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Preserving Privacy 



Approach 1: Deny Access 



Approach 2: Redaction 



Approach 3: Blurring 
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Knowledge-Based Policy 

•  Cannot know exact dollar amount of  any 
transaction with greater than 0.01% certainty. 
•  Implies range of  at least $100 (10k values) 

•  Cannot know exact balance amount with greater 
than 0.005% certainty. 
•  Range of  at least $200 

•  Also permits non-contiguous uncertainty 
•  Balance $1,000 - $1,050 with 50% probability 

•  Balance $1,100 - $1,150 with 40% probability 

•  Balance $1,150 - $1,175 with 10% probability 
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Approach 3: Blurring 

Are there any 
withdrawals over 

$500? 

Question: 

Can’t answer this… 

Goal: Answer as many questions as possible, 
while ensuring privacy bounds hold. 



New Approach 

•  No a priori blurring or redaction 

•  Instead, selectively answer outside queries 
•  Keep track of  outsiders’ knowledge 

•  If  answering query would reveal too much, don’t answer 

•  Otherwise, answer query and calculate the change in 
knowledge 

•  Always enforce knowledge-based policy 
•  Cannot know exact dollar amount of  any transaction with 

greater than 0.01% certainty. 

•  Cannot know exact balance amount with greater than 
0.005% certainty. 



Policy Enforcement 
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Calculate: 

Our Model Querier / Attacker 
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Must Ensure… 

Our Model Querier / Attacker 

Policy Constraints 

≥ 

Policy Constraints 



Examples 

•  Bank Statements 
•  Lender: Any withdrawals over $5k? 

•  Demographic Data 
•  Website: Age between 24 – 30? 

•  Troop Deployments 
•  Coalition Partner: Is allied support available within 1 

hour of  location X? 

•  Health Data 
•  Insurer: Risk factors for heart disease? 
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Modeling Beliefs 
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Query: 
Are you between 24 and 30 

years old? 

Suppose: 
The user is 24 and wants the 
website to be less than 15% 

certain of  their age. 

Should we answer the query? 
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Modeling Beliefs 
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Rejection implies this is our age! 

Proposed Policy: 
Reject if  attacker’s belief  assigns 
probability > 0.15 to the actual 

secret. 
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Problem: 
Rejection could reveal 

information 



Solution: 

Check that constraints 
are not violated 

for any possible secret. 
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So Far… 

•  Mechanism for representing knowledge 
•  Probability Distributions1 

•  Method for ensuring rejection does not leak 
information. 
•  Check privacy for all possible secrets. 

•  One more issue… Efficiency! 

1 Clarkson, Myers, Schneider.  “Quantifying Information Flow with 
Beliefs,” Journal of  Computer Security, 2009. 



Problem 

For large state spaces, 

and complex sequences of  queries 

precise tracking is impractical. 



Birthday Query 

today := 260 
if  bday ≥ today ∧ bday < (today + 7) then 

 output := True; 
else 

 output := False; 

Birthday (bday) ∈ [0,365] 

Birth Year (byear) ∈ [1906, 2011] 
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No 

20? 
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age := 2011 - byear 
if  age = 20 ∨ age = 30 ∨ … ∨ age = 60 then 

 output := True; 
else 

 output := False; 
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Abstraction 

With bounded number of  regions, 

we can no longer be precise. 
 

Allow approximation. 

But only sound approximation… 



Abstraction 
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Soundness Theorem 

If  evaluation using our approach 
indicates the query does not reveal too much… 

Then the query is safe. 

No amount of  computation on an attacker’s 
part can provide certainty above the threshold. 
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Caveat 

Assuming the initial belief  was accurate. 
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Experiments 

Definition 31. The scaling of a probabilistic polyhedra P1

by minimal total mass m and maximal total mass m, written

normal(P)(m,m) is the probabilistic polyhedron P2 satisfying

the conditions below.

pmin
2 = pmin

1 /m smin
2 = smin

1

pmax
2 = pmax

1 /m smax
2 = smax

1

mmin
2 = mmin

1 /m C2 = C1

mmax
2 = mmax

1 /m

Finally, the normalization of a set of probabilistic polyhedra

can be defined.

normal({Pi})
def
=

�
normal(Pi)(M

min({Pi}),Mmax({Pi}))
�

Lemma 32. If δ ∈ γPn(P)(∆) then normal(δ) ∈
γPn(P)(normal(∆)).

Definition 33. We write P(σ) to mean the maximum prob-

ability of a state σ according to a probabilistic polyhedron

P, and {Pi}(σ) to mean the maximum probability of a

state σ according to a probabilistic polyhedron set {Pi}. The

definitions are as follows.

P(σ) =

�
pmax

if σ ∈ γC(C)
0 otherwise

{Pi}(σ) =
�

i Pi(σ)

Lemma 34. {Pi}(σ) ≤ (ΣiPi)(σ)

Determining the maximal probabilty of any state repre-

sented by a single probabilistic polyhedron is a simple as

checking the pmax
value in the normalized version of the prob-

abilistic polyhedron. In the domain of probabilistic polyhedron

sets, however, the situation is more complex, as polyhedra may

overlap and thus a state’s probability could involve multiple

probabilistic polyhedra.

A complex approach would produce a disjoint set of prob-

abilistic polyhedra, but a simple estimate can be computed by

abstractly adding all the probabilistic polyhedra in the set, and

finding the pmax
value of the result.

max
σ

{Pi}(σ) ≤ pmax
a where Pa = ΣiPi

This is the approach we adopt in the implementation.

B. Policy Evaluation
We begin by defining concretization for sets of polyhedra.

Definition 35. A set of convex polyhedra {Ci} represents all

states that are in at least one of the polyhedra.

γP(C)({Ci})
def
=

�

i

γC(Ci)

We now define tsecure for Pn (P):

Definition 36. Suppose we have some initial probabilistic

polyhedron set ∆1. Let ∆2 = ��S��∆1. Let ∆� = {P �
i} =

∆2 � L. If, for all σ ∈ γP(C)({C �
i}) we have ∆3(σ) ≤ t

where ∆3 = normal(∆2 |
�

x∈L x = σ(x)), then we write

tsecuret(S,∆1).

Below we state the main soundness theorem for abstract in-

terpretation using probabilistic polyhedron sets. This theorem
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Fig. 6. Query evaluation comparison

states that the abstract interpretation just described can be used

to soundly determine whether to accept a query.

Theorem 37. Let δ be an attacker’s initial belief. If δ ∈
γPn(P)(∆) and tsecuret(S,∆), then S is threshold secure for
threshold t when evaluated with initial belief δ.

VII. IMPLEMENTATION AND EXPERIMENTS

We have implemented an interpreter for the core language

based on the probabilistic polyhedra powerset domain. The

base manipulations of polyhedra are done using the Parma

Polyhedra Library [18]. Size calculations are done using the

LattE lattice point counter [19]. LattE is also used for the

integer linear programming problem involved in the abstract

forget operation. The interpreter itself is written in OCaml.

To compare the abstract interpretation approach to an exist-

ing, sampling-based approach, we used our implementation to

vet the query given in Example 1, Section II, and an implemen-

tation based on Probabilistic Scheme [12], which is capable

of sound probability estimation after partial enumeration.
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Summary 

•  Control Information Flow By Focusing on Queries 

•  No need to introduce noise (querier gets precise 
results) 

•  Sound, efficient abstraction for probability 
distributions 
•  Tracks bounds on outsiders’ beliefs 

•  Future work 
•  Non-linear assignments 

•  Non-integer values (in particular: lists) 


