Compositional security for
higher-order systems

Limin Jia, ECE&INI CMU
Deepak Garg, MPI
Anupam Datta, CSD&ECE&CyLab CMU

Science of Security NSA Lablet
Sept. 27, 2013

Goal: Compositional security

" Sy |
S - - |0

S, W2

m Do S + S, satisfy a global security property @ based on local
properties 1, of S, and), of S, that are checkable
separately?

Challenges

B How to model and reason about the properties of
the system in the presence of adversaries

N Trusted components execute adversary supplied code
N Examples:
— Dynamically downloaded script,

— Trusted component’s code region may be modified by the
adversary

m Key ideas:

N Interface-confined adversary (higher-order)
N Leverage code-integrity property

Case study: An extensible hypervisor

Guest mode

Host mode

Guest OS

[

Hardware

support

virtualization f= === === = = =

[

Hypervisor core

Event hub

Event

handler

Case study: An extensible hypervisor

@

N\

Memory Integrity:

Hypervisor’s memory (code and data) is
only written to by hypervisor code

J

Guest mode

Host mode

Guest OS

[

Hardware

support

virtualization === === === =

L

Hypervisor core

—> Event hub
v v
Event Event
handler handler

Case study: An extensible hypervisor

@

N\

Memory Integrity:
Hypervisor’s memory (code and data) is
only written to by hypervisor code

m [

Challenges

N Trusted components interact with adversary-
supplied code

N Core’s code may be tampered with by the
adversary

Our approach: use a type system to

N Analyze the programs of trusted components

N Abstraction and reason about znterface-confined
adversary

N Dertving properties based on code integrity

Guest OS

[

Hardware

virtualization === === === =

support

L

Hypervisor core

—> Event hub
v v
Event Event
handler handler

Outline

]

m Model

m Type system
m Case study

System model

N Conﬁguration

—

N Cu=0=T, |T,] ..

[Shared st

B System transition

ate |

|, ————

lSome maliciou

s]

N C, =(u) C, iff exists i, T; transition to T, at time u

B Trace 7 is a sequence of transitions
N () C, =) C, =,y ...=, C,

(,)

=(t)

Types specify properties of components

m Assertions
N Properties about execution traces
“ E.g.o=(Readirxu;)A (Readixyu,)A (u<u,)

m Computation types
N comp(T, @): partial correctness type

W If e finishes, then it returns a value of type T and the trace T
containing the execution of e satisfies ¢

—T also contains other threads runs concurrently with e
N comp(): invariant type

N While e is running, the trace T containing the execution of e
satisfies ¢

—T also contains other threads runs concurrently with e

Reasoning system

m Typing judgments

iable typi , .
e —[logical assumptions]
I'Fe:t
u g I'E e xet.g uu e @

beginning, ending time points,
thread Id

I'- @
B Typing rules construct valid typing derivations
W Leaves of the derivations are sound assertions about atomic actions

N Have to be proven sound given the sematic model

N Typing rules are sequential and parallel composition principles
10

Reasoning about the adversary

m Adversary is interface-confined Hardwarte
N Can affect the system’s state by virtualization
calling interfaces support
N E.g., Event handlers can only access () l
core’s memory using safe read and
write functions Hypervisor core

N To analyze its effect, we need to

N Analyze the implementation of

the interfaces Event hub

v J
m eiHub SafeRead SafeWrite Event Event
handler | | handler

11

Adversary typing — Typing rule

m Conservatively approximate e’s effects T based on its simple
type 1t and assertion @
N stype(e, mt): simple typing constraints, do not reason about effects
W E.g., a Boolean is not used as a function
N Can be achieved via cheap dynamic checking
N Conf T it @: T specifies expressions have effect ¢

[Fstype(e,m) ConfT M @ (@)
I'Fe:T

12

Example

eiHub is a function)

1.takes two functions as arguments

2.0nly access memory through those
two functions)

stype(eiHub, m) FeitHub: T

/

/eiHub is a function)
1.takes two functions (r, w) as arguments
2.1f r and w maintain a memory invariant

@, then the body of eiHub mains the

Hardware
virtualization
support

[y

Hypervisor core

Event hub

v

Event

handler

_ invariant ¢)

v

Event

handler

13

Leveraging code integrity

B letx=read L, ,

in let y = x SafeRead SafeWrite Hardware
in ret Yy virtualization

Fx = eiHub FeiHub: T supf Ol:[
stype(etHub, 1) ﬁ

Hypervisor core

Vv, mem (I ., V) @ u, D (v = eiHub) = ox:Px
Vv, mem (I 1, V) @ u, D (x = V)

L, 5> Event hub

Beta equivalence I l
(evaluate to the same term)
Event Event

I'Fe:t I'Fel=e handler | ~°° | handler
Beta

I'te:x

14

Formal properties of the type system

B Soundness

NIfI' = @ then for all substitution 6 for I, for all trace T,
T = AssumptionsIn(I')6 implies T = @b

B Composition (Robust safety)

Nf ul; u2;i; Fc: g at time Ub, thread j is about to run c]

then T'= @[Ub, Ue, j/ul, u2,i] | 4t time Ue, ¢ has not returned

o| T, o, | T,
T T

(t) T =) i
T T.

Outline

m Background
m Model

B Type system
m Case study

16

Case study: an extensible hypervisor

Verified Memory Integrity on the Design
* Core 1s trusted C
* Encode the algorithm in our language gEehe
* Use type system to dertve its invariant T
* Guest OS i1s untrusted rdware
* Hardwate axioms are used to confine its ability ~[tualization |========--
* Event Handlers are not completely trusted |@;t
* Confined to a set of interfaces (Confine rule)
* Beta .rule is used to reason about jumping to code IMHE core
locations
* Leore and Lipyy, \
* Inductive reasoning over the length of the trace L ¢ | Event Hub

Axioms, start(tCore, eCore, T)),

stype(eiHub, 1), i VLvu, u>T, A write(i, |, v)@u A coreMem 1
mem(L._., eCore, T), 1= tCore

mem (L, eiHub, T

17

Case study: a hypervisor core
&

(<)

Memory Integrity:
Hypervisors memory (code and data) is
only written to by hypervisor’s code

A proof that any trace generated by §
satisfies Memory Integrity

J

\/
S |Guest OS
Hypervisor core
Devices
[EEE S&>P 2013

CMU Cylab TR 13-001

Hardware : I I :
. A type system
assumptions x

Abstract model of
* hypervisor core algorithm
* Attacker (interface confined)

Properties of hypervisor code
* Proper configuration of NPT

v

>[CBMC]
18

Summary

B Designed a type system for reasoning about trace properties
of systems that contain adversarial components

Y Monad
N Confine and beta rules

m Defined trace semantics for types
m Proved soundness
m Verified the algorithm of an extensible hypervisor

19

