' galois]|

Development of a Verified Message
Encoder/Decoder for Automotive
Vehicle to Vehicle (V2V)
Communications

Mark Tullsen, tullsen@galois.com (presenting)
Lee Pike, leepike@galois.com

Nathan Collins, conathan@galois.com

Eric Woldridge, ericw@galois.com

Aaron Tomb, atomb@galois.com

ITS (Intelligent Transportation Systems)

V2V (Vehicle to Vehicle)

V2l (Vehicle to Infrastructure)

Scenario and warning type

Rear end
collision
scenarios

Forward collision warning

Approaching a vehicle that is
decelerating or stopped.

| Scenario example

Emergency electronic
brake light warning

Approaching a vehicle
stopped in roadway but not
visible due to obstructions.

Lane change
scenarios

Blind spot warning

Beginning lane departure that
could encroach on the travel
lane of another vehicle traveling
in the same direction; can detect
vehicles not yet in blind spot.

Do not pass warning

Encroaching onto the travel
lane of another vehicle
traveling in opposite direction;
can detect moving vehicles not
yet in blind spot.

Intersection
scenario

Blind intersection warning

Encroaching onto the travel lane
of another vehicle with whom
driver is crossing paths at a blind
intersection or an intersection
without a traffic signal.

Emergency brake light warning
Forward collision warning
Intersection movement assist

Blind spot and lane change warning

© 2016 Galois, Inc.

This Project

= Small, research-oriented pilot study

= Can we develop a formally verified encoder/decoder for the
messages between vehicles?

» Funded by DOT/NHTSA (Art Carter, POC)
= Partners

= Battelle (Prime, Management)

= Galois (Sub, Technical work)

« Expertise in ASN.1, security, embedded-systems, formal
methods

» Galois Team: Lee Pike, Mark Tullsen, Nathan Collins, Eric
Woldridge, Aaron Tomb

3 © 2016 Galois, Inc.

From Embedded Systems to
Cyber Physical Systems

Mechanic Short-range wireless Long-range wireless

Entertainment

src: Kathleen Fisher, http://www.cyber.umd.edu/sites/default/files/documents/symposium/fisher-HACMS-MD.pdf

4 © 2016 Galois, Inc.

Hacking Cars

Researchers Show How a Car’s Electronics Can Be Taken

By JOHN MARKOFF

STy JREP HACKERS ARE BACK
cvverctmes 1) PROVE CAR HACKING CAN
GET MUCH WORSE. iz @Em

Example Attacks

Vulnerability Implemented Visible Full
Class Channel Capability to User Scale Control Cost
Direct physical OBD-Il port Plug attack hardware directly into car ~ Yes Small Yes Low
OBD-II port
Indirect physical CD CD-based firmware update Yes Small Yes Medium
CD Special song (WMA) Yes* Medium Yes Medium-High
PassThru WiFi or wired control connection to No Small Yes Low
advertised PassThru devices
PassThru WiFi or wired shell injection No Viral Yes Low
Short-range Bluetooth Buffer overflow with paired Android No Large Yes Low-Medium
wireless phone and Trojan app
Bluetooth Sniff MAC address, brute force PIN, No Small Yes Low-Medium
buffer overflow
T ——
Long-range Cellular Call car, authentication exploit, buffer ~ No Large Yes Medium-High
wireless overflow (using laptop)
Cellular Call car, authentication exploit, buffe. No Large Yes Medium-High

oyerflow (using iPod with exploit au-
dio file, earphones, and a telephone)

DSRC 2?7 7?2 M

Comprehensive Experimental Analyses of Automotive Attack Surfaces, Stephen Checkoway et al. (2011)

6 © 2016 Galois, Inc.

Secure V2V

DSRC

SAE J2945/*
SAE J2735
IEEE 1609.x
IEEE 802.11p

_<

focus:
J2735 (ASN.1)

SAE J2735 Basic Safety Message

Basic Vehicle State
(Vehicle Size, Position, Speed, Heading, ...

Mandatory in all Messages

)

Vehicle Safety Extensions
(Exterior Lights, Trailer Data, ...)

Optional in all Messages

— Partl

— Part 2

© 2016 Galois, Inc.

What is ASN.1?

= |t is not a single specification, not a library (that we implement
once)

= |t is the language by which we define hundreds of protocols and
data-formats

8 © 2016 Galois, Inc.

Where Is ASN.1 Used? (Everywhere)

Telecomm
= Cellular protocols including UMTS, 4G, LTE
= Call control SS7, CSTA
= H.323

Networking in General
= SNMP, X.500, LDAP
= PKI X.509

Automotive (Intelligent Transportation Systems “|ITS”)
» Telematics

DSRC (dedicated short range communications)

= GPS

Toll booths

Anti-theft applications

© 2016 Galois, Inc.

ASN.1: Security Problems?

In Theory: A great idea; In Practice: Easy to get wrong
= Very large, complex language
» language features interfere with each other
= Evolving standards
= Multiple encoding schemes (BER, DER, PER, XER, ...)

= Numerous opportunities for low-level software errors in the bit-
fiddling code

Commercial ASN.1 libraries, compilers have had flaws/vulnerabilities!

... Yet, this is the first line of interface for many mission-critical
systems, so it must be correct. (Typically on the attack surface.)

10 © 2016 Galois, Inc.

Patch and Pray Doesn’t Work

pr\ /j" Common Vulnerabilities and Exposures
o_9

\9 A/ . The Standard for Information Security Vulnerability Names
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=ASN.1
Search,Results

|There ak95)VE entries that match your search.
T

Name Description

CVE-2016-5080 Integer overflow in the rtxMemHeapAlloc function in asnirt_a.lib in Objective Systems ASN1C for C/C++ before
7.0.2 allows context-dependent attackers to execute arbitrary code or cause a denial of service (heap-based

http://www.theregister.co.uk/2016/07/19/asn_objective_systems_asn_compiler_memory_bug/

Guilt by ASN: Compiler's bad memory bug could

sting mobes, cell towers
Telco, embedded systems may inherit remote vulns

19 Jul 2016 at 03:40, Richard Chirgwin), Q Q
4568.

protection mechanism and discover an authentication key via a crafted application, aka internal bug 2
NOTE: The vendor disputes the existence of this potential issue in Android, stating "This CVE was raised in
error: it referred to the authentication tag size in GCM, whose default according to ASN.1 encoding (12 bytes)
can lead to vulnerabilities. After careful consideration, it was decided that the insecure default value of 12 bytes
was a default only for the encoding and not default anywhere else in Android, and hence no vulnerability
existed."

CVE-2016-2176 The X509_NAME_oneline function in crypto/x509/x509_obj.c in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h
allows remote attackers to obtain sensitive information from process stack memory or cause a denial of service
(buffer over-read) via crafted EBCDIC ASN.1 data.

CVE-2016-2109 The asnl_d2i_read_bio function in crypto/asnl/a_d2i_fp.c in the ASN.1 BIO implementation in OpenSSL before

1 N1+ and 1 NI hafara 1 N Dh allawe ramanta attarkarce +a Fatica o Aanial Af carnvicra fmamarns Fanciimntian) via o

|8 | 11

@ o

© 2016 Galois, Inc.

Our Approach: Security In Depth

= Generate correct code

= Galois ASN.1 compiler “correct by construction”

= Test the code
= test vectors

= compare to other ASN.1 com

= Verify the code

1.
2.
3.

Motivations
Properties
Approach

* tools

* methods

Code Generation via correctness-
preserving transformations of
ASN.1 interpreter

Optimized for verification of
compiler

Optimized for correctness of
generated code

© 2016 Galois, Inc.

Overview

Either
e Valid.
¢ :
p; * Invalid: ...
/ [)

Enc/ Dec
* h Verification

Results
*C

Memory safety

* Functional
correctness
properties

* Etc.

g 13 © 2016 Galois, Inc.

Verify Code: 1. Motivation

© 2016 Galois, Inc.

Why Is Testing Hard?

dec(uintéd_t x N\
, uintéd t vy

, uintéd t z) {
>.Execuﬁon

time: 1ms

And J2735 contains
} J dozens of functions.
Complexity grows

exponentially!

« Number of unique inputs: (264)° ~ 6.3*10°7
« Volume of the Pleiades star cluster (cm3) =~ 226*10%
« Time to execute 6.3*10°’ tests (years) ~ 2*10%

« Age of universe (years) ~ 1.4*1010

© 2016 Galois, Inc.

How Do You Know When
You’ve Tested Enough?

dec(uint6d _t x
, uinted _t y) {

dec(1029384756

, 6574932010)
1T (X == 1029384756

&& y == 6574932010
) { launch _attack();

Creative Commons https://www.flickr.com/photos/kevinkrejci/4735243774

© 2016 Galois, Inc.

Verify Code: 2. Properties?

© 2016 Galois, Inc.

Verify Code: 2. Properties

= For any piece of software we want to know:
» Does it behave correctly and is it secure?

= For J2735 (ASN.1) encoders/decoders:
» Behaves correctly

* Round trip: encoding then decoding gives back the original
message

- Forall msg. dec(enc(msg)) = VALID msg
» Rejection: bad messages are detected (not decoded). Forall

bits, either
- dec(bits) = INVALIDMSGDETECTED , Or
- dec(bits) = VALID msg, and enc(msg) = bits
" |5 secure
* Is it “good/valid/safe/...” C (e.qg., no buffer overruns, no seg-
faults, etc.)

= N.B.: Not full functional correctness.

18 © 2016 Galois, Inc.

Verify the Code: Approach

© 2016 Galois, Inc.

SAW Architecture

cl
C

LLVM

ang
Wewrltmg S\J«\
JavaC Sym. exec. Sym. exec.

'Java | SAWCo re | J S

/

7 N

' Other language | 'Other prover

© 2016 Galois, Inc.

“Automated” Formal Methods Applied

1. In SAW, write property P on the code

2. lterate

until SAW proves P repeat:
if No: counter-example then

<fix code and/or P>

—

nope

else if tool-issues OR no-results then

<tricks-Qf—thgizcggfiiiififations/etc>

Switch SMT solver
Write SAW Overrides
Specialize SAW overrides

21

© 2016 Galois, Inc.

SAW Overrides

= |f we have this in C:;
int £ implem (...) { ... }

= We can write this:
f spec = ... - in Cryptol
let thml = {{ \x -> f implem x == f spec x }};

= Now SAW can use f_spec in the symbolic simulation of programs
that use £ _implem.

22 © 2016 Galois, Inc.

Using SAW Overrides for V2V verification

/* becb - big endian copy bits */
int becb (dst,dst i,src,src_i,length) {

/* ugly bit-manipulation .. */
}

= Wrote spec in Cryptol to override.
= Still not getting proof!
» Problem: loop with dynamic bounds in becb
= AHA:
= [terations of loop determined by src_i and length
= Small number of statically known src_i, 1length combinations
= Solution:
» Enumerate the cases and write overrides for each becb call

23 © 2016 Galois, Inc.

Summary

Accomplished:

« Verified Encoder/Decoder for Basic Safety Message
Part |

Lessons:
« Automated Formal Methods Work!
« ... with help from an expert SAW user
e ... with detailed knowledge of code structure

24 © 2016 Galois, Inc.

Next Steps

« Extend to full Basic Safety Message (Parts |l & 1lI)
« More challenging ASN.1 constructs
* Apply method to other parts of V2V software stack
« Below: IEEE 802.11p, IEEE 1609
« Above: J2945/*
* Apply work to 3@ party code for J2735

* Do verification and test generation for
Hand-written code / code from other compilers

25 © 2016 Galois, Inc.

Thank You

26

© 2016 Galois, Inc.

BACKUP

Symbolic Simulation
in a Nutshell

dec(uintée4_t x sof for all values, no
, uint 64_t y) { false-positives

Not runtime checks or

(unlike static analysis) COUSSErIERTtIoN

uinte4 t z = 0;
Prove:
if(x < 100) {~

iT(y < x) |

= < <X 7 i =x-y<
7 = x-y: Xx<100 and y<x implies z=x-y<1l00

}

else {

S = x- x<100 and y2x implies z=x<100

J1

}

else {
z = 42;
} —
ASSERT (z<100) ;
Y

SSELS

= x2100 implies z=42<100

18] 28 © 2016 Galois, Inc.

Galois Technologies

High-Assurance ASN.1 Workbench (HAAW)

= ASN.1 compiler, interpreter, automated test coverage
» Funded by U.S. Government for security-critical applicatio

/

Software Analysis Workbench (SAW)
= Symbolic analysis for Java, C, C++... [Test] ['”terpret][Compile }
= Open-source: http://saw.galois.com/
* |n use by government, Amazon, others

- o

iisamazon

“F webservices

Typically, formal verification can be tedious and is performed as research by skilled specialists using
mathematical toolsets. As a part of our commitment to automated reasoning, we have contracted with
Galois to simplify this process and make it more developer friendly. Combining a domain-specific language
called Cryptol and a software analysis tool called SAW, Galois has produced a tool chain that allows us to
formally verify important aspects of s2n.
https://aws.amazon.com/blogs/security/automated-reasoning-and-amazon-s2n/

Security Blog

29 © 2016 Galois, Inc.

Project Results

Release to NHTSA in January 2017

= SAE J2735 BSM (ver. MAR2016) encoder/decoder using our
ASN.1 compiler, HAAW

= Verification with SAW of the Basic Safety Message, Part
| (BSMCoreData)

= Scientific report, experience, recommendations

30 © 2016 Galois, Inc.

High Assurance ASN.1 Workbench (HAAW)

= hasni — high assurance ASN.1 interpreter
» | oad, type check, and browse ASN.1 specifications
= Encode ASN.1 values to octet strings
» Decode octet strings to ASN.1 values
= Generation of random data that conforms to ASN.1 types

» Round-trip (encode-decode) tests of user-defined/generated
values

= hasnc - high assurance ASN.1 compiler
= Generates C code encoders and decoders

31 © 2016 Galois, Inc.

SAW Example: Find First Set Bit

Fricaal £l il ol .
uint32_t ffs1(uint32_ t w) { uint32_t ffs2(uint32_t w) {
int ¢, 1 = 0; uint32_ t r, n = 1;
if ('w) return O; if('(w & Oxf£fff))
for(c = 0; ¢ < 32; c++) { n+= 16; w >>= 16; }
if((1 << i++) & w) if (' (w & 0x00ff))
return ij; {n+=8; w>>=8; }
return O; if(!'(w & 0x000f))
} {n+=4; w>>=4; }

if(!'(w & 0x0003))
{n+=2; w>=2; }

r = (n+((w+l) & 0x01));

return (w) ? r : 0O;

|8 | 32 © 2016 Galois, Inc.

SAW Example: Find First Set Bit

ffs 1llvm.saw

m <- llvm load module "ffs.bc";

ref <- 1llvm_extract m "ffsl" 1llvm_pure;

imp <- 1llvm_extract m "ffs2" llvm_pure;

time (prove_print abc {{ \x -> ref x == imp x }});

Output

saw ffs 1llvm.saw

Loading module Cryptol
Loading file "ffs_llvm.saw"
Time: 0.030429s

Valid

|8 | 33 © 2016 Galois, Inc.

High-Assurance Cyber-Military

Systems (HACMS)

=T 4 Y
\ p
T_ it E
] N) - ' B

‘I”{w‘éﬁc‘i(“er-Proof Code Confirmed

Computer scientists can prove certain programs to be error-free with the same certainty that mathematicians i
prove theorems. The advances are being used to secure everything from unmanned drones to the internet.

18| © 2016 Galois, Inc.

HACMS

- (Galois developed a full-featured, provably secure, unpiloted air

vehicle autopilot

« Vehicle + source given to U.S. Government-sponsored penetration

team for 2-month evaluation

« Result: no software security flaws found that allowed attacker

aCCessS

Can we achieve the same for V2V?

35 © 2016 Galois, Inc.

