs:

 online classification performance on input sequence nearly as good as best fixed decision rule.

No-Regret Game Dynamics

No-regret algorithms: natural *distributed* execution model for games, converging to *approximate equilibria**

At time T, each AGENT has regret at most ϵ .

Intuition:

Unilateral deviation from ϵ -regret algorithm A to any fixed action a

$$E[C_i(A, ...)] \leq E[C_i(a, ...)] + \epsilon$$

allows agent to gain at most ϵ .

*Approximate Coarse Correlated Equilibria

Multiplicative Weights (MW)

- Associate to each action $a \in ACT$ weight w(a) (=1)
- Choose actions by drawing from the distribution

$$p(a) = \frac{w(a)}{\sum_{b} w(b)}$$

Adversary sends cost vector

$$c: A \rightarrow [-1,1]$$

Update weights according to the following rule

$$w^{i+1}(a) = w^{i}(a) * (1 - \epsilon * c^{i}(a))$$

PARAMETER $\epsilon \in (0, \frac{1}{2}]$

Exploration vs. Exploitation

MW Is No Regret

Theorem: MW is no regret.

$$\begin{array}{c|c} (\mathbf{E}[C_{tot}(MW)] - \min_{a} C_{tot}(a)) \ / \ T \leq \epsilon + \frac{\ln |A|}{\epsilon T} \\ \text{cumulative expected} & \text{cost of best} \\ \text{cost of MW} & \text{fixed action} & \text{number of} \\ & \text{steps} & \text{action} \\ & \text{space} \end{array}$$

Proof: Potential function
$$\Gamma^i = \sum_a w^i(a)$$

Corollary:
$$(\mathbf{E}[C_{tot}(MW)] - \min_{a} C_{tot}(a)) / T \le 2\sqrt{\frac{\ln|A|}{T}}$$

Letting
$$0 < \epsilon = \sqrt{\frac{\ln|A|}{T}} \le \frac{1}{2}$$

A Rose By Any Other Name...

- "Combining Expert Advice"
- Winnow
 - an algorithm for learning linear classifiers
 - [Littlestone '88]

- Weighted Majority Hedging
 - Exponential update rule:

$$w^{i+1}(a) = w^{i}(a) * (1 - \epsilon^{c^{i}(a)})$$

- AdaBoost / Boosting
 - [Freund and Schapire '97]

PART I

- Assurance for AI
- No-Regret Learning & Why
- Multiplicative Weights (MW)

PART II

- Formalizing MW
- Verifying Regret

VERIFIED MW

MW Formalized

The Coq Proof Assistant

Core Files

```
spec    proof comments
390         939         35 weights.v
842         1073         80 weightslang.v
322         892         68 weightsextract.v
1554         2904         183 total
```

Auxiliary Files

spec	proof	comments	
300	1168	20	numerics.v
217	1015	31	dyadic.v
144	9	1	strings.v
117	87	3	dist.v
60	109	11	extrema.v
77	111	3	bigops.v
915	2499	69	total

TOTAL:

7862 LOC

Theorem: MW Is Bounded Regret

Formal:

```
Notation astar:= (best_action a0 cs).

Notation OPT := (\sum_(c <- cs) c astar).

Notation OPTR := (rat_to_R OPT).

... more definitions and notations ...

Lemma perstep_weights_noregret:

((expCostsR - OPTR) / T <= epsR + ln size_A / (epsR * T))%R.
```

Informal:

$$\begin{array}{c|c} (\mathbf{E}[C_{tot}(MW)] - \min_{a} C_{tot}(a)) \ / \ T \leq \epsilon + \frac{\ln |A|}{\epsilon T} \\ \\ \text{cumulative expected} \\ \text{cost of MW} & \text{fixed action} \\ \\ \text{steps} & \text{action} \\ \\ \text{space} \\ \end{array}$$

A Hierarchy of Refinements

High-Level Functional Specification

```
Definition update_weights (w:weights) (c:costs) : weights := finfun (fun a : A => w \ a * (1 - eps * c \ a)).
```


MW DSL

Binary Arith. Operations
b::= + | - | *
Expressions

Operational Semantics

$$\vdash c, \sigma \Rightarrow c', \sigma'$$

Fixpoint interp (c:com A.t) (s:cstate)
: option cstate := match c with ... end.

Executable Interpreter

Even moderate-size proof developments (just like moderatesize software developments!) benefit from abstraction

Update Weights

```
Definition update_weights (w:weights) (c:costs) : weights :=
  finfun (fun a : A => w a * (1 - eps * c a)).
REFINES
```

```
Definition update_weights (f : A.t -> expr A.t) (s : cstate)
  : option (M.t D) :=
  M. fold
                                            Data Refinement
  (fun a _ acc =>
     match acc with
                                     weights = {ffun A.t -> rat}
        None => None
        Some acc' =>
                                                 REFINES
         match evalc (f a) s with
                                         Sweights s : M.t D
            None => None
            Some q =>
               match 0 ?= q with
                   Lt => Some (M.add a (Qred q) acc')
                   _ => None
                                            Efficient AVLTree over
               end end end)
  (SWeights s)
                                            dyadic rational weights
  (Some (M.empty Q)).
```

Specifying the Environment


```
Class ClientOracle {A} :=
       mkOracle { T : Type (* oracle private state *)
                 ; oracle_init_state : T
                 ; oracle_chanty : Type
                 ; oracle_bogus_chan : oracle_chanty
Receive cost
                   oracle_recv : T -> oracle_chanty -> (list (A*D) * T)
vector FROM
                   oracle_send : T -> list (A*D) -> (oracle_chanty * T)
environment
                 ; oracle_recv_ok : forall st ch a,
                     exists d,
 Send (mixed)
                       [/\ In (a,d) (oracle_recv st ch).1
  action TO
                         , Dle (-D1) d & Dle d D1]
 environment
                 ; oracle_recv_nodup : forall st ch,
                     NoDupA (fun p q => p.1 = q.1) (oracle_recv st ch).1
                 }.
                                                                      21
```

Experiment: Multi-Agent Affine Routing

22

Iterations

Extensions, Connections

Linear Programming

Verified MW as a verified LP solver

AdaBoost [Freund & Schapire '97]

From weak to strong learners

Bandit Model

- revealing cost of all actions at each step imposes high communication overhead
- assume, instead, only chosen action's cost is revealed
- slightly more complex algorithms, slightly worse bounds, but perhaps faster in practice?

[Arora et al., '12]

– a treasure trove of additional connections!

Certified Multiplicative Weights Update

Machine-verified implementation of a simple yet powerful algorithm for online learning in adversarial environments

Proof strategy: layered program refinements, from highlevel specification to executable MW

Freely available online: https://github.com/gstew5/cage

The Coq Proof Assistant

Thank You!

References

[Arora et al., '12]: The Multiplicative Weights Update Method: A Meta-Algorithm and Applications. Theory of Computing, Volume 8 (2012), pp. 121–164.

[Freund & Schapire '97]: A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. Journal of Comp. and System Sci. 55, 119-139 (1997).

[Goodfellow et al., '14]: Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." arXiv preprint arXiv:1412.6572 (2014).

[Littlestone, '88]: Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. *Machine Learning* 2.4 (1988): pp. 285-318.