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ABSTRACT

Due to the evolution of programming languages, interpreted languages have gained widespread use in
scientific and research computing. Interpreted languages excel at being portable, easy to use, and fast in
prototyping than their ahead-of-time (AOT) counterparts, including C, C++, and Fortran. While traditionally
considered as slow to execute, advancements in Just-in-Time (JIT) compilation techniques have significantly
improved the execution speed of interpreted languages and in some cases outperformed AOT languages.
In this paper, we explore some challenges and design strategies in developing a high performance parallel
discrete event simulation engine, called Simian, written with interpreted languages with JIT capabilities,
including Python, Lua, and Javascript. Our results show that Simian with JIT performs similarly to
AOT simulators, such as MiniSSF and ROSS. We expect that with features like good performance, user-
friendliness, and portability, the just-in-time parallel simulation will become a common choice for modeling
and simulation in the near future.

1 Introduction

We have only seen the tip of the iceberg that holds the potential of Discrete Event Simulation (DES) and
its scalable cousin Parallel Discrete Event Simulation (PDES) as being an indispensable modeling tool
for application domain scientists. DES as a tool in a researcher’s toolbox should rival the popularity of
machine learning tools. Alas, in reality, very few application domains heavily rely on DES, and even less
for PDES. While the slow adoption of DES by most application domains may have multiple reasons, we
believe that one key hurdle is the relatively high entry barrier that exists for DES and even higher for
PDES. This may represent a loss of opportunity in many application domains. For example, the advent
of exascale computing (expected by 2021) with its massive parallelism has put scale regimes for PDES
within reach that in the past had been left to other more coarse-grained modeling paradigms, such as fluid
approximations. Exascale computing will allow PDES to claim a much larger stake in inherently discrete
or easily discretized domains, such as infrastructure modeling, social dynamics models, and even aspects
of particle physics.

To grow the (P)DES user base, one needs to lower the barrier to entry by offering tools that are more
straight-forward to use, especially by potential application domain scientists, without sacrificing performance.
We postulate that developing simulators written with interpreted languages supported by Just-In-Time
compilation techniques offer the solution. Just-in-Time (JIT) compilation refers to dynamically performing
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translations during program execution. As such, it allows program analysis and code optimizations (such
as constant folding, branch elimination, and loop unrolling) to take advantage of runtime information that
is otherwise unavailable to statically compiled languages.

In this paper, we present Simian, a full-fledged, open-source, parallel discrete event simulation platform
with support for multiple languages (including Python, Lua, JavaScript, and their respective JIT versions,
Pypy, LuaJIT and SpiderMonkey), multiple parallel simulation synchronization algorithms (both conservative
and optimistic), and optimized data structures and functions for JIT compilation. We also contrast and
evaluate various PDES design choices for JIT compilers and AOT compilers and their respective trade-
offs. These improvements significantly expand upon the original bare-bone Simian implementation (Santhi,
Eidenbenz, and Liu 2015), while keeping with the original lean design philosophy to remain scalable, simple,
and easy to use. This design philosophy sets Simian apart from existing simulation engines. Additionally,
our performance results demonstrate that simplicity and good performance do not need to be exclusive.
The design features and use of just-in-time compilation techniques enable Simian to be both easy to use
and efficient. Through our investigation into the performance of JIT compiled data structures and functions,
we found that the pure Python and Lua priority queue implementations were faster than interfacing with
an external C module. Additionally, we observe that just-in-time compiled data structure operations can
sometimes outperform ahead-of-time compiled code. We also observe limitations of just-in-time compiled
math functions in comparison to ahead-of-time math functions. To evaluate the performance of Simian,
we compare the simulators event rates over various benchmark configurations.

The remainder of the paper is organized as follows. In Section 2, we present our Simian platform. In
Section 3, we overview just-in-time compiled languages. In Section 4, we conduct experiments to reveal
design options for just-in-time parallel simulation and their performance trade-offs. We conduct performance
studies using a benchmark suite to evaluate our just-in-time simulator in Section 5. In Section 6, we discuss
related work, including programming languages and existing state-of-the-art discrete-event simulators. We
conclude the paper and outline future research directions in Section 7.

2 Simian

Simian is a high-performance parallel discrete-event simulation (PDES) engine written in interpreted
languages. Currently, Simian has been implemented in three languages: Python, Lua, and JavaScript. Two
distinct features set Simian apart from other existing PDES engines. First, the primary design goal of
Simian is to have a simulator that is simple-to-use, user-friendly, and portable. The main user base contains
physicists, computational scientists, and other domain experts, who would use Simian to develop application
models, such as particle simulations and fluid dynamics models, on high-performance computing platforms.
As such, to maintain simplicity, Simian intentionally keeps its code base small and easy to understand.
Using highly developed interpreted languages reduces the barrier for developing complex models and
facilitates fast prototyping. Also, because interpreted languages do not require explicit recompilation when
executed on different platforms, they provide easy portability. The second distinct feature of Simian is the
use of state-of-the-art JIT techniques. We explore specific simulator design consideration to take advantage
of JIT features. We discuss them in Section 4.

2.1 Language Support

The Simian simulation engine has currently been implemented in three interpreted languages: Python, Lua,
and JavaScript. While the implementations have syntactic differences due to the language choices, they
all share the same design. It is important to note that the overarching design principle of Simian is to
keep a lean and modular design for simplicity and ease-of-use. In particular, to facilitate ease-of-use and
portability, we require all implementations to minimize dependencies on external libraries and tools. As
such, for all implementations of Simian, we prefer using language-native tools and packages that do not
require additional user installation effort.
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Simian’s Python implementation works with the default CPython interpreter as well as Pypy (pypy.org),
the just-in-time compiler for Python. Simian’s Lua and Javascript implementations use the native JIT compiler
provided by the specific languages, specifically LuaJIT (luajit.org) and SpiderMonkey (2018). The Luajit
compiler can be used as is, because of the language’s native support for co-routines, which are the Lua
version for user-space micro-threads. Simian’s Javascript implementation needs a customized version of
SpiderMonkey, which includes native support for loading user-written modules at runtime, support for
passing command line arguments to scripts, and also supports for native methods that implement a limited
subset of MPI needed by Simian.

2.2 Parallel Synchronization

Simian supports both conservative and optimistic synchronization algorithms and allows the user to select the
synchronization method at run-time. Currently, the conservative synchronization mechanism is implemented
in Python, Lua, and JavaScript. The optimistic approach, however, has only been implemented in Python.
We are currently developing the Lua and JavaScript implementations.

The conservative synchronization algorithm is based on the window-based YAWNS protocol (Nicol
1993). The implementation involves an MPI call toMPI AllReduce, which forces a barrier synchronization
between all parallel simulation instances and determines the size of the next synchronization window (defined
by the lower bound of timestamps of all future events). The barrier synchronization moves the global
simulation time to the next minimum timestamp across all pending event queues. The parallel simulation
instances process local events independently within the synchronization window and then repeat the barrier
synchronization.

The optimistic implementation is based on Time Warp (Jefferson 1985), which uses anti-messages and
state saving to maintain temporal accuracy. For each event, an additional message is created as an inverse
event. Before executing a pending event, the engine checks if an inverse event is also presented in the
pending event queue. If so the two events cancel out and the next pending event is executed. This approach
is slightly different than the classical approach. We take a lazy approach to the annihilation of events: When
an anti-message or inverse event is created, instead of searching the pending event queue data structure
and removing matching events, the event is added to the pending event queue. If the matching event has
already been executed, the inverse event will be added to the front of the pending event queue; or in the
case multiple inverse events are added concurrently, the one that rolls back the local engine’s clock to the
earliest timestamp will be the next event to be dequeued. Thus to annihilate, after dequeuing, the Simian
engine checks to see whether the next pending event has the same timestamp. If the timestamps match,
then the engine compares the events to see if they cancel out. This mechanism enables fast annihilation at
the cost of a larger priority queue.

Each Simian engine instance maintains both a global clock that is synchronized according to the GVT
approximation algorithm by Mattern (1993), and a local clock that is the timestamp of the last executed
event. When an out-of-order event is processed, the state of the engine is rolled back to the time of the
event, and for all events that were created after the timestamp, an anti-message or inverse event is sent.
After GVT calculation is done all states that are before GVT can be reclaimed to free up memory.

3 Just-in-Time Compilation

3.1 JIT Languages

Just-in-Time (JIT) compilation, also known as the dynamic compilation, refers to the technique of performing
translations dynamically during the program execution. JIT compilation has a long history with the earliest
mention in McCarthy’s LISP paper in 1960 (Aycock 2003). JIT compilation aims to achieve better
performance when compared with either statically compiled programs (also known as Ahead-of-Time or
AOT compilation) or interpreted programs.

pypy.org
luajit.org
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The static compilation translates program source code, normally written in high-level programming
languages, into executable code, either assembly code or machine instructions that can be directly executed
on the target hardware. Statically compiled programs have the advantage of undergoing expensive program
analyses and optimizations, possibly through several iterations of code optimizations, during the compilation
time, and thus can produce efficient code before program execution.

Interpreted programs are highly portable. The programs can be first compiled into a machine-independent
representation (such as Java bytecode), and on a target machine, only an interpreter is needed to run the
program. Since interpretation is performed at runtime, an interpreter can access runtime information not
available for static compilation. Consequently, interpreted languages can provide high-level programming
semantics in their language design, such as dynamic typing, which can be difficult to implement for statically
compiled languages.

JIT brings together the advantages of both static compilation and interpretation. On the one hand, dynamic
compilation allows code analysis and optimizations to take place. On the other hand, the translations can
take advantage of runtime information, such as control flow information, execution profile, and information
of the target architecture. Several optimizations can be performed by a JIT compiler during runtime. For
example, JIT compilers can generate constant addresses as opposed to references to variables (constant
folding). JIT compilers can detect hot-path, perform branch prediction or branch elimination, and method
inlining, based on the execution profile collected during runtime. The same techniques can be used to
unroll loops, which often consist of instructions to increment a pointer or index to access array elements
and perform end-of-loop tests. JIT compilers can generate code with pre-calculated offsets to the array
elements and therefore avoid those arithmetic operations at runtime.

By default, Python is interpreted. Like Java, Python first compiles the source code into bytecode, which
is a low-level platform-independent representation of the source code. The Python Virtual Machine (PVM)
interprets bytecode instructions and performs the operations—one instruction at a time. CPython is the
standard Python interpreter implementation (in C). There are ways to speed up Python execution including
using an Ahead-of-Time (AOT) compiler, such as Cython (cython.org), or using a JIT compiler, such as
PyPy (pypy.org). PyPy was originally launched as a project for improving the Python implementation and
later evolved into an environment for implementing dynamic languages (Rigo and Pedroni 2006), although
its primary focus still remains on efficient Python implementation. PyPy supports automated tracing JIT
compiler generation (Bolz, Cuni, Fijalkowski, and Rigo 2009).

Lua is a scripting language more commonly used on embedded devices for its high performance and low
memory footprint. LuaJIT is a JIT compiler, which is one of the fastest dynamic language implementations
with a highly optimized trace compiler (luajit.org). There exist several JavaScript compilers.

Mozilla’s SpiderMonkey (2018) is a JavaScript engine used in Firefox web browser. Internally,
SpiderMonkey uses two JITs compilers: JaegerMonkey and IonMonkey. JaegerMonkey is a baseline
general-purpose JIT used for normally hot traces. However, IonMonkey will be called for heavyweight
optimization. This strategy allows the JIT compiler to gradually optimize code and balance between code
optimization levels and compilation time.

3.2 Interfacing with C Code

While Just-in-time compilation has sped up the execution time of interpreted languages, we find that it is
often necessary to invoke algorithms or modules written in C code. For example, to run a parallel simulation
on distributed-memory machines, PDES engines usually need to perform communications through message
passing. It is undesirable to implement some functions directly in Python, Lua, JavaScript, and alike.
Consequently, these languages would need to support the execution of C code within the interpreter or
just-in-time compiler in order to utilize existing code and libraries written in C.

There are several techniques for calling C modules from interpreted languages: C code can be integrated
directly into the interpreter or the just-in-time compiler; CTypes allows for languages to cast native data

cython.org
pypy.org
luajit.org
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types as C data types, while foreign function interfaces provide a mechanism for native data types to be
converted to C data types automatically.

Built-in modules are written in C inside the interpreter or compiler. This produces a high-performance
interface but requires the most effort. For example, CPython interpreter implements some libraries and
functions built into the interpreter, such as HeapQ, Math, Sys, and many more. Similarly, PyPy, a JIT
compiler for Python, implements a subset of these libraries. Writing a C extension module requires an
extended knowledge of the internals of the interpreter including rebuilding it after modification.

Foreign Function Interface (FFI) is the default mechanism in LuaJIT to interface with external libraries
and functions (Rigo and Fijalkowski 2012). Similar to LuaJIT’s FFI, Python includes CFFI, the C foreign
function interface. One objective of FFI is to eliminate the need for users to learn the domain-specific
languages and its complex APIs. One such common API for interpreted languages is the CTypes interface
which provides C compatible data types. CTypes enables pure Python to call shared libraries or DLLs (Python
Software Foundation 2010). The major difference between FFI and CTypes is the location of the code that
bridges the gap from interpreted language to C. FFI implementations generate C code to accept Python
data types, while CTypes provides the Python programmer the ability to cast their Python data into C
compatible data types.

Other methods exist for integration of C code into Python, Lua, and JavaScript but typically require
compilation of the interpreted language program ahead-of-time, or require run-time directives such as static
types. Overall, we focus on the popular and most well-established techniques to interface C code with
interpreted language code so as to be consistent with the Simian’s minimalistic philosophy.

4 JIT Simulation

In this section, we investigate two core PDES components under JIT and evaluate the performance trade-offs
between different implementation approaches and language choices. In particular, we explore the design
and implementation approaches in the pending event queue of the PDES engine, and the pseudo-random
number generators.

4.1 Pending Event Queue

Discrete event simulation advances through the execution of timestamped events. Events are executed
chronologically in simulation time. In order to organize pending events, the simulation engine must
maintain some internal data structures for storing pending events. A priority queue is a simple structure that
can be implemented. A binary heap can push (insert) and pop (remove) elements in O(log n), where n is
the number of current pending events in the heap. If the simulation allows event cancellation, or when the
simulation runs optimistic synchronization, the delete operation must also be supported. Since the pending
event queue is a critical component of the PDES engine, there has been a lot of research on improving the
performance of enqueue and dequeue operations using optimized priority queue data structures, such as
the calendar queue (Brown 1988; Tan and Thng 2000) and the ladder queue (Tang, Goh, and Thng 2005).
Multi-tiered data structures have also been explored (Higiro, Gebre, and Rao 2017).

In order to evaluate the performance of interpreted and just-in-time compiled languages, we design
three micro-benchmarks to simulate the use of the simulator’s pending event queue data structure:

• Test 1 (Static Priorities): Enqueue 1,000,000 events with fixed time increments, followed by
1,000,000 dequeues.

• Test 2 (Random Priorities): Enqueue 1,000,000 events with random future times, followed by
1,000,000 dequeues.

• Test 3 (Interleaved Operations): Enqueue a random number of events with random future times,
followed by a random number of dequeues. This process repeats until 1,000,000 events have all
been enqueued and dequeued.
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Table 1: Performance of Data Structure Implementations (in Seconds)

Implementation Static Priorities Random Priorities Interleaved Operations

CPython C Heapq 3.434 9.167 3.720
CPython Python Heapq 8.417 13.261 7.789
CPython CFFI (API Mode) 3.541 5.974 5.227
CPython Ctypes 6.349 12.4 10.2
Pypy heapq (default module) 0.855 2.246 0.371
Pypy Python Priority Queue 0.873 2.243 0.345
Pypy CFFI (API Mode) 1.903 2.832 1.660
Pypy Ctypes 18.4 18.5 18.5
Pypy CalendarQ (Pure Python) 1.049 3.158 15.371
Pypy Fibonocci Heap (Pure Python) 1.353 9.947 1.259
LuaJIT Pure Lua 0.933 2.271 0.574
Pure C code 0.850 1.588 0.663

The results are shown in Table 1, we take the average of 100 runs, each run reports the best of
100 test executions. We compute the times in this manner to eliminate interference with OS scheduling,
caching, etc. The executions are run on a single core, on a 2.3GHz Intel i5 processor running macOS
High Sierra. Random priorities run slower than static priorities due to the additional overhead of random
number generation as well as the random placement in the data structure. Interleaved operations often run
fastest because interleaving the operations results in a smaller heap at all times in comparison to the first
two tests. While the number of push and pop operations are the same throughout all tests, the time for
each operation is proportional to the logarithm of the size of the heap.

CPython, the default Python interpreter, runs slower than Pypy, a Python JIT compiler. Specifically,
CPython runs Tests 1 and 2 about 4 times slower than PyPy, and runs Test 3 about 10 times slower. CPython
executes the built-in C module to maximize performance while Pypy executes native code faster than their
corresponding C functions. Likely this is because the interface from Python to C creates a bottleneck.
Additionally, within CPython, the CFFI interface to the C library actually executes faster than the default
built-in heapq module on Test 2. Because Pypy outperforms CPython significantly, we further focus only
on evaluating the JIT compilers.

Comparing the performance between Pypy, LuaJIT, and C, it is evident that just-in-time compiled
languages can perform as well as or even better than pre-compiled languages. While Test 1 performed as
well in Pypy as in C, LuaJIT performed slightly slower. C outperformed all others in Test 2 while LuaJIT
and Pypy outperformed C in Test 3. In Test 3, there are a dynamic number of loops through enqueue and
dequeue operations, this illustrates one of the advantages of JIT compilation. Specifically, jitted languages
can utilize the run-time knowledge to unroll dynamic loops in the executing code.

The results show that for the binary heap data structure, the performance of native code is better than
calling pre-compiled code. However, as discussed previously, it may not be possible to convert every
package to native code, such as the message passing libraries needed for PDES. In such case, we see that
the Ctypes mechanism seems to perform worse than the foreign function interface (CFFI) in Python. Thus
if the PDES engine or an application developer requires C routines that cannot be easily translated to native
code, we should prefer using the CFFI mechanism to interface with the existing C routines or libraries.

We also implemented a calendar queue data structure (CalendarQ) in Python and compared its perfor-
mance to that of the binary heap. For the first two tests, the performance is relatively good while the third test
shows that the performance becomes much worse. The calendar queue requires resize operations whenever
the number of events currently in the queue goes across some threshold. While the C implementations of
the calendar queue are able to preallocate space and efficiently reuse the available space, such fine-grained
controls are not present in the Python implementation. Thus, while native code can run faster than the
corresponding C module from within Python, it is not necessarily true for all cases, as may be evident in
the calendar queue data structure. Future work is needed to investigate whether optimization techniques
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Table 2: Performance of Pseudo-Random Number Generators (in Seconds)

Implementation LCG GFSR Implementation LCG GFSR

CPython–Pure Python 0.33719 2.10156 Pypy–Pure Python 0.12245 0.47669
CPython–C Module n/a .64059 Pypy–C Module n/a 0.15565
Lua–Pure Lua 0.09255 0.59783 Luajit–Pure Lua 0.0156 0.04367
Lua–C Module 0.06466 n/a Luajit–C Module 0.01109 n/a
C code 0.00813 0.01082

adopted by AOT compiled languages, such as C and C++, can achieve the same effect in JIT compiled
languages.

In summary, interpreted languages can speed up execution of pending event queues by incorporating C
modules when using the default interpreter. Just-in-time compilers can outperform C modules by executing
native code.

We also found that Pypy and LuaJIT have similar performance advantage than that of C, which motivates
us to conduct further validations at the full PDES level.

4.2 Pseudo-Random Number Generation

When investigating the pending event queue data structure implementations, we found that the implemen-
tations in Python and Lua were able to perform no worse than the C code implementation. Further, when
we introduce random priorities for enqueued events in Test 2, we observed a large difference between
Python/Lua and C. In this section, we investigate different language implementations for pseudo-random
number generation, which uses math functions.

There are many pseudo-random number generators, which can be largely divided into two common
categories: Linear Congruential Generators (LCG) and Generalized Feedback Shift Register (GFSR). In
this experiment, we compare the performance of Python, Lua, and C with implementations of the two types
of random number generators. We report the results of generating one million random numbers. Overall
the LCG algorithm is faster than the GFSR algorithm, and the C module implementations outperform the
pure code versions. Also, Luajit performs slightly worse than a pure C code implementation. It is possible
to speed up the execution of Python by implementing a C module inside the JIT compiler. However, as
we mentioned earlier, implementing a module in the JIT compiler requires extensive knowledge of the
programming languages. One cannot expect all application developers to possess these skills.

From the experiments, we conclude that the C code still has the performance advantages for implementing
the low-level functions (such as the pseudo-random number generation), although the gap is not as significant
as one may have originally believed (such as the case for LuaJIT). The performance advantages of JIT
compiled languages lies in dynamic run-time optimizations, which we explore in the next section.

5 Benchmark Performance

5.1 La-PDES Benchmark Suite

To evaluate the performance of the simulator, we use the La-PDES benchmark suite (Park, Eidenbenz,
Santhi, Chapuis, and Settlemyer 2015), which is designed to provide a configurable model for profiling
simulation engines for a wide range of applications including communication networks, infection propagation,
computing and more. There are ten primary input parameters for the benchmark that represent the model
behavior and configuration of the simulation applications:

• n ent: the number of entities (simulated processes)
• s ent: the number of events created per entity throughout the life of the simulation
• m ent: the average number of integers stored in entities memory to be used for event processing
• p send: the parameter for the geometric distribution of s ent over entities
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• p receive: the parameter for the geometric distribution of remote events
• ops ent: the average number of operations calculated during each event
• ops sigma: a parameter for normal distribution of ops ent
• p list: a geometric parameter affecting m ent and ops ent
• cache friendliness: the percent of integers recalculated in m ent every event
• q avg: the number of concurrently pending events in the event queue per entity

The input parameters determine the size of the simulation, the location of the created events, the amount
of work associated with processing each event, the destination of remote events among the entities, and so
on. We compare the performance of Simian in different interpreted languages with that of ROSS (Carothers,
Bauer, and Pearce 2000) and MiniSSF (Rong, Hao, and Liu 2014), the two simulators written in C/C++.

We determine the impact on overall simulation performance by varying the benchmark input parameters.
We generate 24,000 Sobol sequences using the SALib library (Herman and Usher 2017). Sobol sequences
are pseudo-random numbers that better cover the parameter space than truly random numbers. We use
quasi-Monte Carlo simulation of the benchmark and variance-based sensitivity analysis over 16 processors
on the event rate to determine the impact of each variable on the execution of the simulator. We consider
variables statistically significant if the total order sensitivity values are greater than 0.05. The simulations
are run in the conservative mode with the priority queue heap data structure, on the Python version of
Simian using Pypy. The results of the sensitivity analysis show that ops ent, p list, p receive, q avg,
s ent, and n ent are statistically significant in contributing to the overall execution time of the simulator.
To identify the impacting parameters of La-PDES, we compare the performance of Simian along with
MiniSSF and ROSS on a partition of 4 nodes, 16 MPI ranks. In order to determine the scaling properties
of Simian, and its parallel performance, we run the benchmark on a mid-range cluster using from 16 to
2048 cores.

5.2 Benchmark Results

By varying the processing time required for handling each event, we can observe how the different simulators
perform. We set the ops ent parameter from 102 to 105 while keeping the other parameters constant. Figure
1 shows the event execution rate of the Simian implementations compared to MiniSSF and ROSS. ROSS
running in optimistic mode outperforms Simian when ops ent is 100; however, it drops below LuaJIT at
1000, and eventually falls below the Python implementations and MiniSSF. At lower computation levels
the simulator experiences a higher number of rollbacks, while at higher levels spends more time processing
events. LuaJit outperforms the other Simian implementations as well as MiniSSF, while the Conservative
Python implementation of Simian performs about the same as MiniSSF.

The p list parameter is related to the processing time and the amount of work associated with each
event processing. Specifically, m ent is a scalar factor that, together with n ent (the number of entities),
determines the size of the list that the event handler will access the state stored in memory. p list is the
parameter of the geometric distribution, which determines the size of the list after the previous calculation.
Essentially entities will have a geometric distribution of state memory size. We set this geometric parameter
from 0.0 to 0.6 and measure the event rate of Simian, MiniSSF, and ROSS. Interestingly, we see that the
performance of Simian decreases slightly as the parameter increases. ROSS, on the other hand, has a
significant performance boost as the size of p list increases and then plateaus. MiniSSF remains constant
and performs about the same as Simian using conservative synchronization. We also observe the same
trend of LuaJIT, which has the best performance of all Simian implementations.

The p receive parameter determines the recipients of created events. A value of 0 is a uniform
distribution of event recipients while a value of 1 means that all entities send events to a single entity
analogous to an all-to-one reduction. Simian performs best when the geometric distribution parameter is
small. There is no noticeable performance change in ROSS. Because the sensitivity analysis measures the
total order of effect of a parameter on the execution speed of the simulation, this includes the interaction
of parameter settings that cannot be observed while varying only the p receive setting. The number of
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Figure 1: Performance Comparison Under Various Parameter Settings

pending events affects the performance of the PDES engines only mildly for possibly the same reason. The
size of the pending event queue will determine the speed at which events can be enqueued and dequeued.
The q avg is the number of events that a given entity will have scheduled at all times. Interestingly, the
event rate of LuaJIT drops at 50 but then increases again. The number of events created by each entity is
specified by the s ent parameter. Simian and MiniSSF increase performance significantly from 10 to 100
sent events, this is possibly due to the startup overhead of the simulators. More entities on a processor will
only have a significant effect on the Simian optimistic mode.

5.3 Scaling Performance

To illustrate the performance gains through parallelization, we set La-PDES benchmark parameters to their
default values and increase the number of MPI ranks from 24 to 211. Each simulation runs 8192 entities
with 100 sent events per entity, and 106 operations per event. The distribution of events sent and received
is set to be uniform.

We compare the performance of MiniSSF, ROSS, and Simian to see how the simulator implementations
scale. For these runs, we utilize the Grizzly cluster at LANL which is a mid-range cluster with 53,640
cores with Xeon E5-2695v4 18C 2.1GHz processors. Our job utilizes 70 nodes of 36 cores and experiments
are averaged over multiple runs. Figure 2 shows the comparison of the Simian implementations with the
ROSS Simulator. We observe that Lua outperforms Python and ROSS. Python optimistic outperforms
conservative when the number of ranks is larger than 27, while Python conservative is better at fewer ranks.
Figure 2 also shows a comparison between the various Simian language implementations and shows that
the performance of SimianLua leads SimianJS and SimianPie.
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Figure 2: Performance of Simian platform against Ross from 4 to 2048 cores. Lua has the best performance
from 16 to 1024 cores. Lua also outperforms JavaScript and Python.

6 Related Work

Traditional scientific computing and high performance applications are commonly written in C, C++, or
Fortran. Interpreted languages are typically dismissed as slow, however, advances in JIT compilers have
boosted the performance of languages like Python, Lua, and JavaScript. As JIT compilers bridge the
performance gap, we expect to start to see a shift in the language choices for scientific applications,
including PDES applications running over a million cores (Barnes, Carothers, Jefferson, and LaPre 2013).

Many discrete event simulators exist including ROSS (Carothers, Bauer, and Pearce 2000), MiniSSF
(Rong, Hao, and Liu 2014), Parsec (Bagrodia, Meyer, Takai, Chen, Zeng, Martin, and Song 1998), µSik
(Perumalla 2005), and more. These parallel simulators are predominantly written in C and C++. There
are simulators written in interpreted languages, such as SIM.JS (Varshney 2011) in Javascript, JiST (Barr,
Zygmunt, and Van Renesse 2018) in Java, SimPy (Team SimPy 2017) in Python, and Simulua (Carvalho
2008) in Lua. However, they do not support parallel execution. There is little existing work using interpreted
languages for parallel simulation. SimX (Thulasidasan, Kroc, and Eidenbenz 2014), PCSIM (Pecevski,
Natschlger, and Schuch 2009), and PrimoGENI (Van Vorst, Erazo, and Liu 2011) use interpreted languages
as the application programming interface; however, they all use AOT compiled languages at the simulation
core. As such, these approaches are quite different from Simian, whose PDES core is written directly in
interpreted languages.

7 Conclusion and Future Work

In this paper, we present the Simian family of just-in-time parallel discrete-event simulators. Advances
in JIT compilation techniques enable Simian to perform comparably to existing state-of-the-art parallel
simulators written in C/C++, such as ROSS and MiniSSF. There are inherent differences in the compilation
methods which can affect the parallel simulator design; we investigate some of those differences.

More specifically, we study the performance of Simian using the La-PDES benchmark. We perform
a sensitivity study to determine the effect of various model parameters on the overall performance of the
simulation engines. In future work, we plan to further investigate how and why the simulation is influenced
by the applications and how this impacts other applications. From the parallel performance results, we can
observe that Simian outperforms ROSS. Interestingly, we also observe that the optimistic version of PyPy
outperforms the conservative approach with higher ranks. We plan to further analyze the performance of
Simian, including the Lua and JavaScript versions. If we can obtain a better understanding of the behavior
of PDES applications, and how the PDES engine is affected, it will enable us to devise further optimizations
for JIT compilation. A key design goal of Simian is to provide an easy-to-use, flexible, user-friendly, and
high-performance simulation interface.
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Our results show that simulators using JIT compilers can often outperform AOT compiled implementa-
tions with native data structures, while ahead-of-time compiled languages outperform just-in-time compiled
languages for operations that invoke native code. Our investigation into the pending event queue data
structures provides motivation to re-evaluate various optimization techniques designed for traditional AOT
programming languages and how these techniques can be translated to performance gains or losses for JIT
compiled languages. In future work, we would like to understand the extent of the differences between
the two compilation paradigms and investigate the implications on parallel simulation, especially parallel
synchronization and communication.
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