
Formal models of ARM processors in HOL

◮ Today’s talk
◮ very quick overview of ARM and HOL
◮ some technical highlights and research challenges
◮ making the ARM HOL models accessible (demo)

◮ General goals of the ARM-in-HOL project
◮ accurately model a modern COTS processor
◮ use processor model as basis for formal code verification
◮ study difficult modelling challenges
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ARM processors and ARM-powered products
◮ Qualcomm Snapdragon

◮ 1GHz design based on ARM Cortex-A8
◮ Dell Mini 5 slate, Lenovo Skylight, Google Nexus One

◮ Texas Instruments OMAP3430
◮ 550MHz design based on ARM Cortex-A8
◮ Motorola Droid, Nokia N900, Palm Pre

◮ Nvidia Tegra 2
◮ 1GHz design based on dual-core ARM Cortex-A9
◮ Asus Eee Pad, Notion Ink, Viewsonic, T-Mobile phone

◮ Marvell Armada 610
◮ 1.2GHz based on ARM Cortex-A8, but shorter pipeline
◮ Sampling to customers

15 Billion processors created; 10 million shipped every day

[From: http://www.arm.com/markets/showcase/]
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Higher order logic and the HOL4 system

◮ Higher order logic intended to formalise mathematics
◮ very expressive – can represent all mathematics
◮ undecidable – decision procedures for fragments

◮ HOL4 used in the ARM formalisation project
◮ accident of history - could have used other systems
◮ Isabelle/HOL, HOL Light, ProofPower use similar logics

◮ ARM model in first order logic?
◮ a challenging case study for the ACL2-HOL link
◮ ARM VFP modeled by Reynolds in HOL and ACL2

Mike Gordon & Anthony Fox (HCSS, 2010) More details at: http://www.cl.cam.ac.uk/~acjf3/arm/ 7
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Why create formal models of ARM?

◮ Ultimate goal:
◮ high confidence verification of real ARM code

◮ Need accurate specification of instruction execution
◮ ARM supplies 2000 page document in English

◮ ARM ISA formalised in higher order logic
◮ semantics of software is given by hardware execution

◮ Acknowledgement: pioneering CLI Stack
◮ ARM project has similar goals ... but with COTS hardware

Mike Gordon & Anthony Fox (HCSS, 2010) More details at: http://www.cl.cam.ac.uk/~acjf3/arm/ 10
37

4
15

http://www.cl.cam.ac.uk/~acjf3/arm/


Why create formal models of ARM?

◮ Ultimate goal:
◮ high confidence verification of real ARM code

◮ Need accurate specification of instruction execution
◮ ARM supplies 2000 page document in English

◮ ARM ISA formalised in higher order logic
◮ semantics of software is given by hardware execution

◮ Acknowledgement: pioneering CLI Stack
◮ ARM project has similar goals ... but with COTS hardware

Mike Gordon & Anthony Fox (HCSS, 2010) More details at: http://www.cl.cam.ac.uk/~acjf3/arm/ 11
37

4
15

http://www.cl.cam.ac.uk/~acjf3/arm/


Why create formal models of ARM?

◮ Ultimate goal:
◮ high confidence verification of real ARM code

◮ Need accurate specification of instruction execution
◮ ARM supplies 2000 page document in English

◮ ARM ISA formalised in higher order logic
◮ semantics of software is given by hardware execution

◮ Acknowledgement: pioneering CLI Stack
◮ ARM project has similar goals ... but with COTS hardware

Mike Gordon & Anthony Fox (HCSS, 2010) More details at: http://www.cl.cam.ac.uk/~acjf3/arm/ 12
37

4
15

http://www.cl.cam.ac.uk/~acjf3/arm/


Why create formal models of ARM?

◮ Ultimate goal:
◮ high confidence verification of real ARM code

◮ Need accurate specification of instruction execution
◮ ARM supplies 2000 page document in English

◮ ARM ISA formalised in higher order logic
◮ semantics of software is given by hardware execution

◮ Acknowledgement: pioneering CLI Stack
◮ ARM project has similar goals ... but with COTS hardware

Mike Gordon & Anthony Fox (HCSS, 2010) More details at: http://www.cl.cam.ac.uk/~acjf3/arm/ 13
37

4
15

http://www.cl.cam.ac.uk/~acjf3/arm/


Challenges

◮ How can one be sure the model is correct
◮ ARM documentation is voluminous and informal

◮ IP problems with ARM
◮ microarchitectures, tests not easily available to academics

◮ Several versions of ARM instruction set architecture
◮ ARM7 in old phones, Cortex-A8 in smartphones, tablets

◮ Many modelling research challenges
◮ e.g. no standard specification of weak memory behaviour

Mike Gordon & Anthony Fox (HCSS, 2010) More details at: http://www.cl.cam.ac.uk/~acjf3/arm/ 14
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How can we be sure the model is accurate?

◮ First approach: prove ISA and hardware models consistent
◮ proved ARMv3 ISA consistent with ARM6 machine
◮ ARM6 used in Apple Newton
◮ modern microarchitectures not available to us
◮ Cortex-A8 proof estimated 10x ARMv3 effort

◮ Second approach: validate by testing against hardware
◮ compare deduction in model with execution on ARM

Board Core

Olimex LPC-2129P ARM7TDMI-S
Atmel SAM3U-EK ARM Cortex-M3
TI OMAP3530 Beagle Board ARM Cortex-A8

◮ can validate different ISA versions
◮ less/different assurance than proof
◮ ARM’s test suites not available to us

Mike Gordon & Anthony Fox (HCSS, 2010) More details at: http://www.cl.cam.ac.uk/~acjf3/arm/ 18
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Single-step theorems

◮ Single-step theorems derived by instantiating ARM model
◮ describe execution of a single instruction
◮ derived from ISA-specific configuration

◮ Executing models for testing
◮ single-step theorems generated on-the-fly in HOL4
◮ execute by deduction or translation to ML

◮ Deriving Hoare triples for code verification
◮ Hoare triples derived from single-step theorems
◮ derived triples basis for formal code verification

Mike Gordon & Anthony Fox (HCSS, 2010) More details at: http://www.cl.cam.ac.uk/~acjf3/arm/ 20
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Formal verification of ARM code (Myreen)
◮ Semantic basis is derived Hoare logic for machine code

◮ e.g. E0834004 adds r3 to r4 – derived Hoare triple is:
{ r3 a ∗ r4 b ∗ pc p }
p : E0834004
{ r3 a ∗ r4 (a + b) ∗ pc (p + 4) }

◮ A decompiler extracts functional descriptions from code
◮ code below calculates length of a list

0: E3A00000 mov r0, #0 ; set reg 0 to 0
4: E3510000 L: cmp r1, #0 ; compare reg 1 with 0
8: 12800001 addne r0, r0, #1 ; if not equal: add 1 to reg 1

12: 15911000 ldrne r1, [r1] ; load mem[reg 1] into reg 1
16: 1AFFFFFB bne L ; jump to compare

automatically decompiles to function definitions in HOL
f(r0, r1, m) = let r0 = 0 in g(r0, r1, m)

g(r0, r1, m) = if r1 = 0 then (r0, r1, m) else let r0 = r0+1 in let r1 = m(r1) in g(r0, r1, m)

◮ Automatically derive a Hoare triple from decompiled code:
{ (r0, r1, m) is (r0, r1, m) ∗ s ∗ pc p ∗ 〈fpre(r0, r1, m)〉 }

p : E3A00000, E3510000, 12800001, 15911000, 1AFFFFFB

{ (r0, r1, m) is (f (r0, r1, m)) ∗ s ∗ pc (p + 20)}

Mike Gordon & Anthony Fox (HCSS, 2010) More details at: http://www.cl.cam.ac.uk/~acjf3/arm/ 23
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Verifying compilation (Myreen)

◮ From
f(r1) = if r1 < 10 then r1 else let r1 = r1 − 10 in f(r1)

the compiler generates code and proves that it calculates f
{r1 r1 ∗ pc p ∗ s}

p : E351000A, 2241100A, 2AFFFFFC

{r1 f(r1) ∗ pc (p+12) ∗ s}

◮ A separate proof establishes ∀x . f(x) = x mod 10, hence
{r1 r1 ∗ pc p ∗ s}

p : E351000A, 2241100A, 2AFFFFFC

{r1 (r1 mod 10) ∗ pc (p+12) ∗ s}

which can be used for subsequent synthesis

◮ Acknowledgement: collaboration with Slind, Owens & Li

Mike Gordon & Anthony Fox (HCSS, 2010) More details at: http://www.cl.cam.ac.uk/~acjf3/arm/ 25
37
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Code verification: achievements and goals
◮ Tiny Lisp interpreter (Myreen)

◮ runs on bare metal
◮ verified against an independent Lisp language semantics
◮ verified garbage collector; tail-call optimisation
◮ large word arithmetic for crypto applications (in progress)
◮ IO handled by host platform (see Nintendo DS demo)

◮ Current activity
◮ better treatment of IO and exceptions (with John Regehr)
◮ realistic multi-core memory (with Peter Sewell)

◮ Long term goal
◮ completely verified useful FP system
◮ more work than we can do ... collaborators welcomed!
◮ want examples of need for verified FP implementations

◮ Related non-ARM work at Cambridge
◮ Lisp interpreter also runs on x86 and PowerPC models
◮ x86 and PowerPC models less complete than ARM
◮ Broadcom FirePath processor code equivalence via SMT
◮ verify compilation Clight → x86 + weak memory semantics

Mike Gordon & Anthony Fox (HCSS, 2010) More details at: http://www.cl.cam.ac.uk/~acjf3/arm/ 28
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More details at: http://www.cl.cam.ac.uk/~acjf3/arm/

Switch to Anthony ...
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Background to current ARMv7 model

• Work on ARMv7 model started towards the end of 2008.

• Monadic model — initially requested by Peter Sewell’s group 

(Cambridge).

• Suited to their work on formalizing weak memory models.

• Cortex-A9 has multi-core configurations with shared 

memory.

• Can reason about the order of register and memory 

accesses.

• Now used by Magnus Myreen for his code verification work.

Mike Gordon & Anthony Fox (HCSS, 2010) More details at: http://www.cl.cam.ac.uk/~acjf3/arm/ 34
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Formalization

• Around 24 thousand lines of Standard ML and HOL code.  Just under 

half is HOL definitions and proofs.  Only critical parts reside in HOL 

logic.

Assembly Code

(ML string or quotation)

Machine Code

(HOL bit vector)

Abstract Syntax

(HOL instruction type)

Machine Code

(Hexadecimal string)

Next Step 

Theorem

(HOL theorem)

disassemble

encode

decode next state

parse

Outside HOL Logic

Abstract Syntax

(HOL terms)

Evaluation

validation

code verificationInside HOL Logic
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Web Interface (demo)

• A web interface has been built on top of the instruction evaluator.

• User friendly input and output.  Hides complexity of model.

• Easy way to query the model — avoids trawling through the HOL 

specification.

• Encourage students and formal methods community to use the model.

• Based on CGI scripting: a HOL4 session generates HTML output.

Input 
configuration 
and machine 

code

Symbolic instruction evaluator

Compute
pre-condition and

initial state

 Perform 
evaluation and 
simplification in 

HOL

Pretty-print 
theorem as 

HTML
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Summary

• Large HOL specification — all standard ARMv7 instructions covered.

• Validated against ARM development boards.

• Instruction evaluator and web interface provides easy access to the model.

• Has many uses:

• Formalizing shared memory models.

• Hardware, system code and compiler verification.

• Further collaborations welcomed.

• Questions?
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