
Concurrency-Focused Dynamic Analysis
The perils of ARM and the possibilities for safe/secure mobile applications

Tim Halloran, SureLogic, Inc

Fault diagnosis and verification for safe
concurrency

The role and value of dynamic analysis
How can data from one program run tell you anything general?

One run can yield broadly useful modeling information
Unsafe sharing of state: failure to respect memory model
Safe sharing of state: use of locks, safe publication, etc.
Performance: blocking latencies
Potential for deadlock: lock order anomalies
(This builds on novel dynamic techniques, to be described)

Dynamic results assist model development for sound static analysis
(Heritage in CMU Fluid project)
Analysis-based verification using sound static composable analyses
Minimal explicit models to specify developer intent
Example studies: Hadoop concurrency, J.U.C, Accumulo, many
Java libs

This talk

Java memory model (JMM) for explicit concurrency
Hardware realities
An infringement on source code
Accidents and surprises: JVM/x86 and Dalvik/ARM

Assisting developers and evaluators
Structures, models, analysis, tools

Using concurrency-focused dynamic analysis
Collection and querying
Interplay with analysis-based verification
Performance

Building an effective and usable tool — some tricks

Why a memory model?
State shared by multiple threads

What is actually going on:
Memory hierarchy
Compiler reordering
Pipeline reordering and
parallel execution
Speculative fetching

Code needs explicit fences or
memory barriers

Many kinds: LS, SS, etc.
Memory scope of fence

Developers must respect
hardware “rules of the road”

PROCESS

Thread 1 Thread 2

State 1 + 2

State 1 State 2

Figure thanks to Bill Scherlis

Abstracting the fence –
The Java memory model (JMM)

From sequential consistency to
“relaxed consistency”

Why? Performance
Remedy: Issue fences

When and how many fences?
Lock (monitor) use, volatile
field access, and thread
start/termination
These create happens-before
relationships

unspecified

JMM

From Doug Lea’s JSR-133 Cookbook for Compiler Writers

Memory Visibility

Nonempty means issue a fence instruction
(done by compiler/JVM/JIT)

JVM/x86 platform memory model

The Java platform on Intel x86

HotSpot, OpenJDK, IBM J9

This memory model is more
conservative than the JMM

Why? Hardware guarantees,
engineering choices, etc.

Is this a problem?

No, if we stick to the JMM

Yes, if we “run with
scissors” in this region of
the platform’s behavior

JMMJDK
(x86)

Dalvik
(ARM)

A new (and different) memory model
implementation: Dalvik/ARM

The Android platform on ARM

Uses a different JVM, Dalvik,
and byte code format (Dex)

Source code is Java

Different standard libs

This memory model is more
conservative than the JMM

Differs from Java on Intel

Why? Different engineering
goals for memory and power
use, etc.

JMMJDK
(x86)

Split writes of 64-bit fields
on JDK/x86

The JMM recommends that
writes to 64-bit values be
atomic—but they may be split

long value; // shared

// loop in one thread:
value = 0L; // Broken!

// loop in another thread:
value = -1L; // Broken!

// loop in yet another thread:
if (value != 0L && value != -1L) {
 // output unexpected value and exit
}

JMMJDK
(x86)

Hangs here until terminated (atomic)

 0L = x00000000_00000000
-1L = xFFFFFFFF_FFFFFFFF
If writes are split the JMM mandates that two
atomic 32-bit writes be done so the two
possible unexpected values we may see are:
-4294967296 (xFFFFFFFF_00000000)
 4294967295 (x00000000_FFFFFFFF)

*There are cases where split writes occur on
 32-bit OpenJDK/Hotspot (versus 64-bit)

Split writes of 64-bit fields
on Dalvik/ARM

Dalvik
(ARM)JMMJDK

(x86)

Fails quickly Split writes of 64-
bit fields

A bug in an early version of java.util.concurrent concurrency library
(Found using SureLogic’s JSure verification tool by Greenhouse)
Fixed by
Doug Lea
This class became
AtomicLong in the
Java standard library
and is on Android

Split writes of 64-bit fields
in real world “working” code

This read of the shared long
value_ field is not protected
by lock_ and it could observe

a split value (and return it)

Dalvik
(ARM)JMMJDK

(x86)

Non-volatile boolean flag
on Dalvik/ARM

Dalvik
(ARM)JMM

A boolean set in one thread is
used to signal another thread
that it should perform some
action (e.g., exit cleanly)

Reliable and quick

boolean flag; // shared

// in one thread:
public void run() {
 while (!flag) { // Broken!
 // do some work
 }
}

// (later) in another thread:
flag = true;

If the field is not volatile then
the JIT hoists the field

Non-volatile boolean flag
on JVM/x86

Dalvik
(ARM)JMMJDK

(x86)

Non-volatile boolean
exit flag

http://www.oracle.com/technetwork/java/whitepaper-135217.html#hotspot

Thread hangs forever

http://www.oracle.com/technetwork/java/whitepaper-135217.html#
http://www.oracle.com/technetwork/java/whitepaper-135217.html#

A bug in the TomDroid notes-taking Android application (50K installs)
(Found using SureLogic’s Flashlight dynamic analysis tool by Boy)
Not yet fixed

Non-volatile boolean flag
in real world “working” code

The shared cancelled flag,
used to cancel synchronization

of notes with a server, is not
volatile and may not be seen

between the UI thread and the
background sync service task

Android
(ARM)JMMJava

(Intel)

There is danger outside the JMM

Dalvik
(ARM)JMMJDK

(x86)

“Working code” breaks when moved
from JDK/x86 to Dalvik/ARM

“Working code” breaks when moving
from Dalvik/ARM to JDK/x86

How does the developer handle this?

Answer 1 – Forget Java! (explicit concurrency) — if you can
Actually: Essential complexity in languages w/explicit concurrency

Answer 2 – Test a lot, on multiple platforms
Actually: Non-determinism (1 in 1m) means less useful
Actually: “Success” can lead to “running with scissors”
Actually: When flaws are detected, diagnosis may be hard

Answer 3 – Outsource concurrency to libraries and frameworks
Actually: We are doing this

But: its only partial, and the frameworks and libraries have
problems themselves

Answer 4 – Analysis-based verification (ABV)
Actually: Starting to emerge into practice

ABV Example: Verification for util.concurrent

Lock VarLock used to protect shared state
• 221 protected accesses
• 1 unprotected access

•Visual assurance indicators
•Textual warnings
•Drill down analyses

ABV Example: Analysis-
Based Verification for
Hadoop MapReduce
infrastructure

Difficulties identified
State inconsistency
Unsafe practices
Data exposures

Assurance given
Specific areas of
consistency of code
with identified intent

Why dynamic analysis in this
non-deterministic setting?

Helps understand large systems and build models
Global program properties: deadlock, JMM
Gateway to verification — help developers model intent

Familiar approach to developers (debuggers, profilers, etc.)
Low adoption cost

Performance analysis a challenge
E.g., false sharing, lock contention

Visualize exactly where “bad things” could happen
Don’t actually need the race/deadlock to happen

Flashlight concurrency-focused dynamic
analysis tool

Full instrumentation
(in development and evaluation)

or

Prepare the collected data

Query the data
Low-overhead monitoring

(in operations) • Information: thread lifetimes, what state was shared
• Correctness: races, deadlock, memory model, lock use
• Performance: false sharing, lock contention

Lockset query on util.concurrent bug

Happens-before query on TomDroid bug

Performance: false sharing

State used in different threads
shares a cache line

Performance killer for x86
But not for ARM

Hot topic in Java community
Padding declarations is a
workaround
But may slow Android Apps

#Threads

JDK 1.7.0_21 (quad-
core MacBook Pro)

#Threads

Android 4.2.2 (quad-
core Nexus 4 phone)

t1
t2

t3
t4

JDK/x86

Dalvik/
ARM

False sharing query

Tricks of the concurrency-focused
dynamic analysis trade

Refactor Java byte code — No JVMTI
Enables a range: complete to lightweight selective monitoring
Support undocumented JIT patterns — track timing & performance

Interact with GC in the JVM
Filters out thread-confined objects — key to scale-up

JMM monitoring
Based on extensive and flexible monitoring of the libraries

General query system based on extended SQL
Flexible support for interactive tree tables and query “drill-down”

Correct support at the edges
Start-up and tear-down — surprising subtle
Can start/stop instrumentation separately from the app

Android support (Dalvik/ARM)

Wrap-up

Accidental correctness giving way to errors (x86 ↔ ARM)

Need to respect JMM — or analogs in other languages

Sound static analysis based on fragmentary models
Yields composable analysis-based verification at scale
Helps find bugs and identify specific fixes

Surprisingly, dynamic analysis has an important role
Understanding, particularly for global properties
Performance focus
Visualization of missing “fence posts”

