S o - j2va.utillogging-JDK1.7.0_(E

>

B = olerra Flashhght JSure 5S¢ ((
o\ay SN ‘ RS ¢ S LT

= Jumim

@) O

Concurrency-Focused Dynamic Ana Iysis
The perils of ARM and the possibilities for safe/secure mobile applications

Tim Halloran, SureLogic, Inc

Fault diagnosis and verification for safe
concurrency

The role and value of dynamic analysis
How can data from one program run tell you anything general?

One run can yield broadly useful modeling information
Unsafe sharing of state: failure to respect memory model
Safe sharing of state: use of locks, safe publication, etc.
% Performance: blocking latencies
4 Potential for deadlock: lock order anomalies
(This builds on novel dynamic techniques, to be described)

Dynamic results assist model development for sound static analysis

(Heritage in CMU Fluid project)

Analysis-based verification using sound static composable analyses
Minimal explicit models to specify developer intent

% Example studies: Hadoop concurrency, J.U.C, Accumulo, many
Java libs

Java memory model (JMM) for explicit concurrency
Hardware realities

An infringement on source code
Accidents and surprises: JVM/x86 and Dalvik/ARM

- Assisting developers and evaluators

4 Structures, models, analysis, tools

Using concurrency-focused dynamic analysis
Collection and querying

Interplay with analysis-based verification
4 Performance

- Building an effective and usable tool — some tricks

Why a memory model? L
State shared by multiple threads ‘

-t
it P

What is actually going on:

PROCESS

Memory hierarchy
% Compiler reordering Thread 1 Thread 2

Pipeline reordering and
parallel execution

Speculative fetching

Code needs explicit fences or

memory barriers State 1 State

Many kinds: LS, SS, etc.

Memory scope of fence
State 1 + 2
Developers must respect

hardware “rules of the road”

.....

Figure thanks to Bill Scherlis & .z;ﬁ
- " N

= \ e
":‘~. “"' 5 \ ‘.
s it T - 3 : e
Bk oy -

[e Pl AW - r - . -

Abstracting the fence —
The Java memory model (JMM)

From sequential consistency to
“relaxed consistency”

Memory Visibility

% Why? Performance

Remedy: Issue fences
When and how many fences?

Lock (monitor) use, volatile
field access, and thread
start/termination

These create happ
relationships

[Required barriers [2nd operation

Volatile Load Volatle Store
MonitorEinter ‘MonitorEExit

Ist operation f ormal Store

INormal Load | | ,
Flf"*ﬁ”; | | toreStore Nonempty means issue a fence instruction
/olatile Loa LoadLoad

MonitorEnter e o s (dODe by Compiler /JVM /]IT)

Volatile Store : -
xo StoredStore
MonitorExit

From Doug Lea’s JSR-133 Cookbook for Compiler Writers

JVM/x86 platform memory model

The Java platform on Intel x86

% HotSpot, Opend DK, IBM J9

This memory model is more
conservative than the JMM

Why? Hardware guarantees,
engineering choices, etc.

Is this a problem?

No, if we stick to the JMM

Yes, if we “run with
scissors” in this region of
the platform’s behavior

A new (and different) memory model
implementation: Dalvik/ARM

. ANDO=k0ID

The Android platform on ARM

Uses a different JVM, Dalvik,
and byte code format (Dex)

Source code 1s Java

Different standard libs

. . Dalvik
This memory model is more (ARM)

conservative than the JMM

Differs from Java on Intel

Why? Different engineering
goals for memory and power

use, etc.

Split writes of 64-bit fields

on JDK/x86

% The JMM recommends that
writes to 64-bit values be
atomic—but they may be split

long value; // shared

// loop 1n one thread:
value = OL; // Broken!

// loop 1n another thread:
value = -1L; // Broken!

~ // loop 1in yet another thread:

1f (value != OL && value !'= -1L) {
// output unexpected value and exit

¥

Source — java — 66x8

{ptah-2:~/Source}java -cp racy.jar com.surelogic.Main
PREQCEsSsors =4
5\ (broken) SplitWritesTolLong 10 times

Hangs here until terminated (atomic)f"

OL = x00000000_00000000

-1L =xFFFFFFFF_FFFEFFFFF

If writes are split the JMM mandates that two
atomic 32-bit writes be done so the two
possible unexpected values we may see are:

-4294967296 (xXFFFFFFFF_00000000)
4294967295 (xOOO0O0000_FFFFFFFF)

*There are cases where split writes occur on
32-bit Open]DK/Hotspot (versus 64-bit)

Split writes of 64-bit fields
on Dalvik/ARM

Fails quickly

Split writes of 64-
A

l.l Bench

Dalvik
(ARM)

Split writes of 64-bit fields
in real world “working” code

Dalvik
(ARM)

A bug in an early version of java.util.concurrent concurrency library

(Found using SureLlogic’s JSure verification tool by Greenhouse)

A 3]
/4’ leed :)y public class SynchronizedLong extends SynchronizedVariable implements
D()ug Lea Comparable, Cloneable {

protected long value_;

'This class became
AtomicLong in the (-
: blic 1 swap(SynchronizedLong othe
Java standard library| "'if cother 1= thisy { T
and is on Android SynchronizedLong fst = this;

SynchronizedlLong snd = other;

if (System. identityHashCode(fst) > System. identityHashCode(snd))
fst = other;
snd = this;

}

: synchronized (fst.lock_.) {
This read of the shared long Ot TaE Cord Aoae) 1

value_ field is not protected , fst.set(snd.set(fst.get()));

e e ———————

by Lock_ and it could observe\ ; }

a split value (and return it) return value_;

5

Non-volatile boolean flag
on Dalvik/ARM

A boolean set in one thread is
used to signal another thread
that it should perform some
action (e.g., exit cleanly)

boolean flag; // shared

// 1n one thread:
public void run() {
while (!flag) { // Broken!
// do some work
¥
hy

// (later) in another thread:
flag = true;

Reliable and quick

P
lﬁl Bench

Dalvik

3= 4 617

Non-volatile boolean flag
on JVM/x86

Thread hangs forever Non-volatile boolean
|| C:APROGRA~1\Java\jdk1.6.0_45\bin\java.exe o) | exit flag

R 0Ccessors =2
““.‘,ng (hroken?> BooleanExitFlag 10 times

7

If the field is not volatile then

Dalvik
the JIT hoists the field v

(ARM)

Java HOtSpot Server Compiler

The server compileris tuned for the performance profile of typical server applications. The Java
HotSpot Server Compiler is a high-~:.3a iuiy opurnmzing compiler. It uses an advanced static single
assignment (SSA)-based IR fo. optimizations. The optini'zer performs all the classic optimizations,
including dead code eliminati 'n, loop invariant hoisting, ¢ ymmon subexpression elimination,
constant propagation, global va: "2 numbering, and alr’. al code motion. It also features

http:/ /www.oracle.com/technetwork/java/whitepaper-135217.html#hotspot

http://www.oracle.com/technetwork/java/whitepaper-135217.html#
http://www.oracle.com/technetwork/java/whitepaper-135217.html#

Non-volatile boolean flag
in real world “working” code

A bug in the TomDroid notes-taking Android application (50K installs)

(Found using SureLogic’s Flashlight dynamic analysis tool by Boy)

Not yet fixed

public abstract class SyncService {

w | — —

public boolean cancelled = false;

L e—

The shared cancelled flag,
used to cancel synchronization
of notes with a server, is not
volatile and may not be seen
between the Ul thread and the
background sync service task

R"' Tomdroid notes - Android Apps on Coogle Play
22" y google com

oo [Bl monslithand et Hosting Toméwoid on Google Play UESPWIRI Johnny BGo . - YouTube Crazy Train ! - YouTube Apple Gmail GCmailswrelogic fluid surelogic

Learn iMovie 11 - How te Add Picture i Picture - YouTube 1 Tomdroid netes - Android Apps on Google Play

(1\)\ “.‘I\‘ YT‘ j’ “
/ L ! } ' J
MY MUSIC MY BOOKS MY MAGAZINES MY MOVIES & TV

SHOP

Tomdroid notes

. This app is compatible with your
Spﬂnts amsung SPH-D710

There is danger outside the |MM

"Working code” breaks when moved
from JDK/x86 to Dalvik/ARM

Dalvik

"Working code” breaks when moving
from Dalvik/ARM to JDK/x86

How does the developer handle this?

Answer 1 — Forget Java! (explicit concurrency) — if you can

Actually: Essential complexity in languages w/explicit concurrency
Answer 2 — Test a lot, on multiple platforms

Actually: Non-determinism (1 in 1m) means less useful

% Actually: “Success” can lead to “running with scissors”

Actually: When flaws are detected, diagnosis may be hard

Answer 3 — Outsource concurrency to libraries and frameworks

Actually: We are doing this

4 But: its only partial, and the frameworks and libraries have
problems themselves

Answer 4 — Analysis-based verification (ABV)
Actually: Starting to emerge into practice

ABYV Example: Verification for util.concurrent

fle [k Souce Refactor Navigote Seych Project Run Window

el
. n-‘*-“‘.

o S B g G-

-

-

4 Package Explorer 53 Merarchy

& i conturrency
o9 e

B EDU comego.cs.d ol contirrent
e
& J) Cviutler. pvs
. | FIROGRL. ve

.] Fracton. javs

+

J

J
+ 3] PosdCharnel ave

J] SesrgWorker Jyva

o1 SynchrongstonTeser . ave
Darrier syvs
| BoundedBuffer java
BoundedCThaneed, Java
BoundedUndedQueaus, java
BoundedPriontyQueus. Javs
| BrckenBarrertace
Callsble. java

CondurrentfieaderHashMap. sava
LoV & Yava
COpyOnWraler iyl Jrvd
opry OrWrLaler irySet. Jvs
ot Down. Java
yelcBaerrior Jrva

Def st e wiCapacty . ava

Duoctf oacutor . syvs

Loscutor . Jvn

P ORaadWrtel ock s

| FPOSemaphore s

] FITask. java

| FiTaskRurner java

FITasRurnerGroup, javs

| FRureRenR, ovs

Heaxp Jyva

Latch. java

LayerodSynd. java

UrdedNode. sava

LnbedQueus. Jave

LochedE xootir . jove

Mutex. jovs

NSy Java
DbservableSyre. sava

PoclodE cecutor rva

PricetySenaghore. jave

) () () () [[y [y [y [y [y Ty)) o))) () () () [) () () [y [y [y oy Ty [y ey iy))))

Procer tvChanoeMuRc ster Svs

EDUL0sSweg0 5., ourencyfsrc

Qg & perioedtive

=10/ %

Resource

& v

[+ ﬂj Model Slot, ItemLock at Slot.java line 30 (4 issues)

~lol x|

File Edit Source Refactor MNavigate Search Project Run Window Help
% -k-&- || de-
jo 7 [[@- 1B 105 & orc

‘Problcms ‘[-'&Code Assurance Information £3 ‘Call Hierarchy‘ i v 58
r G

Y [Resource P&;’rJava

| r -

(44 issues)
able subtype instance creation(s)

Y SRR ORIZEd T CONSEFUCEOr(S) WItH E5Caping Teceivers.

[+ 9"@synchronized" constructor(s) with thread-local receivers.,
[+ 221 protected field access(es)

[+ 1 return statement(s) returning the correct lock

[+ 98

== | T 2, 2 =l . P

1 unprotected field access(es); possible race condition detected

LY

1 subtype instance creation(s)

sues)
WL at SynchronizationTimer java line 1269 (S issues)
fer.HeadLock at BoundedBuffer.java line 28 (14 issues)
ged" constructor(s) with thread-local receivers,
[tion(s) satisfled
[eld access(es)

pEpModerBoundedBurfer, TailLock at BoundedBuffer.java line 29 (11 issues)

U;‘ Model CountDown.Lock at CountDown.java line 53 (7 issues)

\Visual assurance indicators
«Textual warnings
*Drill down analyses

] Model CyclicBarrier.Lock at CyclicBarrier.java line 85 (25 issues)

BE’ Model FutureResult,Futurelock at FutureResult.java line 46 {19 issues)
& Model Heap.HeapLock at Heap.java line 30 (51 issues)

E.,:,’] Model Latch.Lock at Latch.java line 46 (4 issues)

Bj Model LinkedQueue .PutLock at LinkedQueue.java line 32 (12 issues)

ﬂ; Model LinkedQueue. TakeLock at LinkedQueue . java line 33 (10 issues)
[# o 1 "@synchronized" constructor(s) with thread-local receivers,

Lock VarLock used to protect shared state 7
® 221 protected accesses
® 1 unprotected access

[+l S protected field access(es)

[+ 98 4 unprotected fleld access(es); possible race condition detected
5;1 Model Mutex,MetaLock at Mutex.java line 108 (7 issues)
U.;’ Model ObservableSync.Lock at ObservableSync.java line 37 (S issues)
U;,’ Model ReentrantLock.Metalock at ReentrantLock.java line 25 (25 issues)
[=1-dp 25 protected field access(es)
[=)-1a# util.concurrency (25 issues)
(=) EDU.oswego.cs.dl.util.concurrent {25 issues)
@ [J] ReentrantLock.java (25 issues)
@ Model Rendezvous.Rendezvouslock at Rendezvous.java line 108 (29 issues)
% Model Semaphore,Lock at Semaphore.java line 88 (35 issues)
B:’ Madel Slot. ItemLock at Slot.java line 30 (4 issues)
@ Model Synchronizedvariable,VarLock at SynchronizedVariable, java line 179 (241 issues)
[+ 98 9 "@synchronized" constructor(s) with escaping recelvers,
[+« 9 "@synchronized" constructor(s) with thread-local receivers,
[+-dp 221 protected field access(es)
<k 1 return statement(s) returning the correct lock

1 detected

3 (S issues)
Jser.java line 23 (S issues)
(6 issues)

which lock is being acquired
ted object; possible race condition detected
_ ate is being protected?

[#- § 176 unidentifiable lock(s); what is the name of the lock? what state is being protected?
= [J& Uniqueness Assurance (573 issues)

[+-<p 247 method body(s) respect uniqueness constraints

[+ 321 method call(s) respect uniqueness constraints

[+ S correct assignment(s) to unshared field{s)

ABYV Example: Analysis-
Based Verification for
® 1 Non-final notify()/wait()

Hadoo P M ap Reduce s 1.1 Non-final Lock Expressions and Unidentifiable Locks

. ® 2 Class org.apache hadoop.conf Configuration (Data Race)
| an’aStl’U CtU I'e ® 3 Class org apache hadoop.filecache DistributedCache CacheStatus (Assures)

® 3.1 Open Question
® 4 Class org apache hadoop filecache DistributedCache (Assures)

i 1 1 1 17 ® 5 Class org apache hadoop.util Progress (Improved)
» Difficulties identified e
® 5.2 Comment about complete()

W State IHCOHSIStGHCy m 6 Class org.apache hadoop.util ReflectionUtils (Assures)
> ® 7 Class org apache hadoop.metrics.util MetricsIntValue (Assures)
4 Unsafe practlces m 8 Class org apache hadoop.metrics.util MetricsTime Varyinglnt (Assures)
m 9 Class org apache hadoop.metrics.util MetricsTime VaryingRate (Assures)
10 Class org apache hadoop mapred. pipes. OutputHandler (Assures)
11 Class orgapache hadoop.10. WritableName (Assures)
12 Class org apache hadoop.10. WritableFactories (Assures)
13 Class org apache hadoop.net. StaticMapping (Data Race)
; 14 Class org. apache hadoop.metrics. ContextFactory (Data Race)
4 Assurance given = 14.1 What about attributeMap?
15 Class org apache hadoop.dfs FSEditl og (Data Race)
. e 16 Class org.apache hadoop .metrics jvm EventCounter EventCounts (Assures)
» Spec.lflc areas Of 17 Class org apache hadoop metrics jvm JymMetrics (Assures)
COHS]S’[ency ()f C()de 18 Class org apache.hadoop.dfs. StmulatedFSDataSet.BInfo (Data Race)
. . g : 19 Class org apache.dfs Balancer. BytesMoved (Data Race)
with identified intent 20 Class org apache hadoop.dfs DataNode. Count (Data Race)
21 Class org apache hadoop.dfs. DFSClient. DF SInputStream (Data Race)
= 21.1 Possibly Unprotected State
22 Class org apache hadoop mapred.Counters (Data Race)
m 221 Class org.apache hadoop.mapred. Counters. Counter (Data Race)
m 22 2 Class org.apache hadoop.mapred Counters. Group (Data Race)
m 22 3 Fields cache and counters
"
"

Contents

% Data exposures

22 4 Improper Use of Iterators
22.5 Consistent Global Snapshot

Why dynamic analysis in this
non-deterministic setting?

- Helps understand large systems and build models
Global program properties: deadlock, JMM

Gateway to verification — help developers model intent

-~ Familiar approach to developers (debuggers, profilers, etc.)

% Low adoption cost

- Performance analysis a challenge

% E.g., false sharing, lock contention

- Visualize exactly where “bad things” could happen

Don’t actually need the race/deadlock to happen

Flashlight concurrency-focused dynamic
analysis tool

&) O Flashlight Launched Run Control

fooManyBalls

O—
J Data collection complete...preparing data for querying...

—

&%
.

= L™ Clear List

"

R .
.t dl ¢

Prepare the collected data

Query the data

Low-overhead monitoring |
(in operations) .. * Information: thread lifetimes, what state was shared
- ¢ Correctness: races, deadlock, memory model, lock use

* Performance: false sharing, lock contention

@ Query Menu 23]

Deadlock
Queries that show lock use that may cause the program to deadlock.
i Where does a thread hold a lock and acquire another?
Lock Use
Queries about lock use in the program.
i What are the lock edges in this program?
3 What fields (non-static) have an empty lock set after object construction?
Memory Model

Queries that show happens-before relationships between threads defined by
the Java memory model.

1 What fields (non-static) are protected by a happens-before relationship?

[| Query Results 22

What fields (non-static) have an empty lock set after object construction? at 2013-05-06 17:38:34
Package/Class/Field Instances
¥ {§# EDU.oswego.cs.dl.util.concurrent
¥ (3 SynchronizedLong

& What instances of this field have an empty lock set?

o Query Results 831 = e CDI“ P25]

What instances of this field have an empty lock set? at 2013-05-06 17:40:47

value_ Object 'Reads Writes Reads Under Construction Writes Under Construction
SynchronizedLong-6 8 6 0 1
SynchronizedlLong-7|12

How often is a lock held when this field is accessed after object construction?

| Query Results &3 |

How often is a lock held when this field is accessed after object construction? at 2013-05-06 17:40:54

Lock Times Acquired value_ Access Count Percentage Held
SynchronizedLong-6 12 17 70
SynchronizedLong-7

i* What fields (non-static) are protected by this lock, and how often?
What fields (static) are protected by this lock, and how often?
What objects are protected by this lock, and how often?

Where are fields accessed while this lock is held?
Where is this field accessed while this lock is held?
Where is this field accessed while this lock is not held?

| Query Results 23 |

Where is this field accessed while this lock is not held? at 2013-05-06 17:41:56

Package/Class/Line
v {§ EDU.oswego.cs.dl.util.concurrent
v (9 SynchronizedLong
36

T —

[J) SynchronizedLong java §2 = O &) Historical Source Snapshot 53

pu?}izotzzg T:o:t(::r)ld{\ronizcdl.ono other) { JSureTutorial_util.concurrent.SynchronizedVarlable/src/EDU/oswego/cs/dl/util /concurrent/SynchronizedLong.java

Synchronizedlong fst = this;) public long swap(Synchronizedlong other) {
Synchronizedlong snd = other; if (other != this) {

SynchronizedlLong fst = this;
iffgiy:t::;::fntttyﬂashfodb(fst) > System. identityHashCode(sN)) { Svichrontzedlong sndl = otbers

snd = this:) i1f (System.identityHashCode(fst) > System.identityHashCode(snd)) {
} 4)§ fst = other;

synchronized (fst.lock.) { 1 ‘ snd = this;

synchronized (snd.lock.) { ¥ }

} fst.set(snd.set(fst.get())); Sy:;::::;:f‘:egf::n:ﬁt;z_g (

;) fst.set(snd.set(fst.get()));
} .
return value_;| , } 3
} -

return value_;
}

Memory Model

Queries that show happens-before relationships between threads defined by the
Java memory model.

i What fields (non-static) are protected by a happens-before relationship?

€3 What fields (non-static) are not protected by a happens-before relationship?
€3 What fields (static) are not protected by a happens-before relationship? \

What ﬁelas !nonm- rotected by a happens-before relationship? at 2013-05-06 17:59:01

Package/Class/Field Count
v {## android.os '
v & Message
o argl
© what
v # org.tomdroid.sync
v (& SyncService
+ cancelled 1
o syncErrors 1

o syncProgress 1

|

) Historical Source Snapshot $2

Tomdroid/src/org/tomdroid/sync/SyncService.java

59 * and sent to the main UI along with the PARSING_COMPLETE message.
60 */

61 private ErrorList syncErrors;

62 private int syncProgress = 100;

63
| 64 public boolean cancelled = false;

65

66 // syncing arrays

67 private ArraylList<String> remoteGuids;
68 private ArraylList<Note> pushableNotes;

| Query Results £2

When and by what threads was this field accessed? at 2013-05-06 18:04:01

Package/Class/Field/Thread ‘Happens-Before Reads Writes Reads Under Construction Writes Under Construction Start
v {# org.tomdroid.sync
v (& SyncService
¥ o cancelled
5 main
% pool-17-thread-1 > No
¢ main W Yes
% pool-17-thread-1 > No
¢ main W Yes
¢ pool-17-thread-1 > No
£ main W Yes
¢ pool-17-thread-1 §)>No
¢ main W Yes
¢ pool-17-thread-1 > No
¢ main W Yes

¢ pool-17-thread-1 > No

2013-03
2013-03
2013-03
2013-03
2013-03
2013-03
2013-03
2013-03
2013-03
2013-03
2013-03
2013-03

ot) b TED) b EED) 1 HED) P 1ED P SO
O O N O ONOWIO W
oo oinoin oo ol
OO OO0 OO0 OO O O

public class Store {
int tlCounter; U
t2 int t2Counter;
int t3Counter; t3
t4 int t4Counter;

y |
——

State used in different threads
shares a cache line

Performance killer for x86
% But not for ARM

Hot topic in Java community

Padding declarations is a
workaround

But may slow Android Apps

~ %

*‘./-‘,_f t-,‘ _._,,.--‘ <
N .’.-.-'?' e 3 S »

1 2 3
HThreads

——

2 3
#Threads

JDK 1.7.0_21 (quad-
core MacBook Pro)

M False Sharing (ms)
W Cache Line Padded (ms)

TDK /x86

_ i il i R N L i i i
:

Android 4.2.2 (quad-
core Nexus 4 phone)

———

N
|
;
I
i
i

M False Sharing (ms)
W Cache Line Padded (ms)

Dalvik/
ARM

-

| Query Results 23]

Performance

Queries that highlight potential performance

bottlenecks in the program.

1 What objects have the potential for false sharing?
1 What threads are blocked for the longest time?

What objects have the potential for false sharing? at 2013-05-07 21:44:25

Package/Class/Object/Field/Thread Reads Writes Interleaving % Start

v {8 com.surelogic.bench.runs
v (9 Store
¥ Store-11
Vv 4 tlCounter
“s Store$C1-17
Vv & t2Counter
*f StoresC2-19
Vv & t3Counter
% StoresC3-21
V¥ 4 t4Counter
% Store$C4-23

22.00 2056-09-11 23:27:27.078033
68.00 2056-09-11 23:27:27.080208
66.00 2056-09-11 23:27:27.081073

88.00 2056-09-11 23:27:27.082156

2056-09-11 23:27:27.080844
2056-09-11 23:27:27.083288

2056-09-11 23:27:27.085967

2056-09-11 23:27:27.08504

Tricks of the concurrency-focused
dynamic analysis trade

i

Refactor Java byte code — No JVMTI

% Enables a range: complete to lightweight selective monitoring
Support undocumented JIT patterns — track timing & performance

- Interact with GC in the JVM

Filters out thread-confined objects — key to scale-up

- JMM monitoring

Based on extensive and flexible monitoring of the libraries

~ General query system based on extended SQL

Flexible support for interactive tree tables and query “drill-down”

- Correct support at the edges

% Start-up and tear-down — surprising subtle
Can start/stop instrumentation separately from the app

 Android support (Dalvik/ARM)

- Accidental correctness giving way to errors (x86 <= ARM)

+ Need to respect JMM — or analogs in other languages

- Sound static analysis based on fragmentary models
Yields composable analysis-based verification at scale
Helps find bugs and identify specific fixes

~ Surprisingly, dynamic analysis has an important role
Understanding, particularly for global properties
Performance focus

Visualization of missing “fence posts”

