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1 Introduction

Undirected networks are used in a plethora of applications across many disciplines. For example,

they are often used to model communication networks, financial networks, transportation networks,

biological networks, social networks, and many more. This paper considers binary undirected networks

where the links (or edges) can only take on values of 0 or 1, indicating that an edge does not exist

or does exist between two nodes, respectively. One can imagine several types of networks that can

be modeled this way, including (but not limited to) collaboration networks, acquaintance networks,

dating networks, computer networks, and protein interaction networks.

To motivate the problem, consider an acquaintance network consisting of a study group of known

male and female actors. Suppose we are interested in determining the e↵ect of gender on the ac-

quaintance pattern of this group. Let us denote the number of male-to-male, female-to-female, and

male-to-female acquaintance relationships by Nm, Nf , and Nmf , respectively. Suppose that actors in

the study group only acquaint themselves with the opposite gender, then we would expect Nmf � 0

and Nm = Nf = 0. On the other hand, if actors in the study group only acquaint themselves with

individuals of the same gender, we might expect Nm 6= Nf > 0 and Nmf = 0. The methodology

developed in this paper will permit the network analyst to draw inference on the acquaintance pattern

of the study group. If this study group is a sample from a larger population, then the methodology

proposed in this paper permits the analyst to draw statistical inference on the general study group

population.

Much of the literature on statistical models for networks is rooted in the social network analysis

literature. In particular, statistical models for social network analysis have been proposed by sev-

eral authors; the most sophisticated of these currently being the exponential random graph models

(ERGM) (e.g., see Frank & Strauss, [1]; Wasserman & Pattison, [11]; Pattison & Wasserman, [4];

Robins et. al., [6]). ERGMs are commonly referred to as the class of p⇤ models in the social network

literature. In general, these models consider dyadic dependencies, and thus, permit the construction

of fairly realistic models of complex social systems. However, the use of these models in practice has

been quite limited due to their intractability with regards to parameter estimation. In particular, to
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obtain parameter estimates with known statistical properties, network analysts must rely on compli-

cated Markov Chain Monte Carlo (MCMC) algorithms (e.g., see Snijders, [9]). Handcock [2] points

out that the application of these models in their traditional specification to observed networks can

often lead to model degeneracy problems and instability of the MCMC algorithm, and hence, a poor

fit to empirical data (i.e., the algorithm will not converge). More recently, however, Snijders et. al.

[10] developed new specifications for the ERGMs that involve more complicated network statistics, and

these authors conclude that these new specifications “push back” some of the degeneracy problems

of commonly promoted models in the literature. Unfortunately, these new network statistics are of

a very high order, and thus, interpretation is not as straightforward as the traditional specifications

(Traditional specifications for undirected networks often involved 2-star, 3-star, and triangle configu-

rations). Additionally, Smyth [8] points out that scalability is another major concern of the ERGMs.

In particular, parameter estimation using MCMC methods is intractable for large networks due to the

inherent computational issues.

It should be noted that the hypothesis testing framework proposed in this paper is a special case

of the ERGMs mentioned above under edge independence and vertex block homogeneity assumptions.

Further, we show in a later section that, under certain conditions, the proposed method is equivalent

to performing a logistic regression. One major advantage of the proposed approach relative to existing

statistical models in the literature is that it does not rely on complicated computational algorithms as

a means to estimate unknown model parameters4. This should provide a more user friendly tool for

the network analyst, while providing useful information and avoiding problems such as interpretation,

model degeneracy, scalability, and instability of computational algorithms.

The remainder of this manuscript is organized as follows. In Sec. 2 we introduce the proposed model

and derive the test statistic. In Sec. 3 the proposed methodology is applied to a real data network of

collaboration ties amongst a group of known Al Qaeda terrorists. An alternative parameterization of

the proposed method using logistic regression is discussed in Sec 4, where both methods are applied to

a simulated network to illustrate the practical di↵erences. Finally, Sec. 5 closes with a summary and

discussion.
4However, perhaps at the expense of model adequacy depending on the type and magnitude of correlation that may

exist between the edges.
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2 Model Definition

Under the proposed framework, network edge density is studied via an observed adjacency matrix,

which is assumed to be subject to sampling variability (i.e., the true edges are not directly observable).

The methodology involves partitioning network actors into k mutually exclusive and collectively ex-

haustive subsets, based upon available exogenous nodal attribute information5. Edge density within

and across the subsets is then measured, and the observed di↵erences between these measurements

are evaluated statistically using the log-likelihood ratio. The proposed model can be parameterized as

follows.

Consider the graph G = {V,E}, where V and E denote the vertex set and edge-set, respectively.

We assume that V is known; however, E is not directly observable and needs to be estimated from

an observed adjacency matrix A. The test procedure involves partitioning V into m > 1 mutually

exclusive and collectively exhaustive subsets. We assume that edge probabilities between vertices

contained in the same subset Vh (h = 1, 2, ...,m) are all equal, and thus can be denoted by a single

parameter, ph. In addition, edge probabilities between vertices contained in Vi and those contained in

Vj , for a given i < j = 2, 3, ...,m, are all equal and thus denoted by pij . Thus, for a partition of V

resulting in m mutually exclusive and collectively exhaustive subsets, where each subset contains at

least two vertices, there are a total of g = 1
2m(m + 1) parameters.

In general, we can consider r > 1 partitions, where the ith partition (i = 1, 2, ..., r) has ki > 1

levels. At this point it is convenient to define the notion of a combined partition. Suppose that r = 2

and k1 = k2 = 2, so that we have two partitions each at two levels. For the first partition, let us

arbitrarily assign those vertices in V having attribute x a value of “1” and “0” otherwise. Similarly,

for the second partition, let us assign those vertices in V having attribute z a value of “1” and “0”

otherwise. Then the combined partition would divide V into k1k2 = 22 = 4 mutually exclusive and

collectively exhaustive subsets6. When the condition ki = k for all i holds, the combined partition

will produce kr mutually exclusive subsets, resulting in a model with g = 1
2kr(kr + 1) parameters7.

5Clearly, a fundamental assumption of the proposed method is that actor attribute information exists and is available
for each actor in the network. Later we discuss an alternative when this information is missing or does not exist.

6These would include vertices: 1) having both attributes x and z 2) having only attribute x 3) having only attribute
z 4) having neither attribute x or z.

7i.e., the ph’s (h = 1, 2, ..., kr) and pij ’s (i < j = 2, 3, ..., kr)
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More generally, if we have r partitions and the ith partition has ki levels, then we can define the total

number of mutually exclusive and collectively exhaustive subsets of V by

w =
rY

i=1

ki (1)

and thus the total number of model parameters is given more generally as g = 1
2w(w + 1).

It is convenient to note here that the analyst may not be interested in comparing di↵erences

between all g parameters; rather, interest might lie in comparing di↵erences between a subset of these

parameters (depending on the objectives of the analysis). Although not to be overlooked, we will

refrain from any further discussion on this now and return to it in a later section.

It should be noted that the number of partitions r is bounded for any given n and ki (i = 1, 2, ..., r),

where n denotes the cardinality of V . In general the following condition must hold

w(w + 1)  n(n� 1) (2)

so that if ki = k (i = 1, 2, ..., r) we obtain

r  b ln[n(n� 1)]
3 ln(k)

(3)

where “b” denotes the floor function.

Under the above described model, our interest lies in estimating the ph’s and the pij ’s and subse-

quently drawing inference on their true values via a formal hypothesis testing framework. It should

be noted that, in general, the goal of any hypothesis test is to measure the plausibility of H0 (null

hypothesis) relative to H1 (alternative hypothesis). The model specified under H0 postulates a model

with fewer parameters than that specified by H1. Therefore, rejecting H0 might suggest the “better”

model is that specified under H1. On the other hand, if H0 cannot be rejected, this would suggest that

the model specified under H1 is no “better” than that specified under H0.

In general, several forms for H0 and H1 could be specified; however, in this paper interest lies in

testing the hypotheses: H0 : ph = p0 \ pij = p0 (for all h = 1, 2, ...,m and i < j = 2, 3, ..,m) versus

H1 : ph 6= p0 [ pij 6= p0 (for at least one h = 1, 2, ...,m or i < j = 2, 3, ..,m). Failing to reject H0 in

this case would suggest that all network edge probabilities are equal and thus can be parameterized

by a single parameter p0. However, if H0 is rejected, this would suggest that a more plausible model

can be obtained by a partitioning of the vertex set into m distinct subsets.
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2.1 Edge Set: Probability Mass Function

Let yh denote the number of observed edges between vertices contained in Vh, and yij denote the

number of observed edges between vertices contained in Vi and those contained in Vj , for a given i 6= j.

Suppose that the observations are conditionally independent given the m�level partition z(m). Under

this assumption, if the vertex set V is partitioned into m mutually exclusive and collectively exhaustive

subsets, then the probability mass function for y is given by

f(y|p, z(m)) =
mY

h=1

✓
Nh

yh

◆
pyh

h (1� ph)Nh�yh

m�1Y

i=1

mY

j=i+1

✓
Nij

yij

◆
p

yij

ij (1� pij)Nij�yij (4)

for 0  ph, pij  1, where yh 2 [0, 1, . . . , Nh], Nh = 1
2nh(nh � 1) and nh is the total number of vertices

contained in subset Vh. Also, yij 2 [0, 1, . . . , Nij ] (i < j = 2, 3, ...,m), where Nij denotes the total

number of possible edges between vertices contained in Vi and those contained in Vj . Also, it should

be noted that

y =
mX

h=1

yh +
m�1X

i=1

mX

j=i+1

yij (5)

and

N =
mX

h=1

Nh +
m�1X

i=1

mX

j=i+1

Nij , (6)

where y denotes the total number of observed edges in V and N denotes the total number of possible

edges in V .

In general, eq.(4) is defined for all m 2 [1, 2, ...n], where n is the cardinality of V . However, when

m = 1, all vertices are contained in the same set, which is just V . Further, when m = n, each vertex

defines its own subset, or V ⌘ V1 [ V2 [ · · · [ Vn. For these two special cases, eq.(4) can be written

explicitly as

f(y|p, z(1)) =
✓

N
y

◆
py(1� p)N�y (7)

and

f(y|p, z(n)) =
n�1Y

i=1

nY

j=i+1

✓
Ni,j

yi,j

◆
p

yi,j

i,j (1� pi,j)Ni,j�yi,j , (8)

respectively. Notice that in eq.(7), there is only a single parameter to estimate since all vertices are

contained in the same set. However, in eq.(8), there are 1
2n(n� 1) parameters to estimate since each
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vertex defines a unique subset of V . To ensure that at least two vertices are assigned to each level of

the partition z(m), a necessary condition for m is

2  m  bn
2

(9)

where b denotes the floor function. Also, the number of partitions of V into q levels resulting in all q

levels having at least two vertices is given by

d =
✓
bn

2
q

◆
(10)

for q = 2, 3, . . . , dn
2 , where d denotes the ceiling function. For example, consider a network of n = 20

vertices. Suppose that you partition the n = 20 vertices into m = 3 mutually exclusive and collectively

exhaustive subsets. Then, there are d = 120 unique ways to do this so that at least 2 vertices are

contained in each level.

2.2 Hypothesis Test: Derivation of the Test Statistic

The likelihood function is proportional to eq. (4) and is given by

L(p|y, z(m)) =
mY

h=1

pyh
h (1� ph)Nh�yh

m�1Y

i=1

mY

j=i+1

p
yij

ij (1� pij)Nij�yij (11)

and taking the natural log of this function then produces the log-likelihood function, or

`(p|y, z(m)) =
mX

h=1

[yh ln(ph) + (Nh � yh) ln(1� ph)] + (12)

+
m�1X

i=1

mX

j=i+1

[yij ln(pij) + (Nij � yij) ln(1� pij)]

It is easily shown that the values of ph and pij (h = 1, . . . ,m; i < j = 2, . . . ,m) that maximize

the log-likelihood function in eq.(12) are given by p̂h = yh
Nh

and p̂ij = yij

Nij
. Since these are maximum

likelihood estimates, we can exploit their asymptotic properties and derive approximate 100(1 � �)%

confidence bounds on each ph and pij . This will allow network analysts to gain some insight into the

quality of these point estimates.

It is well known that a maximum likelihood estimator of ✓, say ✓̂, is asymptotically distributed as

approximately multivariate normal with E[✓̂] = ✓ and Var(✓̂) = [I(✓)]�1, where I(✓) denotes the Fisher
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information matrix with element Ip,q given by (see Rice, [5])

Ip,q = E[
d

d✓p
`(x|✓) · d

d✓q
`(x|✓)]. (13)

In eq. (13), `(x|✓) denotes the log-likelihood function and the expectation is taken over the ran-

dom variables x. For any unbiased estimator, the diagonal elements of the inverse of I(✓) are then

the Cramer-Rao lower bounds on the variances of the parameter estimates. Thus, since maximum

likelihood estimators are asymptotically unbiased, I(✓)�1 can be viewed as the asymptotic variance-

covariance matrix of the estimator ✓̂.

Suppose p̂ = [p̂1, p̂2, . . . , p̂m, p̂1,2 . . . , p̂1,m, p̂2,m, . . . , p̂m�1,m]0 denotes the
⇣

m(m+1)
2

⌘
⇥ 1 dimensional

parameter vector estimate. Under the assumed model in eq. (4), the variance-covariance matrix of p̂ is

diagonal, suggesting the covariances between the parameter estimates are zero for any given partition

z(m) of V . It follows that the asymptotic variances of the parameter estimates are given explicitly

as Var(p̂h) = ph(1�ph)
Nh

(h = 1, 2, ...,m) and Var(pij) = pij(1�pij)
Nij

(i < j = 2, 3, ...,m). Since p̂ is a

maximum likelihood estimator, the asymptotic distribution of p̂ is approximately multivariate normal

with mean vector p and variance-covariance matrix Var(p̂). Therefore, a large sample 100(1 � �)%

confidence interval on ph is given by p̂h ± z�/2�p̂h
, where z�/2 denotes the upper (�/2)th quantile of the

standard normal distribution and �p̂h
=

p
V ar(p̂h). Large sample confidence intervals on the pij ’s are

computed similarly.

The likelihood function given in eq. (11) can be used to derive a test for equality of the parameters.

This is more formally stated in terms of the null hypothesis (H0) and the alternative hypothesis (H1)

given as

H0 : ph = p0 \ pij = p0 (for all h = 1, ...,m and i < j = 2, 3, ...,m) (14)

and

H1 : ph 6= p0 [ pi,j 6= p0 (for at least one h = 1, ...,m or i < j = 2, ..,m) (15)

for some partition z(m) (m > 1). Conclusions from such a test can be used to mitigate some of the

variability in the sampled edge-set of the network, thus, providing insight into its true underlying

structure.
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The likelihood function under H1 is given by eq. (11), while the likelihood function under H0 can

be written as

L0(y|p0) = L0(y|p0) = py
0(1� p0)N�y (16)

where 0  p0  1 might be some hypothesized value of interest and is used to denote the probability

that an edge exists between any two vertices in the complete vertex set V . The variables N and y

were defined previously. Clearly, eq. (16) suggests that the edge probabilities between vertices in V

are best explained by a single parameter, p0. Notice if p0 = 0.50, then H0 postulates that the observed

variability in the sampled edge-set is strictly due to random chance. Often in practice the parameter p0

is unknown and needs to be estimated. In these cases, the test is conducted by computing the di↵erence

between the log-likelihood function maximized under H0 and the log-likelihood function maximized

under H1, or � = `⇤0 � `⇤1, where

`⇤0 = y ln(
y

N � y
) + N ln(

N

N � y
) (17)

and

`⇤1 =
mX

h=1

✓
yh ln(

yh

Nh � yh
) + Nh ln(

Nh

Nh � yh
)
◆

+
m�1X

i=1

mX

j=i+1

✓
yij ln(

yij

Nij � yij
) + Nij ln(

Nij

Nij � yij
)
◆

(18)

Under the null hypothesis H0, the test statistic

r̂ = �2� (19)

is then approximately distributed as �2
D, where D denotes the di↵erence in dimensionality of the

parameter spaces under H1 and H0. Assuming all levels of the partition contain at least two vertices,

then D = 1
2m(m + 1)� 1. For example, when m = 2, and if all levels of the partition contain at least

two vertices, then D = 3� 1 = 2. If r̂ > �2
↵,D, then H0 is rejected at the 1� ↵ significance level.

If the null hypothesis above is rejected, then the analyst should set out to perform multiple com-

parisons of the p̂’s. In general, if there are m levels of the vertex set partition, then we will have as

the total number of possible comparisons

⌫ =
✓

1
2m(m + 1)

2

◆
(20)
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In general, for any given ph and ph0 (h 6= h0), we can compute the test statistic z0 = p̂h�p̂h0
se(p̂h�p̂h0 )

for all

h 2 [1, 2, ..., ⌫], where

se(p̂h � p̂h0) =

s
ph(1� ph)

Nh
+

ph0(1� ph0)
Nh0

(21)

A major concern when performing multiple comparisons is that the false-alarm rate (or type I error) of

the test will increase with the number of comparisons. Suppose that ⌫ 0  ⌫ comparisons are performed,

then ph and ph0 are deemed significantly di↵erent if |z0| > z↵0 where z↵0 is the upper ↵th
0 percentile

point of the standard normal distribution and ↵0 is determined by

↵0 = 1� exp
⇢

ln(1� ↵)
⌫ 0

�
(22)

where ↵ is an acceptable upper bound on the “experiment-wide” false-alarm rate8. This will ensure

that the type I error for the test is at most ↵.

As mentioned earlier, the analyst may not be interested in comparing di↵erences between all g

model parameters. To address this, let us consider the following. Suppose that m = 2 so that we

have the parameters p1, p2, and p12. Suppose further that the analyst is only interested in testing the

hypotheses H0: p1 = p2 versus H1: p1 6= p2. For the m = 2 case, the probability mass function is given

by

f(y|p) =
✓

N1

y1

◆
py1
1 (1� p1)N1�y1

✓
N2

y2

◆
py2
2 (1� p2)N2�y2

✓
N12

y12

◆
py12
12 (1� p12)N12�y12 (23)

and to find the joint distribution of y1 and y2, we can sum eq.(23) over all possible values of y12 to

obtain

f(y|p) =
✓

N1

y1

◆
py1
1 (1� p1)N1�y1

✓
N2

y2

◆
py2
2 (1� p2)N2�y2 (24)

suggesting that one needs only to drop the terms associated with those parameters not considered for

analysis from the log-likelihood function in eq.(18). Thus, we would drop the terms associated with

p12 to obtain

`⇤1 = y1 ln(
p̂1

1� p̂1
) + N1 ln(1� p̂1) + y2 ln(

p̂2

1� p̂2
) + N2 ln(1� p̂2) (25)

and then conduct the hypothesis test in the same manner as described above9.
8The Bonferroni inequality suggests that the “experiment-wide” error rate is less than ↵ when the comparisons are

not mutually independent. As a result, one can view ↵ as an acceptable upper bound on the type I error probability for
any ⌫0 di↵erences compared.

9Note that the degrees of freedom for the test will change due to a change in the dimensionality of the parameter
space specified under H1.
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3 Application of Proposed Hypothesis Test

In this section we demonstrate how the proposed hypothesis test is applied to a real network. Specifi-

cally, we consider the open-source Al Qaeda data compiled by Sageman [7]. The data consists of several

possible network contexts, including acquaintanceship, friendship, teacher-student, family, collabora-

tion, and so on. Additionally, the data compiled by Sageman [7] contains a variety of information on

each actor (e.g., age, marital status, education type, etc.). In this paper, we consider the collaboration

network consisting of the first 50 actors (i.e., known terrorists) listed in the data set. Then, in the

observed sample, a link present between any two actors implies that these two actors were observed to

collaborate on at least one terrorist-related activity (e.g., Sept. 11, Embassy 98, etc.). The network is

shown in Figure 1.

Figure 1: Open source Al-Qaeda collaboration network.

To begin, we first need to identify those nodal attributes that are most relevant to the study

objectives. In doing so, it is important to keep in mind that there is a constraint on the number of
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factors that can be studied. Suppose that all g parameters are of interest to the analyst. Then with

n = 50, and if we assume that each attribute has only two levels (e.g., black/white, on/o↵, etc.), then

according to the expression in (3), the total number of nodal attributes that can be studied is r = 3.

On the other hand, suppose we are only interested in comparing di↵erences amongst the ph’s and have

no interest in drawing inference on the pij ’s. Then, assuming each attribute considered has only 2

levels, we can study up to r  b ln[0.5n(n�1)]
ln(2) = 10 attributes.

Suppose we are interested in knowing whether or not the probability of collaboration between

any two actors is heavily influenced by their education level. We can determine the marginal e↵ect

of ‘education level’ on the probability of collaboration by partitioning the vertex set so that those

actors NOT possessing a college degree are assigned to group 1 and those possessing a college degree

are assigned to group 2. The results of the test are shown in Table 1 and indicate ‘education level’

yields a highly significant model. Notice that those actors who are educated tend to collaborate more

frequently with each other. Similarly, those actors who are not educated also tend to collaborate more

frequently with each other. It is interesting to note that p̂12 = 0.03, which suggests that educated and

uneducated actors rarely collaborate with each other on terrorist activities. Perhaps this could suggest

the existence of multiple independent operating cells amongst the study group; with one having more

sophistication (e.g., with respect to planning and execution of the activities) than the others due to

the level of education of its group members.

Suppose that we choose two more attributes: ‘criminal background’ and ‘age joined Jihad’, as well

as their combined partition. For the attribute ‘criminal background’, actors who do NOT possess a

criminal background are assigned to group 1 and those possessing a criminal background assigned to

group 2. Similarly, for the attribute ‘age joined Jihad’, actors who joined the Jihad before age 25 are

assigned to group 1 and those who joined the Jihad at age 25 or beyond are assigned to group 2. Notice

that the combined partition has 22 = 4 unique subsets and thus the number of parameters required for

this partition is g = 10. The results of the tests are also given in Table 1, and suggest that all partitions

considered yield significant models. We should note that since ‘education level’, ‘criminal background’,

and ‘age joined Jihad’ are all 2-level attributes, we can compare their r̂ statistics directly. This would

suggest that the attribute ‘education level’ does relatively best amongst the 2-level factors in explaining
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the change in collaboration probabilities between actors. Unfortunately, we cannot compare directly

the r̂ values from a 2-level partition and a m > 2 level partition. To permit correct comparison, we

can use the di↵erence in deviance explained below.

Table 1: Results of hypothesis tests.

Attribute r̂ p̂1 p̂2 p̂3 p̂4 p̂12 p̂13 p̂14 p̂23 p̂24 p̂34

Ed Level 123.5 0.21 0.29 0.03 - - - - - - -
Age Joined Jihad (AJJ) 83.7 0.19 0.31 0.09 - - - - - - -

Crim Back (CB) 48.0 0.13 0.35 0.19 - - - - - - -
(CB) ⇥ (AJJ) 131.9 0.25 0.16 0.13 0.46 0.13 0.09 0.08 0.15 0.07 0.26

In general, for any given partition, the deviance is defined as � = �2[`(p|y, z(m))], where `(p|y, z(m))

was defined earlier and denotes the log-likelihood function given y and z(m). The deviance can be

viewed as a measure of lack-of-fit between the postulated model and observed data. Suppose that z0

denotes a model with g0 parameters and z1 denotes a model with g1 > g0 parameters. That is, it is

assumed that z0 excludes any e↵ects that are hypothesized to be null, while z1 includes these e↵ects.

Thus, z0 denotes a model specified under H0 and z1 denotes a model specified under H1. The di↵erence

in deviance between these two models is then given by

� = �0 � �1 (26)

where �0 denotes the deviance statistic computed under model z0 and �1 denotes the deviance statistic

computed under model z1. It is easily shown that � is a log-likelihood ratio statistic, and it is well

known that under H0 eq.(26) is asymptotically �2
D, with D = g1� g0. Therefore, one should reject H0

and conclude in favor of H1 if � > �2
↵,D, suggesting that the more plausible model is z1.

In applying this concept to the problem in hand, we need to compute the di↵erence in deviance

between the model produced by the attribute ‘education level’ and the model produced by the combined

partition since these seem to be the two best models. Doing so produces � = �0��1 = 8.5162, and since

g1�g0 = 7, we compare � to the �2
7 distribution. At the 95% significance level, the appropriate critical

value is then �2
0.95,7 = 14.0671. Therefore, since � = 8.5162 < �2

0.95,7 = 14.0671, we can conclude that

the combined partition is no more plausible than the model based upon ‘education level’. Thus to

maintain model parsimony, we should choose the g = 3 parameter model since it has fewer parameters.
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At this point in the analysis we need to perform multiple comparisons. Since the g = 3 parameter

model was chosen as the final model, we are interested in comparing di↵erences (p̂1 � p̂2), (p̂1 � p̂12),

and (p̂2 � p̂12). Since there are three tests to be performed, to maintain an upper bound of 0.05 on

the “experiment-wide” false-alarm rate, the appropriate critical value for the test is z0.0170 = 2.1201.

Table 2 shows the results of the multiple comparison and suggests that p1 and p2 are both significantly

di↵erent from p12; however, there is no evidence that p1 is di↵erent than p2.

It is convenient to note that the proposed method lends to simple analysis via odds ratios. For

example, using the results in Table 1, the estimated ratio of the odds of observing a collaboration tie

between two actors who are both educated, to the odds of observing a collaboration tie between two

actors, where only one of the actors is educated, is

dOR =
0.2658
0.0309

= 8.6019 (27)

suggesting that a collaboration tie is almost 9 times more likely to occur when both the actors are

educated, relative to the case where only one actor is educated.

Table 2: Results of the multiple comparisons analysis.

Comparison |z0| P
p̂1 � p̂2 0.9215 0.1784
p̂1 � p̂12 10.706 0.0000
p̂2 � p̂12 3.0118 0.0013

In this section we demonstrated application of the proposed hypothesis testing framework on a

real-world network. In the next section we show that the proposed methodology is a special case of

logistic regression when the predictor variable is categorical and dummy (or indicator) variables are

used to model the e↵ects of this variable in the logit. We then conduct another analysis on a simulated

network to illustrate any practical di↵erences between the two approaches. Finally, we close with a

discussion and summary.

4 Alternative Parameterization using Logistic Regression

In this section, we show that the proposed framework is equivalent to logistic regression when the

predictor variable under study is categorical and indicator variables are used in the logit to model its

14



e↵ect. If exogenous information is available on each dyad (i, j) for i < j = 2, 3, ...,m, then application

of logistic regression is straightforward. That is, each dyad would be an observation with model

covariates (or factors) determined from available exogenous information at the dyad level. However,

for the problem in hand, exogenous information is assumed to be available at the node level, and so for

logistic regression to be applied appropriately, we need to incorporate dummy variables into the logit.

To illustrate, consider a two-level nodal attribute denoted by z. At the dyad level, each (i, j) can either

(1) both have attribute z (2) either i or j have attribute z, but not both (3) neither have attribute z.

In general, in any empirical model building exercise, if we have a single factor with v levels, then v� 1

dummy variables are required to model the factor e↵ect. In our illustration, v = 3, and therefore we

require v � 1 = 2 dummy variables in the logit, or

g(x1, x2) = ln
✓

⇡

1� ⇡

◆
= �0 + �1x1 + �2x2 (28)

where the xi’s are coded according to Table 3.

Table 3: Coding scheme for dummy variables.

x1 x2

Both i and j have attribute z 0 0
Either i or j has attribute z but not both 1 0

Both i and j do not have attribute z 0 1

To see that the proposed method is equivalent to logistic regression in this case, note that the

log-likelihood specified under H0: �1 = �2 = 0 can be written as

`0 = N(�0p̂0 � ln[1 + exp{�0}]) (29)

and taking the derivative of eq.(29), setting to zero, and solving for �0 we obtain

�̂0 = ln
✓

y

N � y

◆
(30)

so that

`⇤0 = y ln
✓

y

N � y

◆
+ N ln

✓
N

N � y

◆
(31)
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which is exactly that given in eq.(17). Note also that the log-likelihood function specified under H1:

�j 6= 0 (for at least 1 j = 1, 2) can be written as

`1 = �0y1 �N1 ln(1 + e�0) + �2y2 �N2 ln(1 + e�2) + �1y12 �N12 ln(1 + e�1) (32)

where �1 = (�0 + �1) and �2 = (�0 + �2). Taking partial derivatives of `1 with respect to �0, �1 and

�2, setting equal to zero, and solving for these parameters yields �̂0 = ln
⇣

y1
N1�y1

⌘
, �̂1 = ln

⇣
y12

N12�y12

⌘
,

and �̂2 = ln
⇣

y2
N2�y2

⌘
, producing

`⇤1 =
2X

h=1


yh ln

✓
yh

Nh � yh

◆
+ Nh ln

✓
Nh

Nh � yh

◆�
+ y12 ln

✓
y12

N12 � y12

◆
+ N12 ln

✓
N12

N12 � y12

◆
(33)

which is exactly equivalent to that given in eq.(18) for m = 2. It is straightforward then to show this

equivalence for the more general case where z has more than two levels.

4.1 Example using Simulated Data

In this subsection, we use both parameterizations (i.e., proposed method and logistic regression) to

analyze a simulated realization of a sampled network. Suppose we have a single nodal attribute

with two-levels and that the network consists of n = 20 vertices. Suppose further the vertex set is

partitioned such that V = V1 [ V2 = {1, 2, 3, 4, 14, 15, 16} [ {5, 6, 7, 8, 9, 10, 11, 12, 13, 17, 18, 19, 20}.

The simulated network was generated by independently assigning a link between vertices contained

in V1 with probability p1 = 0.25. Similarly, links between vertices contained in V2 are independently

assigned with probability p2 = 0.75. Finally, links between those vertices contained in V1 and those

contained in V2 are independently assigned with probability p12 = 0.05. The simulated adjacency

matrix is shown in Figure 2.

Applying the proposed hypothesis testing framework to the simulated adjacency matrix shown in

Figure 2 yields a test statistic value of r̂ = 130.413. Since H0 postulates a g0 = 1 parameter model and

H1 postulates a g1 = 3 parameter model, D = g1 � g0 = 2, and the appropriate critical value at the

95% significance level is �2
0.95,2 = 5.9915. Thus, H0: p1 = p2 = p12 = p0 is rejected and we conclude in

favor of H1.

At this point we need to perform multiple comparisons. Since there are g = 3 parameters, we will

be making ⌫ = 3 comparisons; namely (p̂1 � p̂2), (p̂1 � p̂12), and (p̂2 � p̂12). The critical value for each
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1 2

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

5 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1

6 1 1 1 1 1 1 1 0 0 0 1 1 1 1

7 1 0 1 1 1 1 0 0 0 0 0 0 1

8 0 0 0 0 0 0 0 0 1 1 0 1

9 1 1 1 1 1 0 0 0 1 1 1

10 1 1 1 0 0 0 1 0 0 1

11 1 1 0 0 0 1 1 1 1

12 1 0 0 0 1 1 0 1

13 0 0 0 1 1 1 1

14 1 0 0 0 0 0

15 1 0 0 0 0

16 0 0 0 0

17 1 1 1

18 1 1

19 0

20

Figure 2: Simulated adjacency matrix.

of the three tests (assuming an upper bound on the “experiment-wide” false alarm rate of ↵ = 0.05) is

given by z0.0170 = 2.1201. Results of the multiple comparison are given in Table 4, and suggests that

all the parameters are significantly di↵erent from each other. The fitted values are then given by

ŷij =

8
<

:

p̂1 = 0.2857 If i \ j 2 V1

p̂2 = 0.8077 If i \ j 2 V2

p̂12 = 0.0200 If i 2 V1 \ j 2 V2

(34)

Table 4: Results of the multiple comparisons analysis.

Comparison |z0| P
p̂1 � p̂2 4.8240 0.0000
p̂1 � p̂12 2.6659 0.0038
p̂2 � p̂12 16.7684 0.0000

As an alternative, consider the logistic regression parameterization discussed previously. Since the

nodal attribute contains two-levels, we need to create two dummy variables according to the coding

scheme shown in Table 3. Results of the analysis are shown in Table 5 and, as expected, suggest that

the fitted model is highly significant. Recall that the test statistic in logistic regression for testing that

all slopes are equal to zero is given by

G = �2 [`⇤0 � `⇤1] = �2� (35)

which is minus 2 times the di↵erence in the log-likelihoods maximized under H0 and H1. As shown
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previously, the G statistic is exactly the same as the r̂ statistic derived under the proposed framework.

Thus, for the simulated adjacency matrix in Figure 2, we find that G = r̂ = 130.413 > �2
0.05,2, so that

the null hypothesis is rejected.

Table 5: Results of logistic regression analysis.

Variable coef se(coef) z P Odds Ratio
Constant -0.9163 0.4830 -1.90 0.058

x1 -2.8792 0.8629 -3.34 0.001 0.056
x2 2.3514 0.5620 4.18 0.000 10.50

Recall in logistic regression that odds ratios play a fundamental role in interpretation of the fitted

model. An odds ratio is defined by the ratio of the odds of an event occurring in one group to the odds

of it occurring in another group. For example, the odds ratio corresponding to x1 in Table 5 estimates

exp{�1} =
⇡10(1� ⇡00)
(1� ⇡10)⇡00

=
p12(1� p1)
(1� p12)p1

which is the ratio of the odds of observing a link between any two vertices not both contained in V1

or V2, to the odds of observing a link between any two vertices that are both contained in V1. The

notation ⇡uv (u, v 2 [0, 1]) is used to denote the expected probability of success given the uth level of

the first variable and the vth level of the second variable. Thus, we are approximately twenty times

more likely to observe a link between any two vertices contained in V1, relative to that of any two

vertices not both contained in the same set. Similarly, the estimated odds ratio corresponding to x2

estimates

exp{�2} =
⇡01(1� ⇡00)
(1� ⇡01)⇡00

=
p2(1� p1)
(1� p2)p1

which is the ratio of the odds of observing a link between any two vertices both contained in V2, to the

odds of observing a link between any two vertices that are both contained in V1. The estimated odds

ratio then suggests that we are approximately 10 times more likely to observe a link between any two

vertices contained in V2, relative to that of any two vertices contained in V1.

Recall that, in general, the logistic regression model is given by

E(yi) = ⇡i =
1

1 + exp{�x

0
i�}

(36)
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for i = 1, 2, ..., N , so that the fitted logistic regression model for the simulated network in Figure 2 is

then given as

ŷij =

8
<

:

(1 + exp{0.9163})�1 = 0.2857 If i \ j 2 V1

(1 + exp{�1.435})�1 = 0.8077 If i \ j 2 V2

(1 + exp{3.7955})�1 = 0.0200 If i 2 V1 \ j 2 V2

(37)

where, as expected, the fitted values obtained from the fitted logistic regression model are exactly equal

to those obtained from the proposed analysis framework.

5 Summary and Discussion

Undirected networks are used in a plethora of applications across many disciplines. For example,

they are often used to model communication networks, financial networks, transportation networks,

biological networks, social networks, and many more. In this paper, a tractable hypothesis testing

framework for application to undirected “noisy” binary networks was presented. The methodology

involves partitioning network actors into m mutually exclusive and collectively exhaustive subsets (or

levels), based upon available exogenous nodal attribute information. Edge density within and between

partition levels is then measured, and the observed di↵erences between these measurements are then

evaluated statistically using the log-likelihood ratio statistic. It was shown that the proposed approach

is equivalent to logistic regression when the regressor variable is categorical, and dummy variables are

used in the logit to model the e↵ect of this variable.

Although the proposed approach is a special case of logistic regression, its parameterization permits

more easily interpretable analysis results when applied to networks. This is because the proposed

method works with the ph’s and pij ’s directly, whereas logistic regression works with the ph’s and

pij ’s indirectly via the �’s (which are the coe�cients of the indicator variables). Therefore, in logistic

regression, a transformation is needed to compute and subsequently interpret the odds ratios. Using

the proposed method, estimated odds ratios can be computed directly from the estimated ph’s and pij ’s.

Further, analysis using the proposed method does not require a logistic regression software package; it

can be performed using even simple spreadsheet software.

As a final note, the proposed method also lends nicely to combinatorial optimization algorithms

in cases where exogenous nodal attribute information does not exist. That is, in the absence of nodal

attribute data, suppose the analyst is interested in finding that partition that best explains the vari-
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ability in the edge set. Let Z denote the set of all m = 2 level partitions, then the analyst is interested

in

z⇤ = arg max
z2Z

{r̂(z)} (38)

where z⇤ denotes the maximum likelihood estimator for the 2-level partition of V ; that is, the partition

in Z that maximizes r̂ in eq.(19). For smaller networks, total enumeration is possible. However,

for larger networks, total enumeration is not feasible in real time. For example, if the vertex set

has cardinality n = 25, and if a 2-level partition is considered, then there are a total of 33, 554, 380

partitions in the set Z. Unfortunately, this number will grow exponentially with the cardinality of

V . As a result, alternative solution methods are needed. The first author of this paper is currently

studying the application of meta-heuristics to the optimization problem in eq.(38) with promising

results.

References

[1] Frank, O. and Strauss, D. (1986). “Markov Graphs.” Journal of the American Statistical Associ-

ation 81: 832-842.

[2] Handcock, M. S. (2003). “Statistical Models for Social Networks: Degeneracy and Inference.”

Dynamic Social Network Modeling and Analysis: Workshop Summary and Papers, edited by

R. Breiger, K. Carley, and P. Pattison. National Research Council of the National Academies.

Washington, DC: The National Academies Press.

[3] McPherson, M., Smith-Lovin, L. and Cook, J. M. (2001). “Birds of a Feather: Homophily in

Social Networks.” Annual Review of Sociology 27: 415-444.

[4] Pattison, P. E. and Wasserman, S. (1999). “Logit and Logistic Regression for Social Networks II:

Multivariate Relations.” British Journal of Mathematical and Statistical Psychology 52: 169-194.

[5] Rice, J. A. (2007). Mathematical Statistics and Data Analysis, Duxbury Press, Belmont, CA.

[6] Robins, G. L., Pattison, P. E., and Wasserman, S. (1999). “Logit models and logistic regression

for Social Networks III: Valued Relations.” Psychometrika 64: 371-394.

20



[7] Sageman, M. (2004). Understanding Terror Networks, University of Pennsylvania Press.

[8] Smyth, P. (2003). “Statistical Modeling of Graph and Network Data.” IJCAI Workshop on Learn-

ing Statistical Models from Relational Data.

[9] Snijders, T. A. B. (2002). “Markov Chain Monte Carlo Estimation of Exponential Random Graph

Models.” Journal of Social Structure 3:2.

[10] Snijders, T. A. B., Pattison, P. E., Robins, G. L., and Handcock, M. S. (2006). “New Specifications

for Exponential Random Graph Models.” Sociological Methodology 36:(1) 99-153.

[11] Wasserman, S. and Pattison, P. E. (1996). “Logit Models and Logistic Regression for Social

Networks I: An Introduction to Markov Random Graphs and p*.” Psychometrika, 61: 401-425.

21


