
DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Mitigating Emergent Computation:
the need for new approaches in systems engineering

Sergey Bratus
DARPA

Information Innovation Office (I2O)

HCSS 2021

May 2021

Phase 1

Images of specific products throughout this presentation are used for illustrative purposes only. Use of these
images is not meant to imply either endorsement or vulnerability of a product or company.

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 2

What is Emergent Computation and why we care?

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 3

• Modern computing systems demonstrate strong propensity for unintended, emergent computations and
the related unintended, emergent programming models that enable or amplify cyber-attacks

• Computing mechanisms built for a particular purpose and with particular intended models of execution
prove to be capable of executing unintended computing tasks outside of their original specification
and their designers and programmers' mental models

Emergent Computation

Programs

System/
CPU

Programs

System/
CPU

Programs

System/
CPU

Programs

System/
CPU

Management layer
Observation and security enforcement points

System/CPU Development
History

Spectre, Meltdown,
Zombieload, MDS leaks,
Foreshadow, …

ExSpectre: Hiding Malware in
Speculative Execution,

Wampler et al., NDSS '19

Computing with time: microarchitectural weird
machines, Evtyushkin et al., ASPLOS '21

4

Emergent computation, abstractions, and the SDLC

Complete
system

Exploit/
Proof-of-

vulnerability

Initial
mitigations

Better
mitigations

Abstraction
design

Implementation Testing

Translation to
underlying

layers

Fuzzing

Indirect
signals:

brittleness/
emergence

Models of
exploitability

Advanced
exploitation

Exploitability modeling occurs years after design

with latent
emergent
execution

• We start examining systems for signs of emergent behavior—with methods such as fuzz-testing—only after
they are fully built

• However, a system’s exploitability models and propensity for emergent execution arise—and can also
therefore be mitigated—already at the design stage
• Spectre is here to stay: An analysis of side-channels and speculative execution, Ross Mcilroy, Jaroslav Sevcik,

Tobias Tebbi, Ben L. Titzer, Toon Verwaest, https://arxiv.org/abs/1902.05178, 2019
• Exploit Programming: from Buffer Overflows to Weird Machines and Theory of Computation, Sergey Bratus,

Michael E. Locasto, Meredith L. Patterson, Len Sassaman, Anna Shubina, USENIX ;login:, 2011

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 5

• Weird Machines in ELF: A Spotlight on the Underappreciated Metadata, Shapiro et al., USENIX WOOT '13
• GNU/Linux runtime dynamic linker-loader can be generically programmed with ELF relocation and symbol metadata

• Exploiting the Hard-Working DWARF: Trojan and Exploit Techniques with No Native Executable Code, Oakley
et al., USENIX WOOT '11
• GNU C++ DWARF exception handling mechanism can be generically programmed with contents of eh_frame

• The Page-Fault Weird Machine: Lessons in Instruction-less Computation, Bangert et al., USENIX WOOT '13
• x86 MMU can be generically programmed with the contents of CPU's descriptor tables (GDT, LDT, IDT, and TSS)

• Framing Signals - A Return to Portable Shellcode, Bosman et al., IEEE S&P '14
• Unix signal handling can be generically programmed with fake signal frames

• Dedup Est Machina: Memory Deduplication as an Advanced Exploitation Vector, Bosman et al., IEEE S&P '16
• Windows 8.1-10 built-in memory deduplication feature combined with RowHammer yields a powerful weird machine

• Counterfeit Object-oriented Programming: On the Difficulty of Preventing Code Reuse Attacks in C++
Applications, Schuster et al., IEEE S&P 2015
• Contents of OOP objects' v-tables allow generic programming similar to return-oriented programming

Examples of unintended emergent programmability ("weird machines")

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 6

• The Weird Machines in Proof-Carrying Code, Julien Vanegue, 1st IEEE S&P Language-theoretic Security
(LangSec) Workshop, 2014
• Non-foundational PCC still admits emergent behaviors when called upon outside of the proof's preconditions

• Weird machines, exploitability, and provable unexploitability, Thomas Dullien, IEEE Transactions on
Emerging Topics in Computing, December 2017
• Intended Finite State Machine vs an implementation admitting extra "weird" states and transitions between them

• Exploitation as Code Reuse: On the Need of Formalization, Sergey Bratus et al, Information Technology,
vol. 59, no. 2, 2017
• Exploitation programming always violates one abstraction but fully obeys another, a lower one

• Weird Machines as Insecure Compilation, Jennifer Paykin et al., 2019, https://arxiv.org/abs/1911.00157
• Emergent execution is modeled as violations of the 'full abstraction' property of compilation

Beginnings of formalism: making sense of "weird machines"

More to come!

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 7

Beyond specification: Countering emergent execution with system and data design

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 8

DARPA High Assurance Cyber Military Systems (HACMS)

CAmkES
Build tool for seL4 systems

www.darpa.mil
Distribution Statement A - Approved for Public Release, Distribution Unlimited

Architecture-Driven Assurance
Rockwell Collins, University of Minnesota, Galois, Data61

• Comprehensive use of formal methods throughout the development process is needed
to ensure that vulnerabilities are eliminated from critical military assets.

• Integrated tools for architectural modeling, analysis, and synthesis make this approach
practical and effective.

Open source tools and
models available at

Loonwerks.com

; ;

; ;
;

;

;

; ;

; ;
;

00011011001101010100101011001101000100101010101
00010110111111101001010101010100100000000001010
10111010111101010101011011101101100011111100101
01010101001010100101000010101010101100111010101
00001011110100001011010101010101010010010101010
10101010101101000000100000000001010101010010110
10101110100101010010101010101001010011010011010

; ;

; ;
;

;

System Architecture
modeled in AADL 1

Architecture model is
correct 2

Software components
are correct 3

System does what the
model says 4

Software implementation
corresponds to model 5

Unmanned Little Bird
Assume: MPA = “The STANAG message from the
authentication component has valid data.”
Guarantee: MPG = “If the camera moves, then the LOI is 3.”

WesCam VSM
Guarantee: WVG = “If no message is received,
the camera state remains the same.”

LOI Manager
Assume: LMA = “The received message
has valid data.”
Guarantee: LMG = “Commands are not
forwarded to the camera unless LOI is 3.”

STANAG Thread
Guarantee: STG = “STANAG message
commands are correctly translated
to camera commands.”

Camera Thread
Guarantee: CTG = “Move camera
if message is received.”

Architecture Analysis
and Design Language

Assume-Guarantee Reasoning Environment (AGREE)
Compositional reasoning about system behavior based on formal
contracts added to AADL model elements

Resolute
Logic and tool for generating assurance cases from structure of
AADL model and claims added to model

Ivory/Tower DSL
• Language prevents common C

errors
• Generates memory-safe code
• Embeds checks to detect

arithmetic/interface errors

Autopilot Code
*.c, *.h

HDG 2SELECTED
en: HDG_selected = true
ex: HDG_selected = false

ACTIVE
en: HDG_active = true

send(deactivate , ROLL)
send(deactivate , NAV)
send(deactivate , LAPPR)
send(deactivate , GA)

ex: HDG_active = false

CLEARED

NAV 3SELECTED
en: NAV_selected = true
ex: NAV_selected = false

ACTIVE
en: NAV_active = true

send(deactivate , ROLL)
send(deactivate , HDG)
send(deactivate , LAPPR)
send(deactivate , GA)

ex: NAV_active = false

ARMED
CLEARED

LAPPR 4
SELECTED
en: LAPPR_selected = true
ex: LAPPR_selected = false

ACTIVE
en: LAPPR_active = true

send (deactivate , ROLL)
send (deactivate , HDG)
send (deactivate , NAV)
send (deactivate , GA)

ex: LAPPR_active = false

ARMED
CLEARED

GA 5
SELECTED
en: GA_selected = true
ex: GA_selected = false

ACTIVE
en: GA_active = true

send(deactivate , ROLL)
send(deactivate , HDG)
send(deactivate , NAV)
send(deactivate , LAPPR)

ex: GA_active = false

CLEARED

[HDG_select]

[HDG_clear] {send(activate, ROLL)}

deactivate

[NAV_select]

[NAV_clear] { send (activate , ROLL)}

deactivate

[NAV_capture]

[LAPPR_select]

[LAPPR_clear] { send (activate , ROLL)}

deactivate

[LAPPR_capture]

[GA_select]

[GA_clear] {send(activate, ROLL)}

deactivate

Component
contracts

checked for
consistency and

realizability

AGREE contracts exported to
component development
environments (e.g., Simulink)
for verification

• Secure kernel guarantees isolation between components.
• No information flows other than those explicitly defined in

the architecture.

Formally verified from
specification to binary

Trusted Build
Automatically generates implementation code from architecture

model, component specifications, and kernel/OS build system
VxWorks

Linux

eChronos

Build for other
OS/RTOS but
with reduced

assurance

Source: http://loonwerks.com/projects/hacms.html
Source: https://www.militaryaerospace.com/computers/article/16711582/cyberdefense-
software-in-the-real-world-the-highassurance-cyber-military-systems-hacms-program

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 9

Clean-slate, functionally correct secure software

• DARPA HACMS demonstrated that formal methods
scaled to real systems of DoD relevance
• Boeing Unmanned Little Bird (AH-6) with HACMS flight

firmware proved resilient to in-flight cyber-attacks
• SeL4 microkernel is a triumph of proving

functional correctness in a real system
• So is CompCert, the only compiler to withstand

CSmith's fuzzed C without crashing
• NSF DeepSpec extends functional correctness

from a Coq/Gallina application spec to hardware
• Edging out the primitives of emergent execution

throughout the computing stack down to hardware

• IF software's intent is expressible in the spec, and
the chain of proofs can be completed

Source: https://royalsocietypublishing.org/doi/10.1098/rsta.2015.0401

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 10

Bringing verification insights to systems-of-systems design

Challenge: Give systems designers the tools that would prevent them
from designing unverifiable or hard-to-verify systems

Data in an information
interchange format Component

Designer's leap of faith: Intent is expressible

DISTRIBUTION A: Approved for public release; Distribution is unlimited.
11

• Designers: Correct implementation will tell maliciously crafted inputs
from valid inputs.
• Also designers: Inputs are really programs in rich bytecode or scripts.
• Attackers: Your security game is lost at the point of input format RFC!

This seems like a weird case, but it's ubiquitous:
• Inputs mean actions

• Commands, memory allocations when constructing object representation, state changes, …
• Actions must abide by policy
• Policy must be computable (*) – what if implied policy isn't?

[*] Cf. K.Hamlen, G.Morrisett, F.Schneider, "Computability Classes for Enforcement Mechanisms", 2003

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 12

Designer's leap of faith: Intent is expressible cont.

Systems engineers must design data interchange formats so that
validity checking of inputs is tractable
Otherwise functional correctness properties relating inputs and
outputs cannot be specified

• Designers: Correct implementation will tell maliciously crafted inputs
from valid inputs.
• Also designers: Inputs are really programs in rich bytecode or scripts.
• Attackers: Your security game is lost at the point of input format RFC!

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 13

Programmer's dilemma: To DWIM* or not to DWIM?

• Customers: Implement standard ISO xxxxx-v:2020 for input data.
• Also customers: Fix trivial errors and pre-standard variants in inputs
• Attackers: Let's see in how many ways your input validator and your

input interpreter can be made to disagree**

(*) "Do What I Mean", correct trivial errors automatically
(**) On what actions your validator sees as allowed as per policy, but the executor interprets differently
(***) J.Chen, V.Paxson, J.Jiang, "Composition Kills: A Case Study of Email Sender Authentication", USENIX Security '20

This seems like another weird case, but it's ubiquitous***:
• Real data has dialects

• Even when there's only the standard, reasonable implementors will disagree on corner cases
• There's enormous pressure to interoperate
• Input validation (and its specification!) now must include a rewriting system

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 14

Programmer's dilemma: To DWIM* or not to DWIM?

Systems engineers need not only unambiguous and tractable definitions
of data interchange formats, but also "what-if" tools for their changes

Inevitable spike of changes to proofs during system integration calls for
"differentiable" proofs and proof tool chains

• Customers: Implement standard ISO xxxxx-v:2020 for input data.
• Also customers: Fix trivial errors and pre-standard variants in inputs
• Attackers: Let's see in how many ways your input validator and your

input interpreter can be made to disagree**

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 15

Protecting the system-of-systems designers

Challenge: Give systems designers the tools that would prevent them
from designing an unverifiable or hard-to-verify system

Data in an information
exchange format Component

(Interpreter)

SafeDocs

AIMEE

"Everything is an interpreter"
--Greg Morrisett

Help designers avoid creating at-boundary
validation problems that aren't
specifiable, tractable, or provable.

Describe information interchange formats
in systems-of-systems with suitable Data
Definition Languages
that capture validity:
• Concepts
• Relationships
• Constraints

"Every input is a program"
--Language-theoretic

security principle

Anticipate and mitigate emergent execution
models at system design time
• If we consider inputs as bytecode, what

kind of a VM would the component be?
• Do implementation models of

component's abstractions allow
emergent execution by design?

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 16

Safe Documents (SafeDocs)

Objective: Reduce electronic document complexity and build verified parsers to radically
improve software’s ability to reject invalid and malicious data

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 17

Unambiguously describe de facto data formats

To
TA 3Challenges:

• Lack of effective theory for describing actual complex electronic data formats
• Actual syntax includes many ad hoc extensions of recorded standards (on top of standards’ own ambiguities)

• We must discover 'benign' malformations in the wild, describe them intelligibly, and analyze them for assurance
• Current parsing theory is biased towards programming languages, not data formats (either binary or PDF-like)

Approaches:
• Develop novel computer science theory to effectively describe de facto data formats
• Create formal ways to represent and reason about complex logical dependencies between format elements
• Create unambiguous ways to describe allowed variations and dialects of data formats in the wild
• Survey large corpora of openly posted documents to summarize use of features and malformations
• Create machine-readable, human-intelligible descriptions of data formats, deduce safe format subsets

Simplified,
safe,

grammar

Big Data de Facto
Format Discovery

Grammar
Simplification

To
TA 2

Imperfect,
untrusted
docs

x 1000

Incomplete
documentation

De facto format

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 18

Make safe parser construction a convenient default

Approaches:
• New theories of parser functional correctness, logics for input data validation, type systems for documents and messages

• Relational refinement type systems for data languages, parsers
• Program logics for parsers in PVS, Coq, ACL2
• Verification-oriented DSLs for parsers, with multi-language code extraction

• Usable parser construction kits and development tools for intuitive, verification-friendly development
• Declarative programming styles that expose ambiguities of format specifications, enable format exploration

01100011011

Parser
Construction

Kits

code to
check
code

D

Rejection of
maliciousness

Verified
Parser

code to
check data

Safe
documentMalicious document

From
TA 1

Challenges:
• Lack of verification theory for parsers:

• No program logics and type systems target parser
development specifically

• Data parsing algorithms and abstractions are not designed
with verification in mind

• Verification-friendly parsing is beyond the common
developer’s reach
• Demands unrealistic levels of mathematical expertise
• Understanding of the date format is not convertible to

declarative, verification-friendly programming idioms
• Verification is at odds with performance

Simplified, safe,
grammar

19

SafeDocs' contributions to document standards

• Submitted over 60 Candidate Edits to the ISO/FDIS 32000-2 (PDF 2.0) International Standard,
removing vulnerability-producing ambiguities in the PDF format description

• 50 Candidate Edits accepted into the standard, others under consideration

• Developed PDF Object Model grammar sets for every PDF version (1.0 through 2.0)

• Every PDF version now has its own machine-readable Document Object Model
specification

• To be released at the 2021 IEEE S&P Language-theoretic Security (LangSec) workshop,
May 27—28 (http://langsec.org/spw21/)

• Developing open-source tools for experts to explore the format in the wild and make value
judgments on specific features and malformations

• Building a Wide Reach Corpus for Secure Parser Development, Timothy Allison et al, 2020
IEEE S&P LangSec workshop, http://spw20.langsec.org/papers.html#corpus

AIMEE: Artificial Intelligence Mitigations of Emergent Execution

Distribution Statement A: Approved for Public Release, Distribution Unlimited

Objective: Examine systems for signs of emergent behavior: unintended computing tasks outside
of their original specification and their designers and programmers’ mental models

https://www.darpa.mil/program/artificial-intelligence-mitigations-of-emergent-execution

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 21

Applying design-stage modeling to discover and mitigate emergent execution engines in:

• Program flow control abstractions
• E.g., anticipating variations of <control flow primitive>-oriented programming

• Heap memory management logic
• E.g., countering heap massaging, use-after-free, double-free, etc., and other manipulations of memory locality

and adjacency

• Package management logic
• E.g., countering manipulation of package managers

via crafted packages (cf. Android Master Key bugs)
• Container management logic

• E.g., countering manipulation of cloud orchestrators
via crafted container images

• More to come!

AIMEE use cases and models

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 22

Parthian shot: emergent execution in neural networks?

https://arxiv.org/abs/1806.11146

www.darpa.mil

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 24

Towards a Unified Program Analysis

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 25

Program Analysis

K. Sen, "Scalable automated methods for dynamic program analysis", 2006
http://osl.cs.illinois.edu/media/papers/sen-2006-scalable_automated_methods_for_dynamic_program_analysis.pdf

Generated from Wikipedia page on Program analysis
with Wolfram Alpha online

Is anything missing?

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 26

The Program Analysis Paradox

All the things I really like to do are
either illegal, immoral, or fattening

-- Alexander Woollcott
[in Reader's Digest, 1933]

All the interesting general problems in
program analysis are either algorithmically
intractable or undecidable when the desired
solutions must be either complete or sound

source: https://en.wikiquote.org/wiki/Alexander_Woollcott /

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 27

Fuzzing?

https://arxiv.org/abs/1610.00502

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 28

A long vocabulary of methods

119 papers as of 2017

[..] dozens of tools developed
over the last four decades,
leading to major practical
breakthroughs in a number of
prominent software reliability
applications [..]

https://arxiv.org/abs/1610.00502

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 29

Fuzzing == Randomized Program Analysis

Generated from Wikipedia page on Fuzzing with Wolfram Alpha online

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 30

"Fuzzing" is Randomized Program Analysis

Source: https://simple.wikipedia.org/wiki/File:Pac_Man.svg (public domain)

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 31

Fuzzing is Randomized Program Analysis

State explosion

Path explosion

Fuzzing

Source: https://www.downloadclipart.net/download/87877/pac-man-ghost-png-clipart-svg (Free for personal or commercial use, attribution
not required)

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 32

Vocabularies of methods

http://personales.upv.es/josilga/papers/Vocabulary.pdf

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 33

Do vocabularies have structures we can search?

http://personales.upv.es/josilga/papers/Vocabulary.pdf

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 34

Machine learning in program analysis may produce qualitative
improvements by providing means for exploring the space of over-
approximations and soundness tradeoffs, by unifying static and
dynamic analysis with tracing as self-supervision

Hypothesis

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 35

Fighting the monsters of space and path explosion

https://www.usenix.org/conference/usenixsecurity18/presentation/yun

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 36

• Program under analysis "as is" -> programs custom-built for analysis

• Sound non-stochastic analyses -> randomized analyses (better-defined
fuzzing)

• Static or dynamic analyses -> hybrid with all three/four (static, dynamic,
custom-built randomized)

• Behaviors of PuA -> Changes in behaviors based on code & input changes

• Path and state explosion heuristic trade-offs -> ML to explore patterns

Redefining the problem to avoid the paradox

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 37

From program "as is" to programs custom-built for analysis

https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 38

• Analyses form algebraic structures (e.g., w.r.t. to over-approximations or
under-approximations)
• Abstract interpretation is mathematically general, but requires human involvement in

creation of abstractions
• Dynamic analysis should be included in these structures

• Machine learning to navigate between the algebraic structures composed of
analyses
• ML to learn appropriate abstractions and navigate their granularity
• ML should interact with Compilation to enable effective learning

Large spaces to search with Machine Learning

www.darpa.mil

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

