
Configuration options create challenges for security
• Human analysis capacity does not scale with exponentially

growing configuration space
• Interactions among configuration options may lead to surprising

effects and vulnerabilities
• Vulnerabilities may hide in specific configuration combinations
• Challenging to verify security properties in all combinations
• Developers maximize functionality to configuration complexity
• Current approaches:

Work on specific configurations
Do not explore configuration knowledge

Our approach
• Track configuration options in C code with TypeChef

infrastructure
• Build call graphs from source code of target systems
• Enrich call graphs with configuration knowledge
• Increase accuracy of call graphs with a pointer analysis
• Determine presence conditions for all network elements
• Extract network information from the source code
• Apply network science metrics to software call graphs
• Cross-validate network metrics with known vulnerabilities

Study: Linux & OpenSSL (project), Busybox (here)

Partial results
• TypeChef now builds more accurate call graphs (pointer analysis)
• Generated call graphs contain configuration knowledge
• Busybox analysis:

3318 function definitions with presence conditions (node)
26719 function calls with presence conditions (edges)
193 indirect function calls (35% identified by pointer analysis)

• Call graph example (file: busybox/coreutils/od.c)

Generating variational call graphs from source code
• Build AST representation of source code for all configurations
• Build call graph enriched with pointer analysis

Characterizing Configuration Complexity
in Highly-Configurable Systems

with Variational Call Graphs 

Gabriel Ferreira, Christian Kästner, Jürgen Pfeffer, Sven Apel


	Characterizing Configuration Complexity�in Highly-Configurable Systems �with Variational Call Graphs 

