Cyber Analytics for US-CERT

Transitioning network flow visualization from the laboratory to the watch floor

Bill Pike

Pacific Northwest National Laboratory bill.pike@pnl.gov

John Gerth & Justin Talbot

Stanford University gerth@graphics.stanford.edu

Visual analytics for high-volume data

- Challenges to anomaly detection and characterization in computer network communications:
 - Lots of data (billions of transactions/day)
 - Lots of unique actors
 - IPv4: 4.3 million unique IP addresses
 - IPv6: 6.67 * 10²⁷ IP addresses *per square meter*
 - Lots of noise

What can visual analytics do for cyber security?

- If we know what we're looking for, we can build a signature to detect it. But what's in the data that we don't already know to look for?
- Approach: Create a new ability to scale between "50,000ft" situational awareness and "ground level" analysis of individual transactions.
 - PNNL | NUANCE network flow overviews
 - Stanford | Isis event browsing and correlation

► Goals:

- Deploy a scalable visualization suite at US-CERT to visually discover emerging threats in high-volume streaming data.
- Link laboratory and academic products into a single suite.

US-CERT Mission

- Protect critical infrastructure in cyberspace both public and private sector.
 - Analyze and reduce cyber threats and vulnerabilities.
 - Disseminate cyber threat information.
 - Coordinate incident response activities.
- US-CERT's EINSTEIN program collects summary network traffic information at agency gateways and provides a high level view of federal government network connections.
- US-CERT analysts use EINSTEIN data to correlate crossagency network events.

One current visualization tool for EINSTEIN flow data

Our approach Scalable exploration of network flows

- Collect analyst requirements
- Customize existing tools to support a new level of situational awareness and exploratory analysis
 - PNNL: NUANCE Traffic Circle
 Generate high level overviews of large data sets.
 - Stanford: Isis
 Construct event narratives and preserve investigation history
- Support analytic workflow
 - Start with NUANCE overviews; when interesting events discovered, send extracts to Isis for detailed analysis.

NUANCE Traffic Circle Scalable exploration of network flows

Interactive visualization of patterns in high volume netflow data.

IsisUsing progressive multiples to explore flows

Progressive multiples...

- Make exploration history visible
- Support backtracking
- Allow rows to be reordered, revealing structure and event sequencing
- Compare events of different nodes using time-oriented displays

Traffic involving node A as node-link diagram

Traffic involving A as a timeline Pac

IsisUsing progressive multiples to explore flows

Froze D PORT 6667

IsisUsing progressive multiples to explore flows

After expanding time, analyst finds a single hour on which to focus.

Event plots Constructing a narrative

Evolution of tools for US-CERT

- Engage analysts in design reviews, requirements analyses.
- Adapt tools to EINSTEIN flow data by making them schema agnostic.
- Allow single tool sessions to visualize multiple tables in order to match existing data workflows.
- Allow timelines and event plots to use any attribute for an axis, not just network addresses.
- Simplify query panel inputs to improve productivity.
- Support analyst-defined calculations and control over panel contents.

Project Outcomes

- For researchers:
 - Understanding real-world workflows
 - Resources to turn tools into re-deployable production systems
- For practitioners:
 - Visual analytics becomes part of daily workflow
 - New ways of viewing data lead to better situational awareness
 - Quicker response time between alert and resolution
- Next steps:
 - Link visualization to modeling; there's only so much data you can visualize!
 - Understand the characteristic behaviors of machines on a network
 - Transition from reactive to proactive security posture

