WIMBC

A Dynamic Pipeline for Cybersecurity Information Extraction and Understanding

Priyanka Ranade, Aritran Piplai University of Maryland Baltimore County

Acknowledgements

- Dr. Ahmad Ridley, NSA Mentor
- Dr. Anupam Joshi, Professor
- Dr. Tim Finin, Professor

Thank you to the NSA for their support!

Agenda

Building a Cybersecurity Knowledge Graph (CKG):

Approach for creating a CKG and using it to understand malware behavior

Understanding Security Risks for CKGs:

Showcasing a data poisoning attack to infiltrate the CKG and metods to defend against integrity attacks

Building a Cybersecurity Knowledge Graph

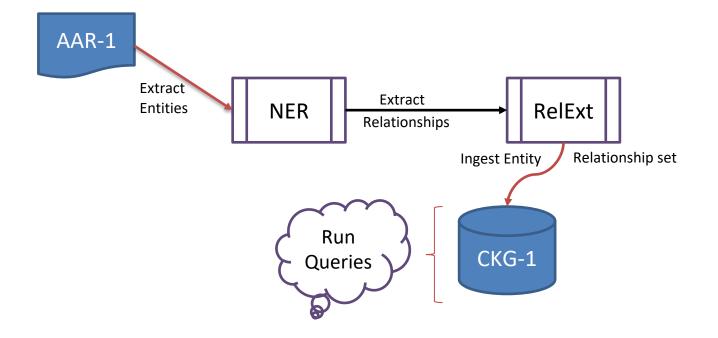
After Action Report about Malware

The Naikon group used mostly spear-phished documents for the attacks, with CVE-2012-0158 exploits that dropped the group's signature backdoor.

While many of these attacks were successful, at least one of the targets didn't seem to like being hit, and instead of opening the documents, decided on a very different course of action.

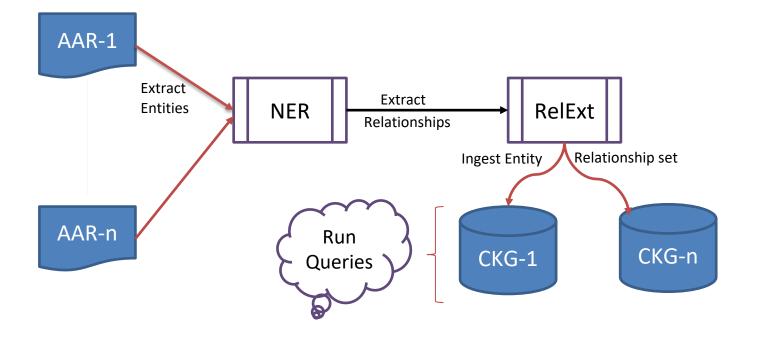
The empire strikes back

Here's a question - what should you do when you receiving a suspicious document from somebody you don't know, or know very little? Choose one:

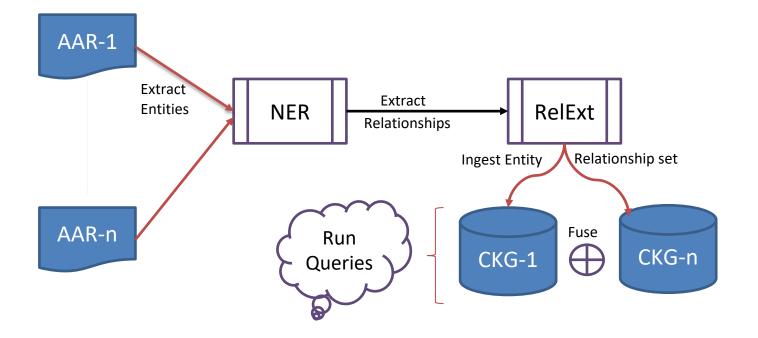

- · Open the document
- · Don't open the document
- Open the document on a Mac (everybody knows <u>Mac's don't get viruses</u>)
- Open the document in a virtual machine with Linux

Based on our experience, most people would say 2, 3 or 4. Very few would open the document and even fewer would actually decide to test the attacker and verify its story.

But this is exactly what happened when one of the Naikon spear-phishing targets received a suspicious email. Instead of opening the document or choosing to open it on an exotic platform, they decided to check the story with the sender:



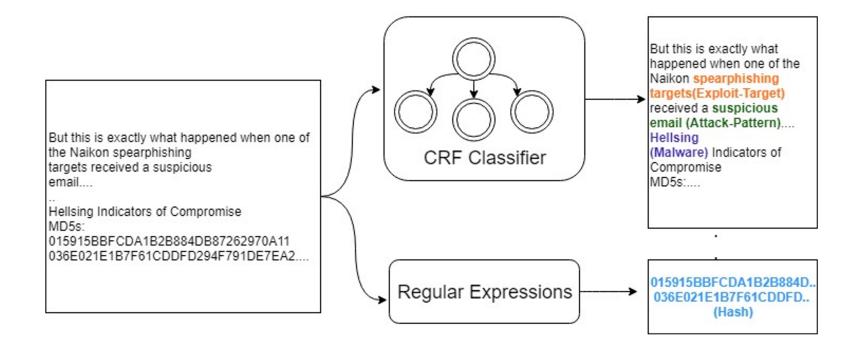
Architecture



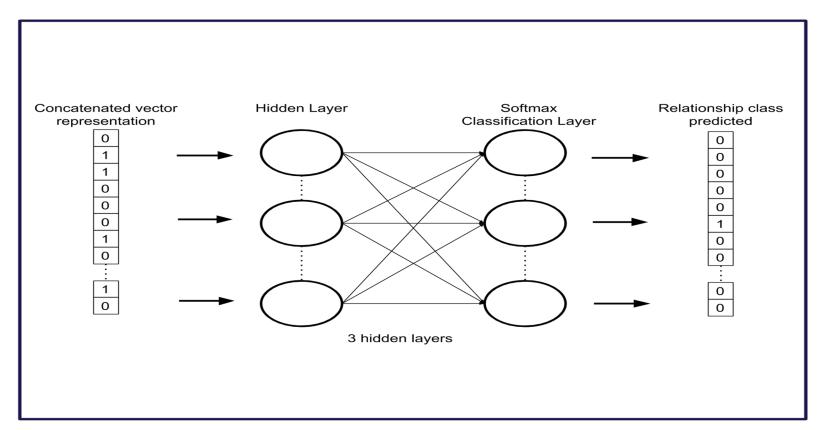
Architecture

Architecture

NER and Relationship Extractor



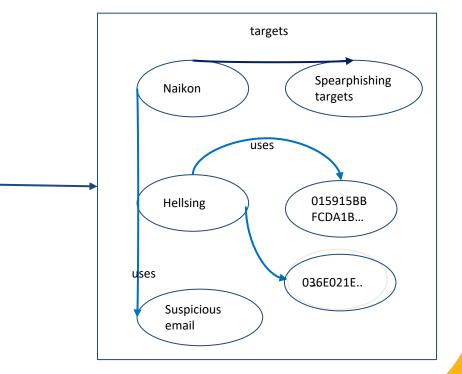
Entities and Relationships


Software	Indicator
Attack-Pattern	IPAddresses
Course-of-Action	Malware
Exploit-Target	Campaign
Filename	ΤοοΙ
Hashes	Vulnerability

hasProduct	targets
hasVulnerability	mitigates
uses	indicates

Example

Relationship Extraction Neural Network



Relationship Extractor

But this is what exactly happened when one of the Naikon spearphishing targets received a suspicious email

Hellsing Indicators of Compromise MD5s: 015915BBFCDA1B2B884DB87262970A11 036E021E1B7F61CDDFD294F791DE7EA2

Corpus

.......

Knowledge Graph Fusion

The Hellsing series chronicles the efforts of the mysterious and secret Hellsing Organization, as it combats <u>vampires</u>, <u>ghouls</u>, and other <u>supernatural</u> foes; which makes it perhaps an appropriate name for our group.

In addition to the Hellsing/msger malware, we've identified a second generation of Trojan samples which appear to be called "xweber" by the attackers:

etModuleFileNameW ô@LoadLibraryW <mark>●</mark>@ExpandEnvironmentStringsW •♥wsprintfA USER32.dll ▼ AllocateAndInitializeSid M CheckTokenMembership →@FreeSid ADVAPI32.dll À SHGetFolder PathW f@GetConsoleCP •@GetConsoleMode ,◆WriteConsoleA ™@GetConsoleOutputCP Œ+WriteConsoleW ü♥SetStdHandle A@FlushFileBuffers Z♥RaiseException Í♥SetEndOfFile ‼jû Q \40 0 0 H40 P40 X40 ´0 o► s40 E40 0 xweber_install_uac.exe ?test1@@YAXX Z ?test2@@YAHXZ

"Xweber" seems to be the more recent Trojan, taking into account compilation timestamps. All the "msger" samples we have seen appear to have been compiled in 2012. The "Xweber" samples are from 2013 and from 2014, indicating that at some point during 2013 the "msger" malware project was renamed and/or integrated into "Xweber".

During our investigation we've observed the Hellsing APT using both the "Xweber" and "msger" backdoors in their attacks, as well as other tools named "xrat", "clare", "irene" and "xKat".

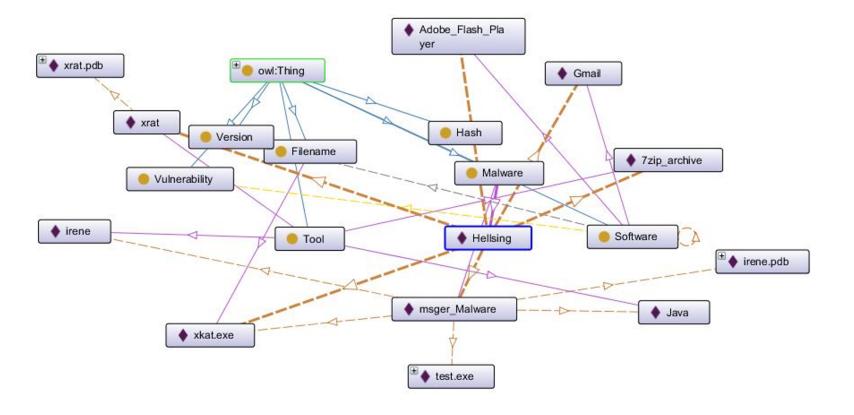
Hellsing Indicators of Compromise

MD5s:

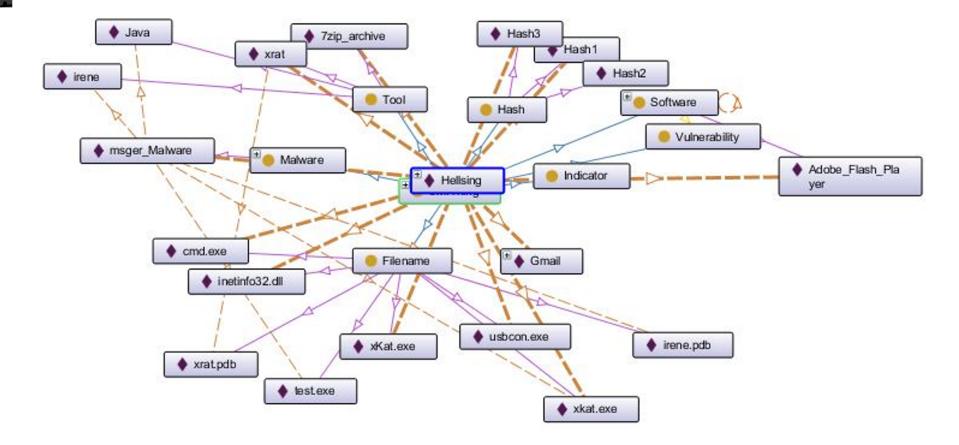
015915BBFCDA1B2B884DB87262970A11 036E021E1B7F61CDDFD294F791DE7EA2 04090aca47f5360b84f6a55033544863 055BC765A78DA9CC759D1BA7AC7AC05E 085FAAC21114C844529F11422FF684D1 0BA116AA1704A415812552A815FCD34B 0CBEFD8CD4B9A36C791D926F84F10B7B 0CC5918D426CD836C52207A8332296BC 0dfcbb858bd2d5fb1d33cd69dcd844ae 0F13DEAC7D2C1A971F98C9365B071DB9 0FFF80AF4461C68D6571BEDF9527CF74 13EF0DFE608440EE60449E4300AE9324 14309b52f5a3df8cb0eb5b6dae9ce4da 17EF094043761A917BA129280618C1D3 2682A1246199A18967C98CB32191230C 2CCE768DC3717E86C5D626ED7CE2E0B7


Domain registrations:

- huntingtomingalls[.]com <u>ssdfsddfs@qsdfsq.com</u>
- philippinenewss[.]com <u>sambieber1990@yahoo.com</u>
- philstarnotice[.]com <u>sambieber1990@yahoo.com</u>


Filenames:

- %systemroot%\system32\irmon32.dll
- %systemroot%\system32\FastUserSwitchingCompatibilityex.dll
- %systemroot%\system32\inetinfo32.dll
- %systemroot%\system32\drivers\drivers\diskfilter.sys
- %systemroot%\system32\usbcon.exe
- %windir%\temp\xKat.exe
- %systemroot%\system32\drivers\drivers\usbmgr.sys
- %appdata%\Microsoft\MMC\mmc.exe
- %systemroot%\system32\lasex.dll
- %systemroot%\system32\lpripex.dll


WINBC

WUMBC

Reasoning examples

	s expression)
owi: ining	and uses value 588f41b1f34b29529bc117346355113f
Execute	Add to ontology
Query resu	lts
Subclasses	(1 of 1) :Nothing
Instances (2	of 2)
🔶 He	lsing
🔷 He	lsing_xwebermsger

Reasoning examples after fusion

DL query:		
Query (class expression)		
owl:Thing) and uses value 588f41b1f34b29529bc117346355113f	
Execute	Add to ontology	
Query resu	Its	
	Subclasses (1 of 1)	
Instances (4	of 4)	
	llsing	
He	llsing_xwebermsger	
♦ Xw	eber	

Data poisoning attack Risks and Defenses

Background and Motivation

Cyber Threat Intelligence and the Security Community

- Cyber Threat Intelligence (CTI)
 - Also referred to as OSINT (Open Source Intelligence Data)
- Information about cybersecurity vulnerabilities, exploits
- Valuable to the security community to stay informed about new vulnerabilities and exploits
- Used as training data for AI-based cyber defense systems

WMBC

AI-Based Cyber Defense Systems

- CTI can be shared as text or as semi-structured data
- Text fields can use formats like Structured Threat Information Expression (STIX) and Malware Information Sharing Platform (MISP)
- Free text can be transformed to more structured formats and used as training data for machine learning systems aimed at detecting attack patterns.
- Used to populate cybersecurity knowledge graphs (CKG) for further reasoning.

Related Work


- Mittal et al. created Cyber-All Intel and CyberTwitter which use CKG and other agents to aid cybersecurity analysts
- *Piplai et al.* use extracted malware after action report information as prior information in a reinforcement learning malware analysis environment

WMBC

Cybersecurity Misinformation Risks

 The misinformation risk for the security community is the possible dissemination of false CTI by threat actors in an attempt to poison systems that ingest and use the information.

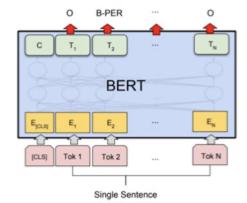
January 2021- Google Threat Analysis Group discovered a nation-state backed group that faked security research accounts and blog posts

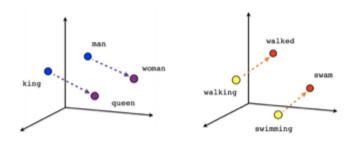
Google Threat Analysis Group

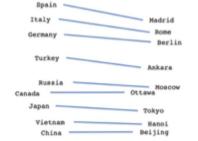
Contributions

Fine-tuned GPT-2 Model that generates fake CTI text

Poisoning pipeline for infiltrating a Cybersecurity Knowledge Graph


Evaluation and analysis of the fake and real CTI text


The Evolution of Natural Language Models


 $W_{x,y} = tf_{x,y} \times log(\frac{N}{df_x})$

Verb tense

TF-IDF Term x within document y tf $_{x,y}$ = frequency of x in y df $_x$ = number of documents containing x N = total number of documents

Country-Capital

Male-Female

WIMBC

Transformer Models

- Inspired by encoder-decoder (RNN-based Sequence models) architectures
- Transformer encoders (BERT) map input sequences to high dimensional vector spaces
- Transformer decoders (GPT-2) map transforms vectors into output sequences.
- Rely solely on an upgraded attention mechanism rather than RNNs to generate sequences

$$\underbrace{\text{Attention}(Q, K, V)}_{\text{Queries, Keys, Values}} = softmax \left(\frac{QK^T}{\sqrt{d_k}}\right) V$$

Related Work

- Lee et al. produced patent claims by fine-tuning the generic pretrained GPT-2 model with U.S. utility patents claims data
- *Feng et al.* finetuned GPT-2 on a small set of yelp review data-set
- *Vijjali et al.* utilize BERT-based transformers to detect false claims surrounding the COVID-19 pandemic.

OF UMBC

Adversarial Machine Learning and Poisoning Attacks

- Adversarial machine learning is a technique used to subvert ML systems by providing deceptive inputs to the model.
- Poisoning attacks directly contaminate the training data-set
- Rely heavily on the use of synthesized and/or incorrect input data.

Related Work

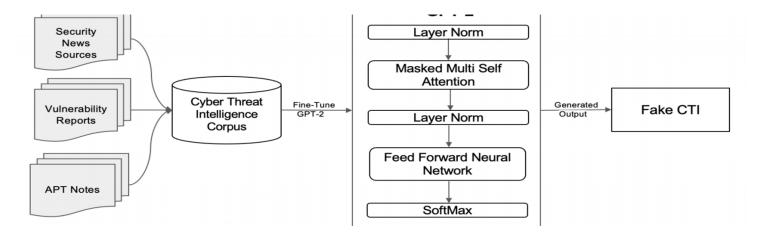
- VirusTotal poisoning attack demonstrated by the McAfee Advanced Threat Research team
- Kurana et al. created a reputation scoring mechanism to identify poisoned inputs.

Methodology

Methodology

Creating a Cybersecurity Corpus
Fine-Tuning the GPT-2 with Cybersecurity Corpus
Generating Fake Cyber Threat Intelligence Samples
Evaluation

Creating a Cybersecurity Corpus



- Fine-Tune the public GPT-2 Model with a cybersecurity text to generate a large amount of fake, but plausible CTI
- Use the generated fake CTI text to perform a data poisoning attack on a CKG and cybersecurity corpus.

Fine-Tuning GPT-2 on Cyber Threat Intelligence Data

- Fine-Tune the public GPT-2 Model with a cybersecurity text to generate a large amount of fake, but plausible CTI
- Use the generated fake CTI text to perform a data poisoning attack on a CKG and cybersecurity corpus.

Evaluation

WUMBC

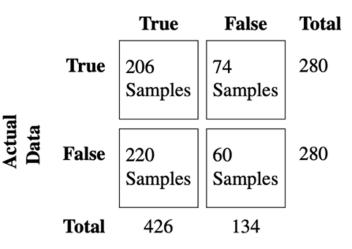
Samples of Generated Fake CTI using GPT-2

Research Question

Is the generated CTI plausible enough to bypass experienced Cyber Threat Hunters and Analysts?

Generation Input	Cyber Threat Intelligence	True/Fake
APT41 is a state-sponsored	APT41 is a state-sponsored espionage group which operates against higher education, travel services, and news/media firms which provide some indication that the group also tracks individuals and conducts surveillance.	True CTI
espionage group	APT41 is a state-sponsored espionage group. The Russian, Moscow-based group is responsible for capturing and stealing computer network communications and intellectual property. APT41 employs social engineering techniques to get around network defenses designed to last for years, and is capable of compromising and stealing dozens of companies	Fake CTI (generated)
Malicious Domain in SolarWinds Hack Turned into 'Killswitch'	Malicious Domain in SolarWinds Hack Turned into 'Killswitch'. A key malicious domain name used to control potentially thousands of computer systems compromised via the months-long breach at network monitoring software vendor SolarWinds was commandeered by security experts and used as a "killswitch" designed to turn the sprawling cybercrime operation against itself.	True CTI
	Malicious Domain in SolarWinds Hack Turned into Killswitch Service. This attack took place last year and affected hundreds of organizations. The attackers took advantage of the vulnerability in Win32k framework to attack their targets through crafted code.	Fake CTI (generated)
An issue was discovered in the	An issue was discovered in the Quiz and Survey Master plugin before 7.0.1 for WordPress. It made it possible for unauthenticated attackers to upload arbitrary files and achieve remote code execution.	True CTI
Quiz and Survey Master plugin	An issue was discovered in the Quiz and Survey Master plugin 1.2.1 for WordPress. By setting a CSRF token, an attacker can take advantage of a vulnerability in the survey.php admin panel.	Fake CTI (generated)

Evaluating the Generated Cyber Threat Intelligence

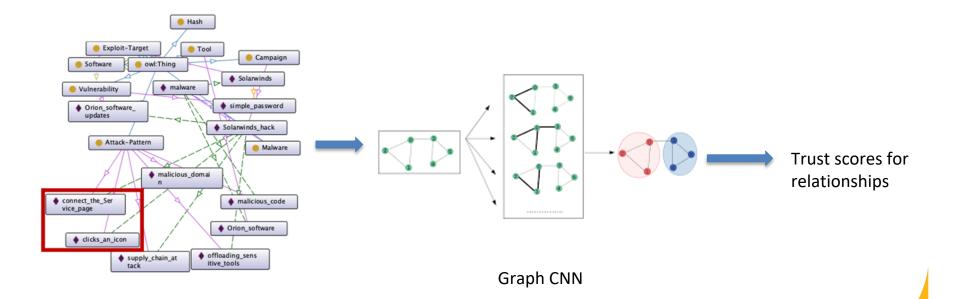

Evaluation

Ten threat hunters and analysts with 15+ years of experience evaluated 280 generated samples into true/false categories

<u>Results</u>

Participants were only able to label 60/280 of the generated samples as fake and found the large majority (78.5%) of the fake samples as true.

Participant Labels



WUMBC

Poisoning a Cybersecurity Knowledge Graph

The poisoned CKG with additional CKG populated with data from data (red box) extracted from legitimate CTI sources 💿 🌆 🖬 🖬 🗖 Hash Campaign Exploit-Target Tool Exploit-Target Campaign Tool owl:Thing Software owl:Thing Software Solarwinds Solarwinds malware Vulnerability malware Vulnerability A simple_password Orion_software Orion_software_ updates Malware simple_password updates Solarwinds_hack Attack-Pattern Attack-Pattern Malware Solarwinds hack malicious_domai malicious_domai connect_the_Ser malicious_code malicious code vice page supply_chain_at tack Orion_software Orion_software dicks_an_icon offloading_sens itive tools offloading sens supply_chain_at itive tools SELECT ?x WHERE { ?x a CKG:Attack-Pattern; ^CKG:uses CKG:Solarwinds-hack.}

Defenses against CTI poisoning (WIP)

Future Work

- Defenses against fake cybersecurity information
- Develop systems that can detect linguistic errors and disfluencies that generative transformers commonly produce
- Detecting fake CTI text can use a combination of novelty, consistency, provenance, and trust.
- Fine-tuning the model with data from other specialized domains (like medicine).
- Change ontology to include classes that help us identify the source of the information

For questions please contact – priyankaranade@umbc.edu apiplai1@umbc.edu

THANK YOU!