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Abstract

Finding telecommunications fraud in masses of call records is more di�cult than finding a

needle in a haystack. In the haystack problem, there is only one needle that does not look

like hay, the pieces of hay all look similar, and neither the needle nor the hay changes much

over time. Fraudulent calls may be rare like needles in haystacks, but they are much more

challenging to find. Callers are dissimilar, so calls that look like fraud for one account look like

expected behavior for another, while all needles look the same. Moreover, fraud has to be found

repeatedly, as fast as fraud calls are placed, the nature of fraud changes over time, the extent

of fraud is unknown in advance, and fraud may be spread over more than one type of service.

For example, calls placed on a stolen wireless telephone may be charged to a stolen credit card.

Finding fraud is like finding a needle in a haystack only in the sense of sifting through masses

of data to find something rare. This paper describes some issues involved in creating tools for

building fraud systems that are accurate, able to adapt to changing legitimate and fraudulent

behavior, and easy to use.

Keywords: Customer Profiles, Customer Relationship Management, Dynamic Databases, In-

cremental Maintenance, Massive Data, Sequential Updating, Transaction Data, Thresholding.

1 Background

Fraud is a big business. Calls, credit card numbers, and stolen accounts can be sold on the street

for substantial profit. Fraudsters may subscribe to services without intending to pay, perhaps

with the intention of re-selling the services, or even the account itself, at a low cost until shut

down. Call sell operations may extend their lives by subverting regulatory restrictions that are in

place to protect debtors. Gaining access to a telephone or telephone line by physical intrusion still
⇤
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accounts for some fraud. Fraudsters also focus on the people who use and operate the network by

applying “social engineering” to instruct an unsuspecting subscriber or operator to unknowingly

agree to carry fraudulent tra�c. Large profits have justified the growth of a well-organized and

well-informed community of fraudsters who are clever and mobile. Fraud is also important to

shady organizations that want to communicate without leaving records of their calls that can be

traced back to them. Domestically, Telecom and Network Security Review (Vol. 4(5), April 1997)

estimates that fraud losses in the U.S. telecommunications industry amount to between 4% and

6% of revenue. Internationally, the figures are generally worse, with several new service providers

reporting losses over 20%.

Many service providers respond by building fraud control centers. They acquire multimillion

dollar network and operations systems, hire and train sta↵ for 24-by-7 operations, educate cus-

tomers, require the use of Personal Identification Numbers, partner with competitors and law

enforcement agencies, perform internal audits, and constantly tune their operations. Automated

fraud detection systems may detect calls to certain “hot numbers”, simultaneous use of calling

cards in distant locations, which is unlikely except in the case of fraud, or other patterns of usage

that are known to be associated with fraud. Such e↵orts have helped to reduce fraud, but the set

of fraudsters is continually replenished and fraudsters have been able to continue to operate.

Detecting fraud is hard, so it is not surprising that many fraud systems have serious limitations.

Di↵erent systems may be needed for di↵erent kinds of fraud (calling card fraud, wireless fraud,

wireline fraud, subscription fraud), each system having di↵erent procedures, di↵erent parameters

to tune, di↵erent database interfaces, di↵erent case management tools and di↵erent quirks and

features. Fraud systems may be awkward to use. If they are not integrated with billing and other

databases, then the fraud analyst may waste time on simple tasks, such as pulling relevant data

from several disparate databases. Many systems have high false alarm rates, especially when fraud

is only a small percentage of all tra�c, so the chance of annoying a legitimate customer with a

false alarm may be much higher than the chance of detecting fraud. More elaborate systems, such

as those based on hidden Markov models, may promise more accuracy, but be useless for realtime

detection for all but the smallest service provider. Finally, fraud and legitimate behavior constantly

change, so systems that cannot evolve or “learn” soon become outdated. Thus, there is a need for

tools for designing accurate and user-friendly systems that can be applied to detecting fraud on

di↵erent kinds of telecommunications services, that can scale up or down, and that can adapt to
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the changing behavior of both legitimate customers and fraudsters.

Overwhelming data complicates each step of the design and implementation of a fraud manage-

ment system, where overwhelming is defined not in terms of an absolute standard but relative to

the available computing resources. There can be hundreds of millions of call records available for

designing the detection algorithms, but there is no need for real-time performance during the design

stage and researchers and developers often have access to powerful computing. In production, there

may be only millions of calls per day, but each call has to be screened for signs of fraud quickly,

faster than calls are being placed, or else the system may fall behind the tra�c flow. Moreover, the

computing environment may be designed for processing bills rather than for complicated numerical

processing, limiting the kinds of algorithms and models that can be used to detect fraud. Once an

account is flagged for fraud, all the calls for the case may need to be re-analyzed to prioritize the

cases that require human intervention or analysis. There may not be a huge number of calls in an

account with suspicious activity, but specialized algorithms for fitting complex models that take

call history and account information into account may be needed to pinpoint fraud accurately. If

the case is opened for investigation, then thousands of historical and current call records and other

kinds of business and account history may need to be considered to determine the best response.

Case management tools are needed to help the analyst sift through that data. All these stages are

important, all involve data that can overwhelm the resources available, but the data requirements

of each are very di↵erent.

This paper begins by considering the heart of a fraud management system: the fraud detection

algorithm. Simply stated, a fraud detection algorithm has two components: (1) a summary of the

activity on an account that can be kept current and (2) rules that are applied to account summaries

to identify accounts with fraudulent activity. Section 2 describes these components for threshold

based fraud detection. Section 3 describes our approach, which is based on tracking each account’s

behavior in realtime.

Identifying possible cases of fraud automatically is usually not the last step in fraud detection.

Often, the fraud cases need to be prioritized to help a supervisor determine which possible case of

fraud should be investigated next. The performance of a fraud management system then depends

on both the detection step and the prioritization step. The latter step tends to be ignored by fraud

system designers, which can lead to unrealistic estimates of performance. Realistic performance

analysis is discussed in Section 4. Final thoughts on fraud detection are given in Section 5.
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2 Fraud Detection Based on Thresholding

Summarizing account activity is a major step in designing a fraud detection system because it is

rarely practical to access or analyze all the call records for an account every time it is evaluated

for fraud. A common approach is to reduce the call records for an account to several statistics

that are computed each period. For example, average call duration, longest call duration, and

numbers of calls to particular countries might be computed over the past hour, several hours, day,

or several days. Account summaries can be compared to thresholds each period, and an account

whose summary exceeds a threshold can be queued to be analyzed for fraud. Summaries over fixed

periods resemble the aggregations of calls used in billing, so software for threshold based fraud

detection is not di�cult to write or manage. The summaries that are monitored for fraud may be

defined by subject matter experts, and thresholds may be chosen by trial and error. Or, decision

trees or machine learning algorithms may be applied to a training set of summarized account data

to determine good thresholding rules.

Systems based on thresholding account summaries are popular, perhaps because they are easy

to program and their logic is easily understood. Thresholding has several serious disadvantages,

however. First, thresholds may need to vary with time of day, type of account, and type of call to

be sensitive to fraud without setting o↵ too many false alarms for legitimate tra�c. Consequently,

multivariate rather than univariate statistics must be thresholded. The need for sensitivity and

specificity can easily lead to thousands of thresholds that interact with each other and need to be

initialized, tuned, and periodically reviewed by an expert to accommodate changing tra�c patterns.

Accounts with high calling rates or unusual, but legitimate, calling patterns may regularly exceed

the thresholds, setting o↵ false alarms. Raising the thresholds reduces the false alarm rate but

increases the chances of missing fraud cases. Classifying accounts into segments and applying

thresholds to each segment separately may improve performance, but at the expense of multiplying

the number of thresholds that have to be managed. Additionally, rules applied to summaries over

fixed periods cannot react to fraud until the period is over nor consider calls from previous periods.

Such arbitrary discontinuities in account summaries can impair the performance of the system.

Perhaps most importantly, sophisticated fraudsters expect thresholds to apply and restrict their

activity on any one account to levels that cannot be detected by most thresholding systems. Thus,

there are both too many false alarms for legitimate calling and too many missed cases of fraud.

Thresholding can be improved, though. For example, Fawcett and Provost (1997) develop an
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innovative method for choosing account-specific thresholds rather than universal thresholds that

apply to all accounts or all accounts in a segment. Their procedure takes daily tra�c summaries

for a set of accounts that experienced at least 30 days of fraud-free tra�c before being hit by fraud

and applies a machine learning algorithm to each account separately to develop a set of rules that

distinguish fraud from non-fraud for the account. Thus, each account has its own set of rules at this

point. The superset of the rules for all accounts is then pruned by keeping only those that apply

to or cover many accounts, with possibly di↵erent thresholds for di↵erent accounts. For example,

the rule may specify that long international calls indicate fraud, where long might be interpreted

as more than three standard deviations above the mean duration for the account during its period

of fraud-free tra�c. Pruning then proceeds sequentially: a candidate rule is added to the current

set of rules if it applies to a minimum number of accounts that have not already been covered

by a specified number of rules. The final set of rules, therefore, covers “most” accounts, with the

understanding that most of the final rules may be irrelevant for most accounts, but all the final

rules are relevant for at least some accounts.

A fraud detection system based on account-specific thresholds is straightforward to implement

for established accounts. The calls for the period of interest are separated by account, account

summaries are computed, and then account summaries are compared to account-specific thresholds

that were previously computed from training data. This process is similar to billing, which also

requires account aggregation and access to account information. The account-specific thresholds

can be updated periodically by re-fitting trees and sequentially selecting the account summaries

to threshold. Re-training requires more resources than running the detection algorithm does, but

re-training may be needed infrequently. Fawcett and Provost (1997) describe an application of their

methods to a set of fewer than 1,000 accounts, each of which had at least 30 days of fraud-free

activity followed by a period of wireless cloning fraud.

Account-specific thresholding has limitations, though. Perhaps most importantly, a procedure

that requires a fixed period, such as 30 days, of uncontaminated tra�c for training does not apply

to accounts that experience fraud before the training period is over. In subscription fraud, for

example, all the calls for an account are fraudulent, so there is no fraud-free period. Moreover,

rules that are good for one time period may not be relevant for future time periods because account

calling behavior, both fraudulent and legitimate, changes over time. And the basic limitations of

thresholding—looking for fraud only at the end of a period and basing fraud detection on calls

5



in only the current period—still apply. Nonetheless, a method that automatically derives account

specific thresholds is clearly an important advance in threshold-based fraud detection.

3 Fraud Detection Based on Tracking Account Behavior

3.1 Account Signatures

Like Fawcett and Provost (1997), we believe that fraud detection must be tailored to each account’s

own activity. Our goals for fraud detection are more ambitious, though. First, fraud detection

should be event-driven, not time-driven, so that fraud can be detected as it is happening, not

at fixed points in time that are unrelated to account activity. Second, fraud detection methods

should have memory and use all past calls on an account, weighting recent calls more heavily but

not ignoring earlier calls. Third, fraud detection must be able to learn the calling pattern on an

account and adapt to legitimate changes in calling behavior. Fourth, and perhaps most importantly,

fraud detection must be self-initializing so that it can be applied to new accounts that do not have

enough data for training.

The basis of our approach to fraud detection is an account summary, which we call an ac-

count signature, that is designed to track legitimate calling behavior for an account. An account

signature might describe which call durations, times-between-calls, days-of-week and times-of-day,

terminating numbers, and payment methods are likely for the account and which are unlikely for

the account, for example. That is, given a vector of M call variables X

n

= (X
n,1, Xn,2, . . . , Xn,M

)

for each call n, the likely (and unlikely) values of X

n

are described by a multivariate probability

distribution P

n

, and an account signature is an estimate of P

n

for the account. Because fraud

typically results in unusual account activity, P

n

is the right background to judge fraud against.

Estimating the full multivariate distribution P

n

is often impractical, both in terms of statistical

e�ciency and storage space, so a major task in signature design is to reduce the complexity of P

n

.

To do that, we rely on the law of iterated probability (Devore, 2000), which states that P

n

(X
n

)

can be expressed as the product

P

n

(X
n,1 = x1)Pn

(X
n,2 = x2|Xn,1 = x1) · · ·Pn

(X
n,M

= x

M

|X
n,1 = x1, . . . , Xn,M�1 = x

M�1). (1)

The first term in the product represents the marginal distribution of X

n,1, and each successive

term is conditional on all the variables that were entered before it. (The order of the variables

is arbitrary.) The last term, for example, implies that the distribution of X

n,M

depends on the
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outcomes of the other M � 1 variables. Thus, there is a di↵erent conditional distribution of X

n,M

for each possible combination of outcomes of all the other variables.

For example, suppose X

n,1 represents call duration discretized into 10 di↵erent intervals, X

n,2

represents the period of day (peak or o↵-peak), and X

n,3 represents direction (incoming or outgo-

ing). Then equation (1) requires 31 terms: one for the marginal distribution of duration, 10 for the

conditional distributions of time of day given duration, and 20 for the conditional distribution of

direction given each possible combination of duration and time of day. Some of these terms might

be redundant, however. For example, if the probability that a call is incoming rather than outgoing

is di↵erent for peak and o↵-peak hours but independent of call duration, then there are only 2

conditional distributions for call direction, not 20. Then the account signature A
n

, which is an

estimate of P

n

, would be the product of 13 estimated distributions, rather than 31 estimated distri-

butions. Each term in the product A
n

is called a signature component. Each signature component

has a signature variable X

m

and, possibly, a set of conditioning variables. The set of all signature

components summarizes our knowledge about calling behavior, ignoring only those relationships

among variables that are unimportant.

3.2 Signature Design

In the applications that we have seen, fast processing has depended on allocating the same, small

amount of space to each account signature. Controlling the size of a signature can also contribute

to its accuracy and precision. For example, suppose the duration of a call is the same for peak and

o↵-peak hours, but a separate signature component is (needlessly) reserved for each. Then a peak

call will not be used to update the signature component for o↵-peak duration, even though it would

be statistically appropriate to do so. Consequently, the signature component for o↵-peak duration

will be estimated from a smaller sample size than it should be, leading to statistically ine�cient

estimates. Designing a signature amounts to eliminating conditioning variables that do not matter

and controlling the amount of space devoted to each remaining term in the product (1).

Like most fraud detection systems, we assume that there is a set of priming data that consists of

all calls for a large number of accounts over a fixed period (say 60 days) that can be used to design

signatures. We also assume that we have call records for a second set of accounts that experienced

fraud during the period. For subscription fraud, all the calls on the account are fraudulent. For

other kinds of fraud, some calls are fraudulent and some are not. Ideally, the fraudulent calls are
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labelled; otherwise they have to be labelled “by hand”. In any case, because one fraudster often

a↵ects more than one account and we are interested in characterizing fraud, not a particular fraud

user, we collapse all the fraud records for any particular kind of fraud into one set of target data

and, ultimately, into one fraud signature. There may be separate fraud signatures for wireless

subscription fraud, calling card fraud, and cloning fraud, but not a separate signature for each case

of subscription fraud, for example. Each fraud signature has the same structure as an account

signature.

The first design step is to choose the type of representation to be used for each signature

variable. A continuous variable, such as call duration or time between calls, might be described by

a parametric distribution, reducing each signature component for duration to a vector of estimated

parameters, such as a mean and a standard deviation. But often no parametric family is both

flexible enough to fit all accounts well and tractable enough to estimate quickly (say, during call

setup or teardown). Therefore, we generally take all signature components to be nonparametric.

In particular, a continuous variable or ordered categorical variable with many possible values can

be discretized, so its signature components are vectors of probabilities over a set of fixed intervals.

Alternatively, a continuous variable can be represented as the coe�cients of a fixed set of knots for

a spline fit to the log density or as a vector of quantiles. A signature variable with many possible

unordered categories, such as terminating number or area code, can be represented by the labels

and probabilities of the most likely categories. This kind of representation resembles a histogram,

but one in which the labels of the bins are not fixed. For illustration, all signature components are

assumed to be represented by histograms in this paper.

There are many criteria for defining histogram bins; see Gibbons, Ioannidis and Poosala (1997)

and Ioannidis and Poosala (1999), for example. Many of these criteria are designed to give good

performance over all possible values of the signature variable, but in fraud detection only small

probability events are important because only small probability events are able to indicate fraud.

Since our goal is fraud detection, we choose the bins of the histogram so that, on average, it is as

easy as possible to distinguish legitimate calls from fraud calls. For a given signature variable, this

can be accomplished by maximizing the average weighted Kullback-Leibler (AWKL) distance from

the histogram for an account in the priming data (p
i,k

) to the histogram for the fraud data (f
k

),

where

AWKL = � 1
N

NX

i=1

 

w

KX

k=1

p

i,k

log
p

i,k

f

k

+ (1� w)
KX

k=1

f

k

log
f

k

p

i,k

!
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for some w, 0  w  1, K is the number of bins in the histogram, and N is the number of accounts

in the priming data (Chen, Lambert, Pinheiro and Sun, 2000). The weight w controls the balance

between more informative description of legitimate behavior and better separation of fraud and

legitimate behavior. When w = 0, the criterion ignores the fraud training data and emphasizes

only the ability to represent the behavior of legitimate accounts well. When w = 1, the criterion

considers only the ability to avoid false alarms. Intermediate values of w balance these two concerns.

The cutpoints d1, . . . , d
k�1 that maximize the AWKL criterion can be found by numerical search,

if feasible. If exhaustive search is not feasible, then searching can be limited by requiring minimum

widths for the K final bins. For example, call duration might be measured to the nearest second,

but each bin might be required to be at least one minute long and endpoints might be restricted

to integer minutes.

The AWKL distance can also be used when a signature variable X is represented by something

other than a histogram. For example, if the signature represents a continuous distribution with

probability density p

i

(x) for account i and probability density f(x) for fraud, then the sum over k in

the AWKL distance is replaced by an integral over x. An appropriate set of parameters maximizes

the integral form of AWKL. If X is represented by a vector of quantiles, then a change of variables

shows that
R
x

p(x) log(p(x))dx =
R
q

log(p(P�1(u))du, where P

�1 is the quantile function defined by

P

�1(u) = q if
R

q

�1 p(x)dx = u, so the AWKL criterion still applies. The quantiles to be used in

the signature are again those that maximize AWKL.

Methods for deciding which conditional distributions to keep in a signature are discussed in

detail in Chen, Lambert, Pinheiro and Sun (2000). The basic idea involves computing a p-value

for a �

2 test for each account in the training data and keeping only the conditioning variables that

are statistically significant for a majority of accounts and highly statistically significant for at least

some accounts. The other possible conditioning variables add only noise rather than predictive

power to the signature of most accounts. Conditioning variables are added sequentially until the

incremental benefit from any of the remaining variables is too small to be statistically significant

for a majority of accounts. Loosely stated, a conditioning variable is kept only if it is important

for describing many accounts, and very important for at least some accounts.
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3.3 Keeping a Signature Current

A key feature of a signature is that it can be updated sequentially, so that it evolves in time

(measured in calls) rather than abruptly changing at the end of an arbitrary period. This enables

event-driven fraud detection because there is always an up-to-date standard against which fraud

can be assessed. Sequential updating is also computationally e�cient because it does not require

access to a data warehouse, which is often slow, but only access to a data structure that is short

enough to store in main memory. In the wireline, calling card and wireless fraud detection systems

in which we have applied signatures, each signature can be stored in about the amount of space

required to store one call, with careful quantization of probabilities.

Most signature components, such as duration or method of payment, can be considered to be

randomly sampled. Thus, they can be updated by exponentially weighted moving averaging. For

example, suppose the signature component is a vector of probabilities, call n + 1 is represented by

a vector X

n+1 of 0’s except for a 1 in the bin that contains the observed value of the call, and

A

n

is the account’s signature component after the previous call n. Then the updated signature

component based on call n + 1 is

A

n+1 = (1� w)A
n

+ wX

n+1,

where w determines the rate at which old calls are “aged out” of the signature component and the

e↵ect of the current call on the component. If w = .05, the probability assigned to the observed

bin increases by the constant amount .05 and the probability of any other bin decreases by a factor

of .95. Also, call n� 10, which was 10 calls earlier than call n, has about 60% the weight of call n

at the time of call n if w = .05, and about 82% the weight of call n if w = .02. The smaller w, the

more stable the signature component. Of course, some care has to be taken to avoid incorporating

fraud into the signature; this is discussed in Section 3.4 below.

A variant of exponentially weighted stochastic approximation, which is similar in computational

e↵ort to exponentially weighted moving averaging, can be used to update signature components

that are vectors of quantiles (Chen, Lambert and Pinheiro, 2000). Signature components that are

represented as tail probabilities rather than as complete distributions can be updated by using a

move-to-the-front scheme to update the labels of the top categories and a variant of exponentially

weighted moving averaging to update their probabilities. (See Gibbons et al. (1997) for the details

of one possible approach.) Timing variables, like day-of-week and hour-of-day, are not randomly

observed because they are observed “in order”—all the calls for Tuesday of this week are observed
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before all the calls for Wednesday of this week. Nonetheless, timing distributions can be updated

in a way that is similar in spirit and in amount of computation to exponentially weighted moving

averaging (Lambert, Pinheiro and Sun, 1999).

Of course, sequential updating requires a starting point or initial signature for a new account.

One way to do that is to segment the signatures for the accounts in the priming data, basing

the segmentation criteria on information in the first one or few calls in an account. Details of

one procedure based on statistical testing are given in Chen, Lambert, Pinheiro and Sun (2000);

details of another procedure that uses multivariate regression trees are given in Yu and Lambert

(1999). These procedures initialize each signature component separately. This gives a huge number

of possible initial signatures (products of initial signature components), expressing a huge number

of possible calling patterns. That is, a newly active account is assigned to a di↵erent segment

of customers for each signature component, and each assignment depends only on the first few

calls on the account. Finally, note that it is the initialization of signatures from the calls for a

set of legitimate accounts, rather than from the calls on the account alone, that enables us to

detect subscription fraud, in which every call on an account is fraudulent. Moreover, call-by-call

updating ensures that an account with many calls soon evolves to its own “segment”, allowing for

personalized customer relationship management.

3.4 Using Signatures to Detect Fraud

Scoring a call for fraud is a matter of comparing its probability under the account signature to its

probability under a fraud signature. Suppose the account signature after call n is A
n

, the fraud

signature is F , which is independent of the number of calls on the account, and call n + 1 with

signature variables x

n+1 is observed. Then the call score for call n + 1 is defined by

C

n+1 = log(F(x
n+1)/An+1(xn+1)).

Because A
n+1 and F are products of signature components, the call score is a sum of contributions

from the signature components. Note that standard statistical theory implies that the log likelihood

ratio C
n+1 is the best discriminator of fraud (F) from legitimate activity on the account (A

n

) when

x

n+1 is observed (Bickel and Doksum, 1976).

The higher the call score, the more suspicious the call. For a call to obtain a high score, it

has to be unexpected for the account, so A
n+1(xn+1) must be small. Calls that are not only

unexpected under the account signature but also expected under the fraud signature score higher,
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and are considered more suspicious, than calls that are unexpected for both the account and fraud.

Thus, some departures from the signature are more interesting than others from the perspective

of fraud management. As constructed, each signature component contributes equally to the fraud

score because the multivariate distribution that predicts call n + 1 is a product of the marginal

and conditional distributions represented by the signature components. As a result, some signature

components can counteract others. This is not unreasonable. An hour long wireless call may be less

suspicious if it originates from a region that is often used by the account. It is, however, possible to

weight di↵erent signature components di↵erently. Weights might depend on the reliability of the

estimated distribution, some subjective information about the value of the signature component

for fraud detection, or tuning that optimizes performance on training data. Note that the choice of

the fraud distribution also a↵ects the call score. In particular, a uniform fraud distribution implies

that all unexpected call characteristics are equally good indicators of fraud.

Call scores serve two purposes. One is to give information that can be used to identify accounts

that may have fraudulent activity. The other is to identify calls that may be suspicious and so

should not be used to update the signature. For example, negative scores suggest that the call is

not fraudulent so it should be used to update the signature. Calls with high positive scores raise

concerns about fraud and, to be safe, should not be used to update the signature. Small positive

scores are ambiguous. They might suggest a slight change in calling pattern that resembles fraud,

or they might suggest that there is a subtle case of fraud. This ambiguity suggests the following

procedure: update the signature if the call score is negative, do not update the signature if the call

score is high, and act probabilistically if the call score is positive but small. In the latter case, a

signature is updated with a probability that depends on the call score, varying from probability

one for a call score that is less than or equal to zero to probability zero for a call score that is

su�ciently high.

Egregious cases of fraud may generate calls with scores so high that a service provider may be

willing to declare that fraud has occurred with only one call. Usually, however, the evidence from

one call alone is not su�cient to identify fraud. If not, it is important to monitor the score rate,

where score rate is either the average score over the last several calls that have a score above a pre-

determined threshold or the average score of calls above a threshold over a specified time period.

Some minimal information about previous calls needs to be kept in the signature to calculate the

score rates. Accounts with high score rates can then be examined for fraud. The thresholds are

12



not applied to all aggregated calls at the end of a period but rather to aggregated high scoring calls

at the time of a possibly fraudulent call. We say that an account that exceeds the thresholds on

score rates is flagged. Flagging filters the set of all accounts, producing a smaller set of accounts

that have some evidence of fraud, just as standard account thresholding filters.

Both call scoring and account flagging have parameters that can be thought of as thresholds,

but there is a major di↵erence with the kinds of thresholds discussed in Section 2. In standard

account thresholding, an account is marked as suspicious if it passes any one of several thresholds. In

signature-based thresholding, di↵erent thresholds are not developed for di↵erent call characteristics

or di↵erent kinds of accounts, such as business accounts or residential accounts. Instead, thresholds

are applied to log-likelihood ratios that are a combination of all call characteristics. In other words,

taking log-likelihood ratios converts all the di↵erent call characteristics and types of accounts to a

standard measurement scale with one common set of thresholds.

Nonetheless, there are thresholds that need to be tuned in a signature-based fraud detection

system. These parameters may be chosen to minimize the chance of flagging a legitimate account

as fraudulent, subject to a constraint on the probability of missing a legitimate case of fraud in a

set of training data. Because there are only a limited number of parameters to tune, the optimal

parameters can be found by searching over a grid.

In summary, signatures are the basis of event-driven, adaptive, self-initializing fraud detection.

It is event-driven in the sense that it is applied at the time of each call, which is the only time

that fraud is active. It is self-learning, in the sense that the basis for comparison, the signature,

is updated with each call that is not judged to be suspicious. Moderate changes in behavior are

learned more slowly, on average, because the rate at which shifts in behavior are incorporated into

a signature depends on the size of the shift. Signature-based fraud detection is also self-initializing

in the sense that the first call or two on the account is used to assign signature components to

new accounts. Because the signature components are initialized with calling patterns for previous

accounts without fraud, it is possible to detect subscription fraud for new accounts. In a sense,

the automatic initialization step allows us to start with a procedure for new accounts that is akin

to universal thresholding with a huge number of segments. The procedure then naturally evolves

to a procedure that is akin to customer specific thresholding for established accounts. Moreover,

the threshold limits are placed on likelihood ratios and hence are the same for all segments, thus

greatly reducing the number of parameters that have to be tuned in advance.
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4 Performance Metrics

The performance of a fraud system is ultimately determined by the losses a service provider is able

to prevent, but measuring averted losses, which never occur, is clearly di�cult if not impossible.

So, instead, service providers use metrics like the detection rate, false alarm rate, average time to

detection after fraud starts, and average number of fraud calls or minutes until detection. An ideal

fraud detection system would have 0% false alarms and 100% hits with instantaneous detection.

But, finding all cases of fraud as soon as fraud starts requires mislabeling many (if not most) legit-

imate accounts as fraudulent at least once. A realistic, practical fraud system strikes a satisfactory

balance of the performance criteria.

First, however, it is important to define the metrics carefully. Traditionally, the false alarm rate

has been defined to be the percentage of legitimate accounts mislabelled as fraud. (False alarm

rates, like type II errors, are usually quoted as percents, rather than as rates.) If there are 1,000,000

legitimate accounts in the population and 100 of these accounts are falsely labeled as fraud, then the

false alarm rate is .01%. False alarms are important at the flagging stage because the goal of that

step is to reduce the set of accounts in the population that have to be considered for fraud to just

those that had fraud. False alarms are also important if account activity is restricted for flagged

accounts because then the goal is to keep the number of legitimate accounts in the population that

are needlessly restricted as small as possible.

If the evidence for fraud is ambiguous or attracting customers is costly, the service provider

may require that a fraud analyst investigate the case before activity on the account is restricted.

In that case, there is at least one queue of flagged accounts and the highest priority case in the

queue is investigated whenever a fraud analyst becomes available. A queue may prioritize accounts

by the number of fraudulent minutes accumulated to date or by the time of the most recent high

scoring call, for example. Performance can then be evaluated after flagging or after prioritization.

For example, the flagging detection rate is the fraction of compromised accounts in the population

that are flagged. The system detection rate, which includes the rules used to decide which flagged

accounts to open, is the fraction of compromised accounts in the population that are investigated

by a fraud analyst. The system and flagging detection rates are equal only when every flagged case

of fraud is investigated. Otherwise, the system detection rate is smaller than the flagging detection

rate because both detection rates are computed relative to the number of accounts with fraud in

the population.
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Service providers are also keen to know that their analysts are working on fraud cases, not

investigating legitimate accounts. Thus, a di↵erent question is what fraction of investigated cases

have fraud? The flagging hit rate is the fraction of flagged accounts that have fraud, and the system

hit rate is the fraction of investigated cases that have fraud. One minus the system hit rate is often

a good measure of the service provider’s perception of the “real false alarm rate,” especially since

this is the only error rate that the service provider can evaluate easily from experience. That is,

only the cases that are acted upon may be of interest to the service provider, not the legitimate

cases in the population that were never judged to be suspicious. If 20 cases of fraud are investigated

and only 8 turn out to be fraud, then a service provider may feel that the “real false alarm rate”

is 60%, even if only .01% of the legitimate accounts in the population are flagged as fraud.

Typically, the flagging false alarm rate, which is computed relative to all legitimate accounts, is

much smaller than one minus the system hit rate because so many of the accounts in the population

never experience fraud and so few accounts are investigated. Note that the hit rate after the flagging

step should be larger than the fraction of accounts in the population that have fraud. Otherwise,

flagging is no better than randomly labeling accounts as fraudulent. The di↵erence between the

fraction of fraud in the population and the fraction of fraud in flagged accounts is a measure of

the e�ciency of the fraud detection algorithm. Similarly, the system hit rate should be larger than

the flagging hit rate, or else the analyst can find as much fraud by randomly selecting one of the

flagged accounts to investigate.

The flagging false alarm rate, detection rate, and hit rate can be estimated by applying the

flagging algorithm to a set of training accounts, some of which have fraudulent activity. The only

subtlety is that these rates vary over time and should be investigated as a function of time. If there

are L

t

legitimate accounts on day t and L1,t

of these are flagged, then the flagging false alarm rate

for day t is L1,t

/L

t

. If there are X

t

active cases of fraud on day t and X1,t

of these cases are flagged,

then the flagging detection rate for day t is X1,t

/X

t

. The flagging hit rate is then X1,t

/(L1,t

+X1,t

).

Because legitimate and fraudulent behavior is learned over time in a signature-based fraud detection

system, each of these performance statistics should improve quickly when the system is still new

and then stabilize if the number of new accounts added stabilizes over time.

Some care needs to be taken in counting accounts when estimating system performance metrics.

After an account is flagged and put into a priority queue, it can either be opened for investigation

by a fraud analyst, it can remain in the queue without exceeding flagging thresholds again, or it can
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remain in the queue and continue to cross flagging thresholds. If the case is opened, the account

is removed from the queue and the analyst decides, perhaps after contacting the account owner,

if fraud has been committed. If an account remains in the queue unopened and it is not flagged

again, then eventually it is considered uninteresting and reaped from the queue. The simplest rule

is to reap an account if it has not been opened and has not been flagged again for a specified a

number of days. If an account that is already queued is flagged again, then its priority needs to be

re-computed to reflect the continuing suspicious activity.

Simulating system performance, then, requires simulating the prioritization and reaping pro-

cesses. In practice, re-prioritization may occur whenever another account is flagged, but for simu-

lation purposes it is enough to re-prioritize accounts once a day, for example. Then, for each day,

the number of accounts opened, the number of accounts with fraud opened, and the number of

active fraud cases can be counted to compute the system hit rate and system detection rate, which

are typically the most important parameters to service providers.

Finally, note that realistic performance assessment requires assuming realistic levels of fraud.

Performance often appears better for larger fraud rates, but if typically 4% to 6% of all accounts

are infected by fraud annually, then assuming that 20% to 30% of all accounts are infected by fraud

in three months is not realistic and overstates system performance.

5 Further Thoughts

This paper describes an approach to fraud detection that is based on tracking calling behavior on

an account over time and scoring calls according to the extent that they deviate from that pattern

and resemble fraud. Signatures avoid the discontinuities inherent in most threshold-based systems

that ignore calls earlier than the current time period. In the applications that we have encountered,

a signature can be designed to fit in about the space needed to store one call. Consequently, they

can be stored in main memory that is quick to access, rather than in a data warehouse that is

slow to access. In one application to wireless fraud detection, we had 33 gigabytes of raw wireless

call records for about 1.5 million customers. Each signature required 200 bytes, so the signature

database required only about 300 megabytes to store. In an application to domestic wireline calling,

there were 90 gigabytes of call records for about 1 million customers. Each signature required

only 80 bytes to store, so the signature database required only about 80 megabytes. Because

signatures are updated call-by-call, there is no need for o✏ine processing or for using out-of-date
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customer profiles. Thus, signatures are able to avoid two common complaints about fraud detection

systems that profile customers: they cannot scale up and they cannot keep up with the volume

of data. Moreover, signatures are initialized from legitimate data from a huge number of possible

initializations, so they can detect subscription fraud. This is in contrast to profiling systems, which

use only the calls on the account itself to profile customers and, therefore, cannot detect subscription

fraud. Finally, the signature evolves with each new call that is not considered fraudulent, so each

established customer eventually has its own signature, not a signature designed for a segment of

customers. Evolving the customer from an initial segment to a personalized segment is painless—no

additional processing, such as re-clustering a database, is necessary.

It is possible to put other kinds of fraud detection algorithms in the signature framework. For

example, many service providers keep lists of “hot numbers” that are associated with fraud. These

can also be used in a signature-based system, by giving each call a high score when a hot number

is called. More importantly, perhaps, it is possible to have scores for warm numbers that are often

but not exclusively associated with fraud. These numbers can be assigned a contribution to the

log-likelihood that is smaller than that for hot numbers, for example. It is also possible to keep

account characteristics that can be derived from call records and that might be useful for fraud

detection in the signature. For example, the fact that an account is a coin phone might change the

rate at which it is attacked by fraud or the kind of fraud it is likely to be subjected to.

There is much more to fraud detection than the algorithms that score calls and label accounts

as suspicious, though. For example, the fraud detection system needs to be able to access calls at

the switch, before they are sent to a data warehouse, in order to be real-time or nearly real-time.

Putting hooks into a telecommunications network to pull call data from a switch can be extremely

di�cult. After an account is flagged, investigators need sophisticated tools for case management.

These tools must be integrated with billing systems so that the investigator can access payment

history. The case management tools must also be integrated with service provisioning systems so

that an investigator can enable service restrictions on the account, if appropriate. Putting hooks

into these systems is non-trivial at best. Supervisors then need case management tools that allow

them to track the performance of the system and to spot new trends in fraud. Tools are needed to

ensure that if one account for a customer is closed for fraud, then all accounts for that customer

are closed for fraud, for example.

Signatures can be adapted to any kind of fraud in which transactions are made on accounts.
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This includes credit card fraud, in which the transaction is a purchase, and medical fraud, where

the account may be a medical practitioner and the transaction an interaction with a patient or the

account may be a patient and the transaction a visit to a medical practitioner. More generally,

signatures can be used to predict transaction behavior on accounts. For example, signatures can

be used in to track the behavior of visitors at web sites to identify those who are about to make

purchases. While further research is needed to work out the details for particular applications, the

concept of signature-based predictive tracking is broad and potentially valuable for a wide range of

applications.
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