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@ National Challenges and Role of Al

National Challenges
LS W S e ...# ‘.
o . Technological dominance in
o — - - support of national security
Intelligent Information
Systems and Superiority
Autonomy

Massive amounts of structured
and unstructured data

Trust in intelligent machines
(Robust Al)

Role of Al in Augmenting Humans

Derive actionable intelligence by
effective human-machine teaming

Leverage rapid advances in data
conditioning, algorithms, and computing

Ascertain robustness

“We had better be quite sure that the purpose put into
the machine is the purpose which we really desire”

Norbert Wiener, 1960
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@ Operative Al Definition for the Study

Narrow Al:

The theory and development of computer
systems that perform tasks that augment human
intelligence such as perceiving, learning,

classifying, abstracting, reasoning, and/or acting

We will address: Narrow Al not General Al

* Definition adapted from Oxford dictionary and inputs from Prof. Patrick Winston (MIT) during his
visit to MIT LL May 2017
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@ Al Domain of Impact

Large Amount
of Labeled Data
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Select History of Artificial Intelligence

\

Al Winters 1974-1980 and 1987-1993 /

v

1950 - Computing
Machinery and
Intelligence “Turing
Test” published by
MIND vol. LIX

1956 - Dartmouth Summer
Research Project on Al

J. McCarthy, M. Minsky,

N. Rochester, O. Selfridge,
C. Shannon, others

W.A. Clark G. Dineen

Pattern
Recognition
(MIT LL Staff)

Recogpnition in a Self-
Organizing System
(MIT LL Staff)

1955 - Western Joint Computer Conference
Session on Learning Machines

O. Selfridge
Generalization of Pattern Programming Pattern Recognition

1957 - Frank
Rosenblatt
Neural
Networks
Perceiving and
Recognizing
Automation

and Modern
Computers
(MIT LL Staff)

i| Test Computer,

| first computer

to simulate the
operation of neural
networks

1959 - Arthur Samuel
“Some studies in
machine learning
using the Game

of checkers” IBM
Journal of R&D

1958 - National Physical
Laboratory in the UK
Symposium on the Mechani-
zation of Thought Processes

1960 - Recognizing hand-
written characters, Robert
Larson of SRI Al Center

1961 - James Slagle, Solving
Freshman Calculus (Minsky
Student) MIT

1979 - An

Assessment

of Al from

a Lincoln

11 Laboratory

J.Forgie Perspective
and Internal

J.Allen MITLL

publication

1982 - Expert
Systems Pioneer
DENDRAL project
at Stanford

1984 - Hidden
Markov models

1988 - Statistical
Machine Translation

1989 -
Convolutional
Neural Networks

1986—present
The return of neural
networks

input layer

hidden layer

1994 - Human-level
spontaneous speech
recognition

1997 - IBM Deep Blue
defeats reigning chess
champion (Garry Kasparov)

2001—present
The

2005 - Google’s Arabic and

availability Chinese to English translation
of very large

data sets

2007 - DARPA 2011 - IBM Watson
Grand defeats former
Challenge Jeopardy! champions
(“Urban (Brad Rutter and
Challenge”) Ken Jennings)

2012 - Team from U. of Toronto
(Geoff Hinton's lab) wins the
ImageNet Large Scale Visual
Recognition Challenge with
deep-learning software

2014 - Google’s GoogleNet
Object classification at near
human performance

1 2015 - DeepMind
achieves human
expert level of play on

& | Atari games (using only
raw pixels and scores)

2016 - DARPA Cyber
Grand Challenge

2016 - DeepMind AlphaGo
defeats top human Go player
(Lee Sedol)

-
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Al “Winters”

1974-1980
1970s
1980-88
1988-93

1986

1988

1990

1995—present

The first “Al winter”
Knowledge-based approaches
Expert systems boom

Expert systems bust; the second
“Al winter”

Neural networks return to
popularity

Pearl’s Probabilistic Reasoning in
Intelligent Systems

Backlash against symbolic
systems; Brooks’ “nouvelle Al”

Increasing specialization of the field
Agent-based systems

Machine learning everywhere
Tackling general intelligence again?

Source: UNC Computer Science

The first Al winter 1974-1980

In the 70s, Al was subject to critiques and financial setbacks. Al
researchers had failed to appreciate the difficulty of the problems they
faced. Their tremendous optimism had raised expectations impossibly
high, and when the promised results failed to materialize, funding for Al
disappeared. At the same time, the field of connectionism (or neural
nets) was shut down almost completely for 10 years by Marvin Minsky's
devastating criticism of perceptron. Despite the difficulties with public
perception of Al in the late 70s, new ideas were explored in logic
programming, commonsense reasoning and many other areas.

Bust: the second Al winter 1987-1993

The business community's fascination with Al rose and fell in the 80s
in the classic pattern of an economic bubble. The collapse was in the
perception of Al by government agencies and investors — the field
continued to make advances despite the criticism. Rodney Brooks
and Hans Moravec, researchers from the related field of robotics,
argued for an entirely new approach to artificial intelligence.

Source: Wikipedia, History of artificial intelligence
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Top 15 Publishing Universities/Organization
in the US (2011-Present)

2500
2002

2000
(7 1471
"E 1500 1399
o
£ 1081 1091 1098
3 1019
o 1000

} I I
0
Q& - o 2 @ o XY N
Q'b\q 40‘9\ Qéo \4’0'(\ 6\10(\ (oc‘,(\o %0& 0()\’ 0‘\Q'Q &0\0 0&0 0 fb'éo \\0
& $ & ) @ N ° > X
2 Q o O N \ 7 ©) =) @
N N\) < & .2 o N\ N
S & F & ¢ ¢ v
& N & Q & Q&L
N\) 00 Q RN Q > $’b
\. & Q& &
r,'b g \ Q@ 0‘\
X &
& Ny )
N\ D
N\ &
05‘ 0(\\4 Terms searched in the title and/or abstract of the publications: artificial intelligence, cognitive computing,
machine learning, deep learning, neural network, pattern recognition, fuzzy logic, support vector machine
gg “/;' ;%’/%188 Source: Scopus which is largest abstract and citation database of peer-reviewed LINCOLN LABORATORY

literature: scientific journals, books and conference proceedings

MASSACHUSETTS INSTITUTE OF TECHNOLOGY



]@[ Top 14 Patent Holders in Al Per Country (2011-2016)
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@ China is Putting a Major Investment into Al

EcorTﬁnist S s ' T T
Rejuvena tlon—yo| SumdayBeview = orwiox

Liu Xiaobg ™e Rea! Threat of Artificial Intelligence In 2012-16 Chinese Al firms received $2.6B

- . - T . in funding, according to the Wuzhen Institute,
C‘h):l;a ¥ SOURRY - N e a think-tank
g Artificial China Next Generation Al Development

lsllggﬁg Plan (July 2017)!

By 2020  China will have established initial

LJ‘ AI an d '|'h & Al technology standards, service systems, and

industrial ecological system chains  with
U1'U re O the scale of Al’s core industry exceeding

. Work sy $22.6B, and exceeding $150B as driven by
| T=maa-a S0tV the scale of related industries
“ NOVEMBER 1-2,2017 =

MIT Technology Review (November 2017)

MIT brings together thought leaders fram

Chinese Government has , BN academia and'business China’s goal is “to have major
indicated plans to invest . = breakthroughs in Al by 2025, and to be
$150B over next few years i « (dlse OIZL the envy of the world by 20302

DoD R&D spending is a fraction of nation states — we are losing ground on patents and publications

gg “’;' ;2“;%1180 ' https://www.newamerica.org/cybersecurity-initiative/blog/chinas-plan-lead-ai-purpose-prospects-and-problems/ LINCOLN LABORATORY
2 The Atrtificial Intelligence Issue, China’s Al Awakening, MIT Technology Review, Nov-Dec 2017 MASSACHUSETTS INSTITUTE OF TECHNOLOGY
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Al Canonical Architecture

Sensors

Sources

Structured Algorithms Human- Machine
*' gl Data e.g.: Teaming (CoA)
>
| (((ﬁ))) . Knowledge-Based [ ] Human .
Data Information y o Knowledge S [ - Insight
nsupervise - 3
Conditioning > and Supervised > Complement
Learning [ ] Machine
- ﬂ > Transfer learning
P Unstructured Adversarial < >
e WP Data i
fe) A Learning Spectrum
etc
Modern Computing
CPUs ' GPUs TPU | Custom = = - Quantum

Explainable Al Verification & Validation Security Policy,
(e.g., counter Al)

Robust Al

Ethics,
Training

Users (Missions)

Safety and
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@ Four Components of Machine Learning Solutions

1. Define a Problem 2. Gather Data

Predict

Artificial Intelligence

T

Machine Learning

Representation
Learning (inference)

Deep
Neural Nets

Image Adapted From: “Deep Learning”
I. Goodfellow, et.al., 2016 MIT Press
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@ National Security Specific Concerns
Compared To Commercial Sector

LY

“ A~ _#_  amazoncom

(._]'L]' SIC X IVIICFOSOTL

High dimensionality

Large volume

Known truth / continual development
Mild consequences of decisions
Past is representative of future
Competitive environment

Mostly consumer users
Explainability is not the largest issue

Quantifiable success ($$)

High dimensionality

Large volume

Unknown truth / not tolerant to errors
Large consequences of decisions
Past does not always represent future
Adversarial environment

Today requires sophisticated users
Trust / explainability is core

Harder to measure success

Al will be a technological enabler (i.e., data and algorithm warfare) against: radical extremists,
terrorists, and peer nations to defend our homeland and abroad
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Spectrum of Commercial Organizations

in the Machine Intelligence Field
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& Government Organizations Study Outreach

Intelligence Community

Under Secretary of Defense
for Intelligence (USDI)

Uence o onod®
fice & Techn!

5
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Defense Contractors, Commercial, Peers,
and Al Centers Study Outreach

Defense Industrial Base

Ly prnainesi

Commercial
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Academia and MIT Study Outreach

MIT School
of Engineering

Anantha
Chandrakasan

MIT-IBM Watson
Al Lab

Aude
Oliva

MIT
CSAIL

Srini
Devadas

MIT-IBM Watson
Al Lab

Antonio
Torralba

MIT MIT Brain and
CSAIL

Cog Sciences

Jim Patrick Vikash
Glass Winston Mansinghka
Florida
International Northeastern Boston
University University University

Michel
Kinsy

Mark
Finlayson

MIT MIT MIT
Media Lab LIDS IDSS

Sandy Devavrat

Suvrit
Pentland Shah Sra
University
Ohio State University of Southern
of Michigan California

University

Milind
Tambe

Srini Arunesh
Parthasarathy Sinha
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& Cyber Security: Critical Threat Surfaces

Global Trends

Vulnerable users Attacker

Insider threats (both
malicious and unwitting

insiders) Compromised User Compromised System
c s : Components
. . : redential Stealing . .
Proliferation of devices, e.g. S Compromised Input + Supply Chain Attacks
loT . Physical Tamper
* Insider Attacks * Memory Corruption Malicious Logic
.. . Spear Phishing + Code Injection « Counterfeit Components
Mission success in the - Password Guessing + Database Injection Malicious Compilers
presence of cyber attacks - Malformed Packet (Ddos)

. Cyber-EW effect
Attacker use of automation /

Al

Users Data Systems
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@ Global Trend: Sophisticated Attacks More Easily
Accomplished with Automation

Growth of Threat NOTEWORTHY FACTS
Sophisticated
c2 Ransomware
o Staging « 250K new malware programs
High Sophistication Sophistication Firmware are registered each day
Required of of Available Tools WWww attacks '
Actors Declining Growing Distributed * There were 357M |.19W email
attack tools malware variants in 2016 - 36%
Automated Next more new variants than in 2014.
-, Sniffers probes/scans
s Hijacking Insider * There were 463M new variants
c \\\ sessions Packtfe.t Phishing of ransomware in 2016 - 36%
.% N spooling Cross site scripting more new variants than in 2015.
o S .
f'z Burglaries S “Stealth”/advanced scarring techniques * 99 days to detect compromise -
Y= - -
5 Exploiting Denial of service adversary gains access in 3
known GUI F
7)) °
vulnerabilities etwork management diagnostics Internet of Thlngs and_ CI_OUd
Swebgers are hot targets (e.g. Mirai
q S botnet) — 2 min to compromise
Disablify udits ~ . .
. u S * Projected cyber attack costs in
assword cracking S
- Sso 2019: $2.1T
elf-replicating code k. T -
Low Password guessing e ————— é
1980 1985 1990 1995 2000 2005 2010 2015 2020
Div Al Study - ZZSou.rces: https:lIwww_.symantec_.comlsecurity-centerl?hreat-feport httpsE//www.fireeve.comlbloq/tr_1re_at-research/2017/03/m-trends-2017.htm LINCOLN LABORATORY
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@ The Cyber Battleground

Offense Maintain Achieve Effect &
Stages epare eeen

Impact Know the target Enable attack process Support persistence Attack effectiveness

Users

Network

i N
Processing Storage Communication
vm VM VM

L Systems ~
Defense Identify (Recon) Respond Recover
Stages
Impact Focused defense Deflect attacks ID new attacks Stop attacks “Mission” fight through
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Major Challenges to Cyber Security

Impact Know tje target

Hard to
anticipate threat

and what
mission assets
to protect

Impact Focused defense

Enable affack process

Network

Support persisten®

Attack effectiveness

1|

R

~/
Attacks continues to

proliferate, evade
detection

Storage

VIV VIV -
Hypervisor < > L

‘ Systems

Deflect attacks

ID new attacks

Big Data
overwhelms
analysis
resources

Stop attacks

Attack
response is
complicated

and slow

Current

processes are
manual,
hands-on

“Mission” fight through
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Al Winter for Cyber

« “Outside the Closed World: On Using Machine
learning for Network Intrusion Detection”,
(Sommer, Paxson, 2010)

« Described significant challenges with applying
machine learning (e.g. Al) to cyber attack intrusion
detection

« Caused ‘Al for Cyber Winter’ that forced people to
abandon Al-based approaches in cyber security
altogether

« Paxson later acknowledged impact was not as
intended (AICS16, 2016)

— Only applied to intrusion detection
— Other cyber security aspects are amenable to Al

Outside the Closed World:
On Using Machine Learning For Network Intrusion Detection

Robin Semmer
International Compwer Science Institure, and
Lawrence Berkeley National Laboratory

tection research, one pop-
ular strategy for finding attacks is monitoring a netwark's

far anomalies: deviations from profiles of normality
previously learned from benign traffic, typically identified
using taals borrowed from the machine learning community.
However, despite extensive academic research one finds a
striking gap in terms of actusl deployments of such systems:
compared with ather intrusion detection approaches, machine
learning is rarely employed in operational “real world™ settings.
We examine the differences between the network intrusion
defection problem and other areas where machine learning
regularly finds much more success. Our main claim is that
the task of finding sitacks is fundamentally different from
these other applications, making it significantly harder for the
intrusion delection community to employ machine learning
effectively, We support this elsim by ident
particular to metwork intrusion defection, an
of guidelines meant to strengthen future research on anomaly
detection.

Keywords-anomaly detection: machine learni intrusion

delection: network security.

I. INTRODUCTION

Traditionally, network itrusion detection systems (NIDS)
are broadly classificd based on the style of detection they are
using: systems relying on misuse-detection monitor activity
with precise descriptions of known malicious behavior, while
anomaly-detection systems have a notion of normal activity
and flag deviations from that profile.! Both approaches have
been exiensively studied by the rescarch community for
many years. However, in terms of actual deployments, we
observe a striking imbalance: in operational settings, of
these two main classes we find almost exclu only
misuse detectors in use—most commonly in the form of
gnature systems that scan network iraffic for characteristic
byl sequences.

This situation is somewhat siriking when considering
the success that machine-learning—which frequently forms
the basis for anomaly-detection—sces in many other arcas
of computer scicnce, where it ofien results in large-scale

o based [1

Other syles include spec
Gon [2]. These approaches focus mspectively on de
f g any

Vem Paxson
International Computer Science Institue, and
University of California, Berk

deployments in the commercial world. Examples from other
domains include product recommendations systems such
as wsed by Amazon [3] and Netflix [4]: optical character
recognition systems (e, [5], [6]); natural lang
and also spam detection, as an example closer to

home [8],

In this paper we set out to examine the differences
between the intrusion detection domain and other arcas
where machine leaming is used with more success. Qur main
claxm is that the task of finding attacks 15 fundamentally
different from other applications, making it significantly
harder for the intrusion detection community to employ
machine keaming effectively. We believe that o significant
part of the problem already originates in the premise, found
in virtually any relevant textbook, that anomaly detection is
suitable for finding novel attacks; we argue that this premise
does not hold with the generality commenly implicd. Rather,
the strength of machine-keamning tools is finding activity
that is similar to semething previeusly seen, without the
need however to precisely describe that activity up front (as
misuse detection must)

In addition, we identify further charactenstics that our do-
main exhibits that are not well aligned with the requirements
of machine-leaming, These include: (i) a very high cost of
errors: (7i) lack of training data; (iii) a semanti een
results and their operational interpretation; (iv) enormous
variability in input data; and (v) fundamental difficultics
for conducting sound evaluation. Whike the
may not be surprising for thoss who have been working
in the domain for some time, they can be easily
newcomers. To address them, we deem it crucial for any
effective deployment to acquire deep, semantic insight i
a system’s capabilitics and limitations, rather than treating
the system as a black box as unfortunately ofien cen.

We stress that we do nof consider machine-keamnin;
inappropriate tool for intrusion detection. Iis use requires
care, however: the more crisply one can define the context
in which it opcrates, the better promise the results may hold.
Likewise, the better we understand the semantics of the

an

detection process, the more operationally relevant the system
will be. Consequently, we also present a set of guidelines
meant to strengthen future intrusion detection research.

Sommer, Paxson paper shifted cyber security research focus from Al to secure methods
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Cyber Al Start-up Landscape

=I CYBERSECURITY'S NEXT STEP MARKET MAP:
W 80+ COMPANIES SECURING THE FUTURE WITH ARTIFICIAL INTELLIGENCE
ANTI FRAUD & IDENTITY MANAGEMENT MOBRBILE SECURITY
AGARI feedzal £ Ravelin smyte. £7 zZvupLyLags & appthority

: ﬂg-ﬂﬁ QGreatHorn W . iD nskyrnlnd owu Mi3 Security ?

() Castle GYSME ippesnor Ay simility veridu ~ Sentegnty

E CYBERTOMICA mwa I Shift Technology “®a sift science ARAR =S kycure

L DATAVISOR | PRECOGNITIVE ”. 0= 2 SOCURE (3] P ZIMPERIUM.
PREDICTIVE BEHAVIORAL ANALYTICS / AUTOMATED CYBER-RISK
INTELLIGENCE ANOMALY DETECTION SECURITY MANAGEMENT
W cyLanCE &5 Avata DEMISTO @Cqbermlnt
despinstinct Sec™ @) BehavioSer > EdgelWave cY

. . B4 f

ndien Peignalsense & DARKTRAC DEFENCE Z JAVELIN CYtora

sl h

IINNITIJ ANOMAL =8 ;UzEAk X @ Logiub (% Haystax
ntelhSpyre _— (=] ]l »

- _\‘ PROTENUS K . =5|5lﬂ'l i |Elum0
HUASK ¥ patterex £ INTERSET & & TANIUM METACERT
#LagRhythm “ exabeam @analytis TwosENSE.AI i

inel0 _ wireta

SECLYTICS Jrtine (@ secureotouct  NFORTSCALE & stackPath ZENEDGE @ l P
APP SECURITY 10T SECURITY DECEPTION

é.ﬂmthﬁase ‘J:"Q()’ sparkcognition SECURITY A h

e ) . ' ¢ .
Cryptesense Bastile CUJO Cyberfog  illusive &2 CBINSIGHTS

However, the market is now flush with companies leveraging Al for cyber
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@ Outline

 Background
« Lay-of-the-Land

« Al for Cyber Security

— Background

j‘> — Findings and Recommendations

« Summary
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[E]

Al Canonical Architecture

Sensors

Sources

Structured Algorithms Human- Machine
*' gl Data e.g.: Teaming (CoA)
>
| (((ﬁ))) . Knowledge-Based [ ] Human .
Data Information y o Knowledge S [ - Insight
nsupervise - 3
Conditioning > and Supervised > Complement
Learning [ ] Machine
- ﬂ > Transfer learning
P Unstructured Adversarial < >
e WP Data i
fe) A Learning Spectrum
etc
Modern Computing
CPUs ' GPUs TPU | Custom = = - Quantum

Explainable Al Verification & Validation Security Policy,
(e.g., counter Al)

Robust Al

Ethics,
Training

Users (Missions)

Safety and
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GPU = Graph Processing Unit
TPU = Tensor Processing Unit

CoA = Courses of Action
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Data |
Conditioning

@ Unstructured and Structured Data

Data Conditioning/Storage Technologies
- Data to Information -

Technologies Capabilities Provided

Structured Data Types Infrastructure/Databases + Indexing/Organization/Structure
“ ORACLE + Domain Specific Languages
? l ( .
ﬂ : <- CET R * High Performance Data Access
_ - o ll [ l>
s AS5AnARER » Declarative Interfaces
Speech Sensors Network Metadata

L
09° Machine Learning (Unsupervised) * Limited machine learning

Unstructured Data Types ‘ D) o + Dimensionality Reduction

T

b ' ) * Clustering/Pattern Recognition
rb —— B « Outlier Detection
Social Human Reports Side

Media Behavior Channel

J

. NN

Data Labeling + Initial data exploration

+ Highlight missing or incomplete data
* Reorient sensors/recapture data

» Look for errors/biases in collection

Important needs are in labeling data and automating data conditioning
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@ Data Conditioning: The Open-Source Intelligence E3
Opportunity Big Data Boom

.....
e

« Open source data is growing exponentially
— 2.8B Internet users

— 2B smartphone users s : -
Socla- Media

— Commercial satellites and imagery coming online

- Data are r_|ch with |r]form?t|on about systems, users, .-' [Protos | mteret | [Waps ana \
organizations, relationships, events | of Things Imagery _"J

 Data can be used to enrich information from classified

\ —

\ y /

A Mass Media and , vy
sources Publications . ',"
Open Sources oy - /

\\ 4 éf‘--" ""’
\\\\_ s J //
- ._____,./"

Classified Sources SIGINT A

/ MOVINT

HUMINT |

Finding #1: Cyber data is voluminous and is both structured and unstructured
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@ Large Truth-marked Cyber Datasets Are Hard to Find —

- Continued need for commercial and government Cybe;security Information Sharing
Enterprises to share data from incidents Act of 2015

May 2016 Volume 11, Issue 5
From the Desk of Thomas £, Dyl Chair
We've all heard talk ofthe Cybersecurity Information Sharing Act, bumka{ does it really mean? We hope that this

newslette, qu k at sheet tha l} Tigh IE,H s the key takeaways, as well as provide resources for additional information
if you'd li k onduc J eper dive into the topic

« Some databases exist but are not easy to use or
widely accessible JUST LAUNCHED: LEARN
& 5 HOW IMPACT ADVANCES
Impacf CYBERSECURITY R&D
T The .jl.luns :: :no

* Very little cyber data is truth-marked

able ummary pPopular asels In the intrusion ection domain

Data source Dataset name Abbreviation
- - - letwork Traffic DARPA 1998 TCRDump Files DARPASS
 Much academic research still leverages antiquated s
0% KLOY9 Datas KLDge-10
d atas ets nternet Beploration Shoctout Dataset IES
Liser behavior lInix User Dataset UNKDS
Fystern call sequences DARPA 1952 BER Files B=hi 9
DARPA 1902 BSM Files Bohd 9
Univarsity of Maw Mexicn Dataser MR

Finding #2: Lack of ground truth for cyber inhibits algorithm application to DoD problems
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Machine Learning Algorithms Taxonomy

“FINNR SONNRS DENTINTALY WACHAL LIALNING 4D ERPRT W TEMSRSED
UKD CICITNG TR FWTANE WL DL -WRCH SLAACSI

BE Eﬁ"‘ﬂ"‘f':“
i &?ﬁ ]

THE ULTIMATE
LEARNING MACHINE WILL
REMAKE OUR WORLD

*”The Five Tribes of Machine
Learning”, Pedro Domingos

Algorithms*

IE] /
S e g S

Input Space

Dy e
W e L e
" =
o §
o
el = 1) ) e 2t 1) s
T I T
TN N N
[ uit-1]) | ult)) L olt+1) )
~— N —
i
.

Feature Space

Symbolists
(e.g., exp. sys.)

Bayesians
(e.g., naive
Bayes)

Analogizers
(e.g., SVM)

Connectionists
(e.g., DNN)

Evolutionaries
(e.g., genetic
programming)

Machine Learning Applied to Classifiers

Training i
Data

Iterate

Cross-

Validation Model

Data Assessment

Classifier

Language
generating RNN A group of
people shopping

at an outdoor

market.

There are many
vegetables at
the fruit stand.
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CNN = convolution neural network

RNN = recurrent neural network

Source of outdoor market graphic: nature.com, Deep Learning (May 2015)
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]E[ Al Algorithms for Cyber =

deep learning

machine learnin

predictive analytics

translation

natural language

classification & clustering rocessing (NLP

information extraction

speech to text er .
E speech Artificial Intelligence
text to speech ( AI)

expert systems

planning, scheduling &
optimization

robotics

image recognition

_ o vision
machine vision

Finding #3: Many algorithms exist which can be applied to cyber security
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I&] Artificial Intelligence Can Help =

e |
Offense Maintain Achieve Effect &
ST e

Impact Know the target Enable attack process Support persistence Attack effectiveness

Users

Systems

_A/—(V—y_\‘x

Handle . —
Big Data to detect :
and characterize Automatically

attacks respond to attacks Team w/ humans
and suggest COAs to enact

|
13

_ Automatically
Monitor and Infer / Identify

anticipate the Critical Assets
threat i N

DI Identify (Recon) Detect Respond Recover
Stages
Impact Focused defense Deflect attacks ID new attacks Stop attacks “Mission” fight through
Div Al Study - 34 COA - Course of Action LINCOLN LABORATORY
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@ Al Resources Are Available on Line

« Open source toolkits allow users to leverage
machine learning easily

« Commercial companies build business on Al tool
kits that can be applied easily

A Knowledge Base of Shared Knowledge and
Solutions

" .
Hell'e e W, .
e

Ry
LN - S
r Il Microsoft
Azure o TOF
Tensor Apache Singa

Finding #4: Academia, commercial sectors are advancing algorithms and Al capabilities
Finding #5: Peer organizations are benefiting from open source communities
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@ Human Machine Teaming

Study Finds Cyberthreat Data
Overwhelming to Security Workers
A recent Ponemon report shows that organizations neglect to

Challenge: Cybersecurity and Big Data

share essential cyberthreat data with board members and C-level “By 2018 the United States
executives. 0100

alone faces a shortage of
140,000 to 190,000 people
with analytical expertise

xt frontier and 1.5 million managers
i and analysts with the skills
to understand and make
decisions based on the
analysis of big data.”

McKinsey & Company

"Mc I'<ms,e),&Com;3an§r {May 2011), “Big data The next fronnerforlnno\atlon competlnon and produmwt}, Available at
http:// N ey.com fInsights/MGi/Research/Technology_and_lnn n/Big_data_The_next_frontie novation

%’1 DIRECTORATE FOR EDUCATION

g AND HUMAN RESOURCES

Finding #6: Cyber security data overwhelms overworked analysts
Finding #7: The US / DoD faces serious workforce shortages in cyber security expertise
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@ Human Machine Teaming: Automated =
Cyber Decision Making

« CASCADE - Cyber Adversarial SCenario modeling and Automated Decision Engine
— Dynamically quantifies risk in the face of an adaptive adversary
— Considers mission context to selection optimal course of action (COA)
— Prototype applied to configuration of network segmentation defense

Baseline Threat Level 2 Threat Level 3
el RN

CASCADE Architecture Architecture Architecture
Non-linear Optimization (Exploration)

e —
Network
Environment Data
= S [yl
.g o
g 2
e oy Cyber COA
& Cyber Risk Modeling & Simulation (Evaluation) z Y
g ) g
° ‘ B oo = g
Threat Attacker ~ 3 - \
— [ <
@ N : T
D \

Network Environment

CASCADE lIterations

Div Al Study - 37

LINCOLN LABORATORY
DRM 9/19/2018

MASSACHUSETTS INSTITUTE OF TECHNOLOGY



]E[ Robust Al: Engendering Trust _r-

Confidence Level vs. Consequence of Actions

High
o
o £
L o
* o
= E c
8w % Machines
c =5 Augmenting
% g Q Humans
= .= 0
£ 5
S ©
=
Low
Low Consequence High
of Actions
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Al for Cyber must be Robust as Well

Robust Al

« By gaining access to an Al system, can an adversary learn, and then introduce, imperceptible
perturbations to inputs that render the system un-usable?

Incorrect

<

Adversarial
Learner
(full or black
box accessto
ML system)

“gibbon™

el
O

) > Prediction
Algorithm

" Predictions

« Cyber examples are appearing in
literature demonstrating capabilities

— Malware evades detection

— Nefarious connections hidden by noise
— Etc ..

ML System

Towards Evaluating the Robustness

of Neural Networks

s Carin vid Wagner
versily of Califommia, Berkeley

Arigieal Adve Original - Ad

1]

=
4 |
™

':..'!

te saning inae. Thel
o L

a
b
a

rk
metworks that re:

hempes Lo secun: neurs)
marginl robusiness impry

% [39] is
neural networks ug
vod o b very pro

bound. The former
J rescanch e i
nds of reqered appo

Black-Box Attacks a;

“Prol. Yirg Tan

Ahstract

the comespondng suhoz

inst RAN based Malware Detection Algorithms

Finding #8: Adversarial attacks can limit effectiveness of cyber Al solutions
Finding #9: Vulnerable Cyber Al detection, classification algorithms can lead to incorrect behavior
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@ Robust Al: Evaluating Classifier Performance
using Human Expert Judgment

« Al and ML currently applied mostly to simple, low consequence
problems

— We want to transition use to hard, high consequence problems

High

Desired usi

Consequence

 Methods are needed to evaluate Al classifiers that leverage
expert judgement kt

— Must be robust to inter-rater dependence and variability Simple Hard

Difficulty

Low

Scenario: Fake News Detection Expert Dependence

~obbbb Z

B Accuracy Estimates from Methods ¢
) 0.95 3l

e} 2
Statistical Classifier True 085 I I

Estimation Accuracy Classifier 7]
Method Estimate Accuracy
Questions: Job Category Stack Exchange Reddit Fake News
* How well do the methods work? sMLE ®AGR =MV
«  What factors impact the quality of the estimate?

1.00
0.75
0.50
0.25
0.00
=025
—0.50
-0.75

[
EX
X
EX

—1.00

4 [ B

[
EX
[m,)
EX,

Y

A
4

EX
[m,)
E
(=)
[m)
N

Classifier

[m)
[m,)
B
(=)
E

B True Classifier Accuracy
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& Modern Al Computing Engines — 1

What It Provides to Al Selected Results
* Most popular computing Alexnet comparison: Forward-Backward Pass
CPU platform 10— '
[ IXeon-E5
* General purpose compute o | [l KNL —
« Used by most for training 6
GPU algorithms (good for NN 3
- @ 4 -
g backpropagation) E
© 2|
(&) TPU + Speeds up inference time Nl ﬂ— . . m 1 |
H H 1 H 128 256 512 1024 2048
(o) (domain specific architecture) Batn Size
c
"5 SpGEMM Performance using Graph Processor (G102)
Q Neuromorphic : Still a researCh area 101 ——ASIC Graph Processor (Projected)
E 1013 +::ayhxi;a:i':an (Measured)
o (‘g)’ . ~+—Cray XT4 Franklin (Measured)
O - Ability to speed up e v /
- gn . O
Custom specific computations g fp
| of interest (e.g. graphs) =& 0w
. =
O . . 100
» Benefits unproven until now
108 T
Quantum * Recent results on HHL et
(linear system of equations) e e 1 o e W w o
DivAl Study-41  GPU = Graph Processing Unit HHL = Harrow-Hassidim-Lloyd quantum algorithm LINCOLN LABORATORY
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@ Outline

 Background
« Lay-of-the-Land

« Al for Cyber Security

— Background

> — Highlights, Findings and Recommendations

« Summary
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Summary of Study Findings &

Recommendations
1. Cyber data is voluminous and is multi-domain, v Lead the way in Cyber Big Data conditioning by
structured and unstructured leveraging expertise in Big Data collection,

2. Lack of ground truth for cyber inhibits algorithm creation and curation to support Al for Cyber

application to DoD problems

3. Many algorithms exist which can be applied to

cyber v" Engage with academic community to maintain

awareness of and influence where possible,
leverage open-source toolkits and libraries to
jumpstart DoD mission capabilities

4. Academia, commercial sectors are advancing
algorithms and Al capabilities

5. Peer organizations are benefiting from open
source communities

6. Declining human resource environment creates
opportunity to help

Human
Machine
IEEIGEN 7. Recommender systems at core of much

commercial Al success

v Automate and augment cyber tasks of data triage,
correlation, leveraging active learning to improve
Al solutions, capitalize on analyst cyber expertise

8. Adversarial attacks can limit effectiveness of ]
Robust Al cyber Al solutions, leading to incorrect behavior ¥ Lead the way in robust Al for cyber for DoD
applications, leveraging and applying recent work

9. Promising work in ‘proving’ Al behavior is in academia

appearing in academia
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LL Cyber Al-related Workshops and Symposiums

Artificial Intelligence for Cyber
Security Workshop

* Forum for Al researchers and
practitioners to share research and
experiences in applying Al to Cyber
Security

New Orleans, Louisiana * February 2, 2018

Theme: Applications of Al to Internet of Things

Keynotes

Sal Stolfo

Professor of Computer Science
Dept. of Computer Science,
Columbia University

Trung Tran

Laboratory of Physical Sciences,
University of Maryland,
Baltimore County

Neal Wagner

Graph Exploitation Symposium

* Brings together leading experts from
universities, industry, and government
to explore the state of the art and define
a future roadmap in network science

Chairs
Dedham, Massachusetts « April 23-25, 2018

Technical
Co-Chairs

Ben Miller

Sanjeev
Mohindra

POC: Ben Miller,

Rajmonda . iiler@Il.mit.edu

Caceres
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@ Summary

* U.S. needs to regain Al leadership by strategically partnering with small and large
commercial companies plus academia

Potential for major impact remains for DoD applications
— Although there is a lot of activity in community, only pockets of cyber success exist

Transfer of algorithms to DoD mission is challenging

Demonstrated achievements in applying Al to cyber
— Fluent in Big Data architectures and databases
— Cyber discussion detection, traffic characterization, counterfeit detection

Focus should be on unique areas of expertise, connection to mission
— Mission process and data requirements

— Adapting latest algorithms to mission needs

— Developing robust Al solutions
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