
23Lawrence Livermore National Laboratory

the data of interest for solving these problems have been generated
and are being used within the computer system.

However, not all problems map well to the physics-oriented
computer architecture. For some, the data to be analyzed are
stored externally, on hard disks and other storage devices. These
data might be millions of star images gathered from telescopes all
over the world, detailed tables of genomic data, or data on social
networks. (See the figure on p. 24.)

With social networks, for example, each person would be
characterized as a “cell” or node, and the connection between
one person and another would be an edge. The number of edges
between nodes can vary immensely: A person might have a
connection to only one other person on the network or connections
to tens, hundreds, even thousands of people. “Methods have been
developed to access such data for analysis,” says Gokhale, “but
when speed is of the essence, we want faster, more convenient
ways to access and analyze data. One solution is to have an
architecture in which the database exists ‘closer’ to where the work
is done.”

Bringing Data Closer
To meet the data-intensive computing requirements, Gokhale

and her team are working on an innovative hardware technology
project that is funded by the Laboratory Directed Research and
Development Program. The technology, called “persistent”
memory, incorporates large, parallel arrays of solid-state storage
devices within the compute node. Persistent memory is embodied
as flash memory, for example, in a USB memory stick.

Options for storing data range from permanent to transient
memory. Permanent memory can be stored on devices such as
hard disk drives and flash drives (or memory sticks) outside the
computer. Transient memory, such as dynamic random access
memory (DRAM) and central-processing-unit (CPU) cache, exists

IN the ever-connected world of faster and faster computers with
 more and more memory, researchers in many fields suffer from

an avalanche of data. It is an embarrassment of riches that is nearly
impossible to grasp and manipulate, particularly when the goal is
to find the one anomalous bit in a million (or billion, or trillion).
As a result, scientists at Lawrence Livermore and elsewhere are
exploring innovative ways to store, index, retrieve, assimilate, and
synthesize mountains of raw data into useful information.

One way that computer scientists are tackling this challenge is
by developing and optimizing algorithms and architectures that
interact closely with large volumes of data. These data-intensive
computing approaches combine techniques from computer
science, statistics, and applied mathematics to speed up data
manipulation in fields as diverse as astrophysics, bioinformatics,
and social networks.

Not the Usual Data-Crunching
Computer scientist Maya Gokhale leads a team in the

Laboratory’s Center for Applied Scientific Computing that is
creating computer architectures to address this “data overload”
problem. “Not only is the amount of data being generated growing
exponentially,” explains Gokhale, “but when the raw data are
analyzed, more data—called metadata—are generated as well. It’s
truly an issue of ‘drowning in data.’”

The solutions evolving to address these problems are vastly
different from those developed to manage the data generated
by large number-crunching physics simulations. Many physics
problems, such as modeling a solid piece of metal as a shock wave
moves through it, can be characterized as three-dimensional (3D)
mesh problems. Computationally, these problems are modeled as
“cells” in a 3D space. In this way, each cell’s behavior is influenced
only by its nearest neighboring cells, where shared “edges” exist.

Physics computations run efficiently on huge supercomputers,
such as Livermore’s BlueGene/P, because those machines have
many compute nodes, each of which can map to a spatially
contiguous collection of cells. These systems have a favorable ratio
of computation to communication; that is, each node can perform a
lot of computing before it needs to communicate with other nodes.
Thus, relatively little memory is required on each node. In general,

 Research Highlights

S&TR January/February 2012

24 Lawrence Livermore National Laboratory

Data-Intensive Computing

(LSST), a project for which the Laboratory is a contributing member.
When completed in 2013, the telescope will have the world’s largest
digital camera to survey the entire visible sky. Researchers will use
the resulting images to study dark matter through its light-bending
gravitational effect in an effort to chart the expansion history of the
universe and probe the nature of dark energy.

LSST will generate 30 terabytes of data every night, yielding
a total database of 100 petabytes. “They will do triage on the
data right away,” says Gokhale. “A software pipeline will look
for starlike objects, compare them to a template, and store likely
candidates for immediate consideration. The raw data will be saved
and stored. One challenge is how to later retrieve and examine the
raw data for a very specific item; that is, identify an anomaly in
that enormous database. Our persistent-memory architecture will
speed up such tasks.”

Global security is another arena that will benefit from the
team’s inventive solution for data-intensive computing. Scott
Kohn of the Information Operations and Analytics Program
is enthusiastic about the possible application to cybersecurity
efforts. A primary concern in cybersecurity is getting a big
picture view, or situational awareness, of how machines
are communicating with each other in a network. These
communications are modeled as a graph, but the graph is so
large that to store and analyze it typically requires the memory
resources of a small supercomputer. “Maya’s work
is exciting,” says Kohn. “It may allow us to analyze these
massive communication graphs on a relatively inexpensive
workstation instead of spending tens of millions of dollars
on a custom supercomputer.”

within a computer. DRAM consists of capacitors that each store a
bit of data within integrated circuits in the computer. CPU cache
holds copies of data from the computer’s main memory that are
frequently used by the processor.

Permanent and transient memories each have their pluses and
minuses. Pull the plug from the wall, and permanent memory data
remain, but transient memory data vanish. On the other hand,
access to data on permanent memory is slow: a factor of 100,000
slower than data stored on DRAM. Persistent memory embraces
the best of both permanent and transient memory. Data stored in
persistent memory are both permanent and close to the compute
node, allowing for fast access and manipulation.

“Plentiful, inexpensive persistent memory in the form of flash
storage array technology makes it possible to create very large
databases that can be accessed later for searches,” says Gokhale.
“However, we still need to address the research challenges in
organizing and accessing such databases in flash memory arrays,
which have, at best, 1,000 times the access latency of main
memory.” Latency, or delay, is defined as the time required for
a data packet to travel from one point to another, or in this case,
from memory to a compute node. Gokhale and colleagues have
made inroads on the latency problem by developing a highly
multithreaded parallel algorithm for flash storage arrays that allows
flash memory to outperform a serial algorithm in plentiful main
memory by a factor of four.

From Galaxies to Global Security to Genomes
One area that will benefit from the team’s novel approach is

astrophysics, including the Large Synoptic Survey Telescope

(a) A social network graph displays

the complex interconnections

(purple lines) between different

people, each represented by a

node (black dots). Most people

have many connections that often

overlap, but some have only one

or even zero. (b) Physics data-

crunching solutions use three-

dimensional meshes with cells

and edges, such as this simulation

of the Morrow Point Dam region

in southwest Colorado. The two

types of computational problems

require different approaches for

data storage.

(a) (b)

S&TR January/February 2012

25Lawrence Livermore National Laboratory

Data-Intensive Computing

many analytics workloads in applications, such as those for
cybersecurity, medical informatics, and social networks. Rankings
indicate which computer and algorithm combination solved the
largest instance of the problem and had the fastest time to solution
for a particular problem size. A machine on the top of this list can
quickly and efficiently analyze huge quantities of data to find the
proverbial needle in the haystack.

The Graph 500 benchmark calculations were run on Livermore’s
Kraken, a large memory server with 32 cores, 512 gigabytes of
DRAM, and 2 terabytes of direct-attached flash memory. The
approach, which used a highly multithreaded, shared-memory
algorithm, was unique among the competitors in achieving high
performance on a single compute node with very large memory.
“The graph problem is part of our research that seeks to enlarge
the memory available to a compute node by augmenting DRAM
with high-performance, direct-attached flash arrays,” says Gokhale.
“This configuration enables higher utilization of the cores by giving
each core more aggregate memory, a combination of DRAM and
flash. It also reduces the energy required by the node, trading
power-hungry DRAM for flash.”

The team has since developed a multinode version of the
algorithm and tested it in distributed memory runs on the Hyperion
Data Intensive Testbed at Livermore and the Trestles machine at
the San Diego Supercomputing Center. As for what’s next, says
Gokhale, “We are working on additional flash-based, multithreaded
graph-analysis algorithms including Google’s page-rank search
algorithm and connected components identification, which finds
clusters of nodes in a graph that indicate close relationships.”

—Ann Parker

Key Words: bioinformatics, computer algorithm, computer architecture,
database, data-intensive computing, flash memory, Large Synoptic Survey
Telescope (LSST), persistent memory.

For further information contact Maya Gokhale (925) 422-9864

(gokhale2@llnl.gov).

The team’s work can also be applied to bioinformatics. Tom
Slezak, associate program leader for Informatics, explains that
bioinformatics has a class of problems in which large amounts
of DNA sequence data are analyzed, creating an efficient data-
indexing structure called a hash table. Researchers need to easily
and quickly exploit the data in the large sequence hash table.
Slezak says, “Although there appears to be an easy way to break
up the table and distribute the data across many compute nodes,
communication latency makes this approach too slow to be
practical.” Latency comes into play when a given node requests
part of a hash table that is stored on another compute node. The
seek-request-and-fetch operation is then at least 2 to 3 orders of
magnitude slower than it would be if the entire hash table were in
local memory for any compute node accessing it—a difference that
translates into a job running in 1 day versus 100 or 1,000 days.

With persistent memory, the huge hash tables can be stored
completely and accessed with a very low latency compared to
going across the “grid” to another computer node. “Persistent
memory will enable us to attempt bioinformatics computations
that simply are not feasible with other architectures,” says Slezak.

Among the bioinformatics problems that will benefit from
this approach are those related to rapid and thorough analysis
of complex (metagenomic) sequence data. These problems
involve billions of DNA “short reads” (currently between 36 and
110+ bases in length). “Although portions of this problem can
be mapped to multiple compute nodes, the need to access the
enormous data structure argues for a single multicore system,” says
Slezak. Large persistent memory will likely outperform any other
architecture currently feasible.”

Persistent Memory Graphs a Winner
The viability of this novel computer architecture was proven in

the June 2011 international Graph 500 competition. Two entries
from Gokhale and Roger Pearce, a Lawrence Scholar working
under her direction, ranked at 7 and 17. Graph 500 gets its name
from graph-type problems—algorithms that are a core part of

Work in data-intensive computing

solutions such as persistent-memory

technology will benefit a multitude

of research areas from astrophysics

to bioinformatics. For bioinformatics

problems such as the one shown,

access to very large, low-latency

memory on a single node can provide

orders of magnitude improvements

compared with calculations that use

distributed memory on a computing

cluster optimized for physics codes.

