
Going Large with Formal
Methods on iFACTS

Roderick Chapman, Altran UK

1

 What is iFACTS?

 Formal Methods – Why Bother?

 Metrics and Issues

 Going Large?

 Conclusions

Contents

2

 iFACTS provides advanced tools support to en-route air-
traffic controllers at the London Area Control Centre

› Trajectory Prediction

› Medium-Term Conflict Detection

› Electronic Flight Strip Management

 Or more clearly…

What is iFACTS?

3

 iF

Ti

4

SCOTTISH
AREA CONTROL CENTRE

LONDON
AREA CONTROL CENTRE

SHANWICK
AREA CONTROL CENTRE

Two Control Centres – Prestwick and Swanwick
Picture credits: NATS.

Swanwick Area

5

Swanwick

Handles on average 5,500 flights
each and every day of the year

Controls 200,000 square
miles of airspace above
England and Wales including
the complex airspace of London

Swanwick Centre

6

Swanwick Area Control

7

Before iFACTS…

8

After iFACTS…spot the difference…

9

iFACTS Functions

10

 Advanced electronic prediction
and decision support tools.
 Changed method of operation.
 Increased capacity.
 Reduced fuel burn through less

interaction.
 Introduction must cause

minimal ATC delay and
disruption to the 24/7 service.

Separation Monitor
LabelsSeparation (NM)

0

5

10

15

Time to Interaction (mins)
0 5

SAS123
BAW433

DLH4695
FCA1077

BAW225

BAW225
ANZ001

10 15

BAW225
UAL3

UAL3

8 10 12 15 mins

10

12

15

Reset

iFACTS – Medium-Term Conflict Detection:
Separation Monitor Window

11

Separation Monitor
Cancel Alert Lines LabelsGreenSeparation (NM)

0

5

10

15

Time to Interaction (mins)
0 155 10

SAS123
BAW43BE

DLH4695
AMM1077

AZA292
BAL547

BAW028
ANZ001

UAL2
SAA321

BAW225
UAL3

 What is iFACTS?

 Formal Methods – Why Bother?

 Metrics and Issues

 Going Large?

 Conclusions

Contents

12

 Two main uses of “Formal Methods”
in iFACTS

 Functional Specification in Z with

English commentary

 Implementation in SPARK 2005

› Strong static verification and proof of properties

Why bother?

Formal Methods on iFACTS

13

14

So why bother with FM?

15

So why bother with FM?

16

Thinking and Tooling Exposes…

Ambiguity…

17

Thinking and Tooling Exposes…

Contradiction…

18

Thinking and Tooling Exposes…

Incompleteness…

…particularly assumptions that you didn’t
know about…but really should be written
down and validated…

 What is iFACTS?

 Formal Methods – Why Bother?

 Metrics and Issues

 Going Large?

 Conclusions

Contents

19

 From April 2005 – Requirements Engineering,
Formalization and Specification. Still on-going!

 October 2006 – Implementation Project starts

 December 2011 – Fully Operational
› 24/7 on all sectors with all controllers

 January 2012 and ongoing – Maintenance and upgrades.

iFACTS Timeline

20

 How many “Formalists” do you need?

 Specification team – key “FM skills”
› requirements elicitation
› Abstraction
› Z authoring

 Peak size: 12 people, including 4 NATS employees.

 Now 3 people during maintenance phase.

Headcount…

21

 How many “Formalists” do you need?

 Implementation team – key “FM skills”
› reading Z
› test case design
› SPARK design, implementation and proof.

 Peak size: 130, spread across 4 sites, in 3 timezones.

 Now: 7 people.

Headcount…

22

 Specification: what do you count?

 We found that “Delta Z” (Added and Modified lines of
Formal Text) was an excellent proxy measure that
correlated with effort for changes.

 If you printed it all out, the Z functional specification is
over 4000 pages.

Specification Size

23

 Z reader and writer training are separate
and very different courses.

 Z Reader Training:

› 3 day course. We find reasonably fluency after 1 week
on the job

› 57 Engineers trained to read Z, including contractors

› Also trained NATS Domain Experts and Controllers to
read Z so they could review the specification –
essential

Training experience

24

 Z reader and writer training are separate
and very different courses.

 Z Writer Training:
› 3 day course. Fluent and productive with 3 months on

the job

› 11 Engineers trained, including NATS staff

Training experience

25

 Implementation is a mix of
› SPARK 2005

› Full Ada (a few modules impractical to write in SPARK – e.g.

OS library interfaces)

› MISRA C (small GUI “Glue” layer)

Code Size

26

 The SPARK and Ada Code is:
› 890k “raw” lines of code

 of which

› 116kloc blank
› 171kloc comments
› 74kloc SPARK contracts
› 529kloc “code”

 of which

› 250kloc declarations and statements (aka “logical loc”)

Code Size

27

 Data- and Information-Flow
› No uninitialized variables
› Verification of intended information flow

 Concurrency
› No deadlocks
› No priority inversion or unbounded blocking
› (See Ada’s “Ravenscar Profile”)

 Memory consumption
› No pointers, no “heap”, so no worries!
› Worst case stack usage analysis

SPARK Analyses and Proof

28

 Proof of “no runtime errors” aka “type safety” in
addition to all of SPARK’s type checking rules:

› Prove no buffer overflow, arithmetic overflow, division
by zero etc.

 SPARK Code generates
› 152927 Verification Conditions

 of which

› 151026 (98.76%) are proven automatically
› 1701 proven by a user-defined lemma
› 200 “reviewed”

SPARK Analyses and Proof

29

 All coders must prove 100% VCs OK before check-in.

 Entire proof can be reproduced in less than 15 minutes.

› Strict Modularity

› Parallelization (Got 152927 processor cores? Great!)

› Distributed and persistent caching of proof results.

 “Overnight” proof run clears the cache and rebuilds all
analyses and proofs from scratch.

SPARK Analyses and Proof

30

 What is iFACTS?

 Formal Methods – Why Bother?

 Metrics and Issues

 Going Large?

 Conclusions

Contents

31

 So what does “Going Large”? Mean

 For us…the fact that no one person understands
everything on a project.

 Some have a broad but shallow understanding of the
whole system and its context.

 Some have very deep knowledge of some components.

Going Large?

32

 What is iFACTS?

 Formal Methods – Why Bother?

 Metrics and Issues

 Going Large?

 Conclusions

Contents

33

 It can be done!

 Tools and Languages must be designed to scale up. This
does not happen by chance.

 Training people to read and write formal notations is
achievable, even for customers.

› It’s only discrete math after all…

› The notation may seem like a barrier at first, but it’s not really.

› It’s the thinking that counts.

› Abstraction remains the key skill of system and software engineering.

Conclusions – Formal Methods on iFACTS

34

	Going Large with Formal Methods on iFACTS��Roderick Chapman, Altran UK
	Contents
	What is iFACTS?
	Ti
	Swanwick Area
	Swanwick Centre
	Swanwick Area Control
	Before iFACTS…
	After iFACTS…spot the difference…
	iFACTS Functions
	iFACTS – Medium-Term Conflict Detection:�Separation Monitor Window
	Contents
	Formal Methods on iFACTS
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Contents
	iFACTS Timeline
	Headcount…
	Headcount…
	Specification Size
	Training experience
	Training experience
	Code Size
	Code Size
	SPARK Analyses and Proof
	SPARK Analyses and Proof
	SPARK Analyses and Proof
	Contents
	Going Large?
	Contents
	Conclusions – Formal Methods on iFACTS

