Mitigating Emergent Computation:
the need for new approaches in systems engineering

Sergey Bratus
DARPA
Information Innovation Office (I120)

HCSS 2021

Images of specific products throughout this presentation are used for illustrative purposes only. Use of these
images is not meant to imply either endorsement or vulnerability of a product or company.

What is Emergent Computation and why we care?

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

DARPA Emergent Computation

« Modern computing systems demonstrate strong propensity for unintended, emergent computations and
the related unintended, emergent programming models that enable or amplify cyber-attacks

« Computing mechanisms built for a particular purpose and with particular intended models of execution

prove to be capable of executing unintended computing tasks outside of their original specification
and their designers and programmers' mental models

€22 Observation and security enforcement points / @ % S,UE’Ct/: e, Meltdown,
@mm Management layer @ @ 3, Zombieload, MDS leaks,
' “ Foreshadow, ...
Trigg / Payload =%
% ®§ iy ExSpectre: Hiding Malware in
ey Speculative Execution,
@ cache_timing .. | cPu cache
) " Aj) ~wez. Wampler et al., NDSS '19
\l / mmm

System/CPU Devel ¢ Computing with time.: microarchitectural weird
ystem Histof;//e opmen > machines, Evtyushkin et al., ASPLOS 21

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 3

Emergent computation, abstractions, and the SDLC

ettt Fuzzing
Abstraction 1 BEtier «esesesesesnorresususestetetuetstetetusustonsacacaans,
design s :. m|t|gat|0ns Advanced eeccccccccccccccccccccccccccccce .i E
Implementation » Testving » Complete exploitation ‘ Intial _ Models of
system ’ Indirect _ mitigations exploitability
Translation to signals: EXp|fOIté
i : brittleness/ Proof-of-
ungetelzléng with latent emergence vulnerability
Y emergent \ N J
execution

Exploitability modeling occurs years after design

« We start examining systems for signs of emergent behavior—with methods such as fuzz-testing—only after
they are fully built

« However, a system’s exploitability models and propensity for emergent execution arise—and can also
therefore be mitigated—already at the design stage

« Spectre is here to stay: An analysis of side-channels and speculative execution, Ross Mcilroy, Jaroslav Sevcik,
Tobias Tebbi, Ben L. Titzer, Toon Verwaest, https://arxiv.org/abs/1902.05178, 2019

« Exploit Programming.: from Buffer Overflows to Weird Machines and Theory of Computation, Sergey Bratus,
Michael E. Locasto, Meredith L. Patterson, Len Sassaman, Anna Shubina, USENIX ;login:, 2011

Examples of unintended emergent programmability ("weird machines")

Weird Machines in ELF: A Spotlight on the Underappreciated Metadata, Shapiro et al., USENIX WOOT '13
« GNU/Linux runtime dynamic linker-loader can be generically programmed with ELF relocation and symbol metadata

Exploiting the Hard-Working DWARF: Trojan and Exploit Techniques with No Native Executable Code, Oakley
et al.,, USENIX WOQOT '11

« GNU C++ DWARF exception handling mechanism can be generically programmed with contents of eA_frame

The Page-Fault Weird Machine: Lessons in Instruction-less Computation, Bangert et al., USENIX WOQOT '13

« x86 MMU can be generically programmed with the contents of CPU's descriptor tables (GDT, LDT, IDT, and TSS)
Framing Signals - A Return to Portable Shellcode, Bosman et al., IEEE S&P '14

« Unix signal handling can be generically programmed with fake signal frames
Dedup Est Machina: Memory Deduplication as an Advanced Exploitation Vector, Bosman et al., IEEE S&P '16

« Windows 8.1-10 built-in memory deduplication feature combined with RowHammer yields a powerful weird machine

Counterfeit Object-oriented Programming.: On the Difficulty of Preventing Code Reuse Attacks in C++
Applications, Schuster et al., IEEE S&P 2015

« Contents of OOP objects' v-tables allow generic programming similar to return-oriented programming

Beginnings of formalism: making sense of "weird machines"

« The Weird Machines in Proof-Carrying Code, Julien Vanegue, 1st IEEE S&P Language-theoretic Security
(LangSec) Workshop, 2014

« Non-foundational PCC still admits emergent behaviors when called upon outside of the proof's preconditions

« Weird machines, exploitability, and provable unexploitability, Thomas Dullien, IEEE Transactions on
Emerging Topics in Computing, December 2017

« Intended Finite State Machine vs an implementation admitting extra "weird" states and transitions between them

« Exploitation as Code Reuse. On the Need of Formalization, Sergey Bratus et al, Information Technology,
vol. 59, no. 2, 2017

« Exploitation programming always violates one abstraction but fully obeys another, a lower one

« Weird Machines as Insecure Compilation, Jennifer Paykin et al., 2019, https://arxiv.org/abs/1911.00157

« Emergent execution is modeled as violations of the 'full abstraction' property of compilation

More to comel!

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Beyond specification: Countering emergent execution with system and data design

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

DPA DARPA High Assurance Cyber Military Systems (HACMS)

& @ @& militaryaerospace.com/computers/article/16711582/cyberde... <y e :

Architecture-Driven Assurance

Rockwell Collins, University of Minnesota, Galois, Data61

Milit: 0!
Blsotraios i ae LOGIN REGISTER Q

+ Comprehensive use of formal methods throughout the development process is needed
to ensure that vulnerabilities are eliminated from critical military assets.

+ Integrated tools for architectural modeling, analysis, and synthesis make this approach
practical and effective. e v

(g System Architecture
modeled in AADL

Assume-Guarantee Reasoning Environment (AGREE) Resolute
on formal
contracts added to AADL model elements AADL model and claims added to model

Architecture model is

‘\ 2 correct nneduule!!:?
‘ B ===
L ‘i
3 Software components Ivory/Tower DSL
are correct . :Grl:\:;age prevents common C
J—— * Generates memory-safe code
% L s
&g g il d
Cyber-defense software in the real world: the High-Assurance Cyber Military Systems (HACMS)
program (a i\g;eerrs:cses what the ‘
« Secure kernel guarantees isolation between components.
1 4 « No information flows other than those explicitly defined in
MESA, Ariz. - In February 2017, a helicopter took off from a Boeing facility in
N o N _ Linux
Mesa, Ariz., on a routine mission around nearby hills. The aircraft and its oAy et b o o archtecure viwrks
. . X [Software implementation model, component specifications, and kernel/OS build system eChronos
software flew its course fully autonomously, and the safety pilot, required by the e pm 9
Federal Aviation Administration, did not touch any controls during the flight. @" B S
[@ § @ |

The central mission computer was attacked by rogue camera software, as well as
by a virus delivered through a compromised USB stick that had been inserted
during maintenance. The attack compromised some subsystems but could not

affect the safe operation of the aircraft.

Source: http://loonwerks.com/projects/hacms.html
Source: https://www.militaryaerospace.com/computers/article/16711582/cyberdefense-

software-in-the-real-world-the-highassurance-cyber-military-systems-hacms-program
DISTRIBUTION A: Approved for public release; Distribution is unlimited.

@ Clean-slate, functionally correct secure software

* DARPA HACMS demonstrated that formal methods
scaled to real systems of DoD relevance

* Boeing Unmanned Little Bird (AH-6) with HACMS flight
firmware proved resilient to in-flight cyber-attacks

* SelL4 microkernel is a triumph of proving
functional correctness in a real system
* Sois CompCert, the only compiler to withstand
CSmith's fuzzed C without crashing

* NSF DeepSpec extends functional correctness
from a Cog/Gallina application spec to hardware

e Edging out the primitives of emergent execution
throughout the computing stack down to hardware

* IF software's intent is expressible in the spec, and
the chain of proofs can be completed

The HACMS program: using
formal methods to eliminate
exploitable bugs

Kathleen Fisher', John Launchbury* and

Raymond Richards?

For decades, formal methods have offered the promise
of verified software that does not have exploitable
bugs. Until recently, however, it has not been possible
to verify software of sufficient complexity to be
useful. Recently, that situation has changed. Sel.4
is an open-source operating system microkernel
efficient enough to be used in a wide range of
practical applications. Its designers proved it to
be fully functionally correct, ensuring the absence
of buffer overflows, null pointer exceptions, use-

after-free errors, etc.,, and guaranteeing integrity

and confidentiality. The CompCert Verifying C
Compiler maps source C programs to provably
equivalent assembly language, ensuring the absence
of exploitable bugs in the compiler. A number of

Source: https://royalsocietypublishing.org/doi/10.1098/rsta.2015.0401

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

9

Bringing verification insights to systems-of-systems design

Challenge: Give systems designers the tools that would prevent them
from designing unverifiable or hard-to-verify systems

Data in an information
interchange format

Component

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

10

@ Designer's leap of faith: Intent is expressible

* Designers: Correct implementation will tell maliciously crafted inputs
from valid inputs.

* Also designers: Inputs are really programs in rich bytecode or scripts.
* Attackers: Your security game is lost at the point of input format RFC!

This seems like a weird case, but it's ubiquitous:
* |nputs mean actions

e Commands, memory allocations when constructing object representation, state changes, ...

* Actions must abide by policy
 Policy must be computable (*) — what if implied policy isn't?

[*] Cf. K.Hamlen, G.Morrisett, F.Schneider, "Computability Classes for Enforcement Mechanisms", 2003

@ Designer's leap of faith: Intent is expressible cont.

* Designers: Correct implementation will tell maliciously crafted inputs
from valid inputs.

* Also designers: Inputs are really programs in rich bytecode or scripts.
* Attackers: Your security game is lost at the point of input format RFC!

Systems engineers must design data interchange formats so that
validity checking of inputs is tractable

Otherwise functional correctness properties relating inputs and
outputs cannot be specified

@D Programmer's dilemma: To DWIM* or not to DWIM?

e Customers: Implement standard ISO xxxxx-v:2020 for input data.
e Also customers: Fix trivial errors and pre-standard variants in inputs

» Attackers: Let's see in how many ways your input validator and your
input interpreter can be made to disagree™”

This seems like another weird case, but it's ubiquitous™ :

 Real data has dialects
 Even when there's only the standard, reasonable implementors will disagree on corner cases
* There's enormous pressure to interoperate

* |Input validation (and its specification!) now must include a rewriting system
(*) "Do What | Mean", correct trivial errors automatically

(**) On what actions your validator sees as allowed as per policy, but the executor interprets differently
(***) J.Chen, V.Paxson, J.Jiang, "Composition Kills: A Case Study of Email Sender Authentication", USENIX Security '20

@ Programmer's dilemma: To DWIM* or not to DWIM?

e Customers: Implement standard ISO xxxxx-v:2020 for input data.
e Also customers: Fix trivial errors and pre-standard variants in inputs

» Attackers: Let's see in how many ways your input validator and your
input interpreter can be made to disagree™”

Systems engineers need not only unambiguous and tractable definitions
of data interchange formats, but also "what-if" tools for their changes

Inevitable spike of changes to proofs during system integration calls for
"differentiable" proofs and proof tool chains

DPA Protecting the system-of-systems designers

Challenge: Give systems designers the tools that would prevent them
from designing an unverifiable or hard-to-verify system

"Everything is an interpreter"”
--Greg Morrisett

SafeDocs Data in an information
exchange format

Component
(Interpreter)

"Every input is a program"
--Language-theoretic
security principle

Help designers avoid creating at-boundary
validation problems that aren't

specifiable, tractable, or provable. . . .
Anticipate and mitigate emergent execution

models at system design time

* |f we consider inputs as bytecode, what
kind of a VM would the component be?

* Do implementation models of
component's abstractions allow
emergent execution by design?

Describe information interchange formats
in systems-of-systems with suitable Data
Definition Languages

that capture validity:

* Concepts

e Relationships

* Constraints

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 15

iy safe Documents (SafeDocs)

Objective: Reduce electronic document complexity and build verified parsers to radically
improve software’s ability to reject invalid and malicious data

TAl: Document format \ / .
simplification TA2: Safe parser construction \

o
>

S8g!

De Facto Syntax
Discovery

[Syntax }
\ Simplification

4 ﬁﬁ
iu]

Q’\B: Testing & evaluation

Verified
(01100001111 (' - .

g

Safe Enclave

TA4: Instantiatioy

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Unambiguously describe de facto data formats

d;?fr?qn;ﬁtliﬁ,n Imperfect i Big Data de Facto Grammar Simplified,
untrusted’ Format Discovery Simplification safe,

B grammar
& i: s

De facto format
TA 2

LTo

Challenges: A3

« Lack of effective theory for describing actual complex electronic data formats

« Actual syntax includes many ad hoc extensions of recorded standards (on top of standards’ own ambiguities)
« We must discover 'benign' malformations in the wild, describe them intelligibly, and analyze them for assurance

« Current parsing theory is biased towards programming languages, not data formats (either binary or PDF-like)

Approaches:

« Develop novel computer science theory to effectively describe de facto data formats

» Create formal ways to represent and reason about complex logical dependencies between format elements
« Create unambiguous ways to describe allowed variations and dialects of data formats in the wild

« Survey large corpora of openly posted documents to summarize use of features and malformations

« Create machine-readable, human-intelligible descriptions of data formats, deduce safe format subsets

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 17

Make safe parser construction a convenient default

Simplified, safe,

Challenges:
. . grammar
« Lack of verification theory for parsers: o N\ Parser code to
+ No program logics and type systems target parser TrA 1 —>é—> Construction| check
development specifically Kits code
+ Data parsing algorithms and abstractions are not designed code to l Safe
with verification in mind Malicious document check data document

 Verification-friendly parsing is beyond the common

. p .
e 5 |2

Tl

developer’s reach o Bl
« Demands unrealistic levels of mathematical expertise 1€ Rejection of
- Understanding of the date format is not convertible to Ij maliciousness @
declarative, verification-friendly programming idioms @ O

« Verification is at odds with performance

Approaches:

« New theories of parser functional correctness, logics for input data validation, type systems for documents and messages

« Relational refinement type systems for data languages, parsers
« Program logics for parsers in PVS, Coq, ACL2
 Verification-oriented DSLs for parsers, with multi-language code extraction

« Usable parser construction kits and development tools for intuitive, verification-friendly development

« Declarative programming styles that expose ambiguities of format specifications, enable format exploration

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

18

SafeDocs' contributions to document standards

Submitted over 60 Candidate Edits to the ISO/FDIS 32000-2 (PDF 2.0) International Standard,
removing vulnerability-producing ambiguities in the PDF format description

« 50 Candidate Edits accepted into the standard, others under consideration
Developed PDF Object Model grammar sets for every PDF version (1.0 through 2.0) Isoo
« Every PDF version now has its own machine-readable Document Object Model S

specification

« To be released at the 2021 IEEE S&P Language-theoretic Security (LangSec) workshop,
May 27—28 (http://langsec.org/spw21/)

Developing open-source tools for experts to explore the format in the wild and make value
judgments on specific features and malformations

» Building a Wide Reach Corpus for Secure Parser Development, Timothy Allison et al, 2020
IEEE S&P LangSec workshop, http://spw20.langsec.org/papers.html#corpus

19

@ AIMEE: Artificial Intelligence Mitigations of Emergent Execution

Objective: Examine systems for signs of emergent behavior: unintended computing tasks outside
of their original specification and their designers and programmers’ mental models

https://www.darpa.mil/program/artificial-intelligence-mitigations-of-emergent-execution

Distribution Statement A: Approved for Public Release, Distribution Unlimited

AIMEE use cases and models

Applying design-stage modeling to discover and mitigate emergent execution engines in:

« Program flow control abstractions
« E.g., anticipating variations of <contro/ flow primitive>-oriented programming
Heap memory management logic

« E.g., countering heap massaging, use-after-free, double-free, etc., and other manipulations of memory locality
and adjacency

Package management logic

« E.g., countering manipulation of package managers
V|a Crafted packages (Cf_ Andr0|d Master Key bugs) Ransomware Attack Creates Cheese Shortages in Netherlands

Container management logic _ _
« E.g., countering manipulation of cloud orchestrators Securlty Bug Allows Attackers to Brick

via crafted container images Kubernetes Clusters

= threat Ost Cloud Security Malware Vulnerabilities InfoSec Insiders F

The vulnerability is triggered when a cloud container pulls a malicious

More to comel!

image from a registry.

A vulnerability in one of the Go libraries that Kubernetes is based on could lead to denial of
service (DoS) for the CRI-O and Podman container engines.

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 21

1.0 Parthian shot: emergent execution in neural networks?

Gamaleldin F. Elsayed* Ian Goodfellow

ADVERSARIAL REPROGRAMMING OF Google Brain Google Brain

gamaleldin.elsayed@gmail.com goodfellow@google.com

NEURAL NETWORKS https://arxiv.org/abs/1806.11146 e

jaschasd@google.com

(a) counting ImageNet (b) Adversarial Program
yadv y . . o 7. .
1 square tench
2 squares goldfish
3 squares white shark

4 squares tiger shark
5 squares hammerhead HE -+
6 squares electric ray

7 squares stingray
8 squares cock

9 squares hen

10 squares ostrich

(c)

tiger shark, ostrich

4 squares, 10 squares

Figure 1: Illustration of adversarial reprogramming. (a) Mapping of ImageNet labels to adversar-
1al task labels (squares count in an image). (b) Two examples of images from the adversarial task
(left) are embedded at the center of an adversarial program (middle), yielding adversarial images
(right). The adversarial program shown repurposes an Inception V3 network to count squares in
images. (c) Illustration of inference with adversarial images. The network when presented with
adversarial images will predict ImageNet labels that map to the adversarial task labels.

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

www.darpa.mil

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Towards a Unified Program Analysis

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

24

‘:‘T:ﬁ_if':‘l'lt . |”, tion Mie | “

time referred

Safe Programming called £ i |
e .;—ilf “ atec interpretation Optimizing
Languages and Type NS Mo Roring Merpretation OPMIZIG o
static gy
Systems ey e |f|1|:5|/1pfelrrl'[”-]tlrnet**g“m|
gt & LS dynamic
e ' lems = lan guagey o
188 complete
Static Progranl Com T_E‘:" po }'g r d gy le Nns 1| ng
Analysis il mformatmn F; s
phase SXEcd “c»wec ingC
answer USEd II-.l'l-li‘lI;I4 ||]lf||k—‘“|Ili_‘hllln:,{::_i.-.
perform ance H gperformedPt sE
> ;[l ata-flowpgssibleguaranteedS oftware

i -I~; f’rp—t gValla = Eﬂ-‘-‘{
consists - ;\ :tl zct @amount check

Generated from Wikipedia page on Program analysis
with Wolfram Alpha online

Model Based Software

Devel t and Anal / SS1)
evelopment an ysis Is anything missing?

K. Sen, "Scalable automated methods for dynamic program analysis", 2006
http.//osl.cs.illinois.edu/media/papers/sen-2006-scalable_automated methods_for_dynamic_program_analysis.pdf

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

25

@ The Program Analysis Paradox

All the interesting general problems in
program analysis are either algorithmically
intractable or undecidable when the desired
solutions must be either complete or sound

All the things I really like to do are
either illegal, immoral, or fattening
-- Alexander Woollcott

[in Reader’s Digest, 1933]

source: https://en.wikiquote.org/wiki/Alexander_Woollcott /

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 26

DARPA Fuzzing?

A Survey of Symbolic Execution Techniques

ROBERTO BALDONI, EMILIO COPPA, DANIELE CONO D’ELIA, CAMIL DEMETRESCU,
and IRENE FINOCCHI, Sapienza University of Rome

Symbolic execution techniques have been brought to the attention of a heterogeneous audience
since DARPA announced in 2013 the Cyber Grand Challenge, a two-year competition seeking
to create automatic systems for vulnerability detection, exploitation, and patching in near real-
time [95]. More remarkably, symbolic execution tools have been running 24/7 in the testing
process of many Microsoft applications since 2008, revealing for instance nearly 30% of all the bugs
discovered by file fuzzing during the development of Windows 7, which other program analyses
and blackbox testing techniques missed [53].

https://arxiv.org/abs/1610.00502

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 27

A long vocabulary of methods

119 papers as of 2017

[..] dozens of tools developed
over the last four decades,
leading to major practical
breakthroughs in a number of
prominent software reliability

applications [..]

A Survey of Symbolic Execution Techniques

ROBERTO BALDONI, EMILIO COPPA, DANIELE CONO D’ELIA, CAMIL DEMETRESCU,
and IRENE FINOCCHI, Sapienza University of Rome

Many security and software testing applications require checking whether certain properties of a program
hold for any possible usage scenario. For instance, a tool for identifying software vulnerabilities may need to
rule out the existence of any backdoor to bypass a program’s authentication. One approach would be to test the
program using different, possibly random inputs. As the backdoor may only be hit for very specific program
workloads, automated exploration of the space of possible inputs is of the essence. Symbolic execution provides
an elegant solution to the problem, by systematically exploring many possible execution paths at the same
time without necessarily requiring concrete inputs. Rather than taking on fully specified input values, the
technique abstractly represents them as symbols, resorting to constraint solvers to construct actual instances
that would cause property violations. Symbolic execution has been incubated in dozens of tools developed over
the last four decades, leading to major practical breakthroughs in a number of prominent software reliability
applications. The goal of this survey is to provide an overview of the main ideas, challenges, and solutions
developed in the area, distilling them for a broad audience.

that would cause property violations. Symbolic execution has been incubated in dozens of tools developed over
the last four decades, leading to major practical breakthroughs in a number of prominent software reliability
applications. The goal of this survey is to provide an overview of the main ideas, challenges, and solutions

https://arxiv.org/abs/1610.00502

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 28

DARPA

Fuzzing

Randomized Program Analysis

Program analysis

From Wikipedia, the free encyclopedia

Contents [hide]

1 Static program analysis

Fuzzing

absencepotential execution cons sideredinvalid smart
I-‘TT!—'lfI re generation-based security- [rmcgl
failure- mtucmg

L,F}iale d SFQ:] te St I n g dun Ib
seefUzZZer:

April

detect Code

1.1 Control-flow
1.2 Data-flow analysis

\ 4

generates

A 4

1.3 Abstract interpretation

v

Jtﬂuctum ’
ﬂll'—rﬂ(_rwl‘l“ I n u Sp—-\.|3|n|t9|3],..
bu used?20

1.4 Type systems
1.5 Effect systems

v

‘Z%E%p [0 g [aln:=

I‘IIII‘Ill'H-‘I

1.6 Model checking
2 Dynamic program analysis
2.1 Testing

v

UZZers Unix
vulnerahilities " HH.J vulnz-wmblllty

e secu r|ty bugs group
”_l us

2.2 Monitoring

v

webcheckzum | IZZI n ST
ecification :
55 .:1['1-:1[_," |“‘:"°‘5J

reported leverages

coftwaregenerate “memoy st

2.3 Program slicing

3 See also

DISTRIBUTION A:

prDJF-ct
fferent
mstancemmdmp deedmod@!g'm{p'
155-Fuzzminimization ann d Hence orrect

Generated from Wikipedia page on Fuzzing with Wolfram Alpha online

Approved for public release; Distribution is unlimited.

29

"Fuzzing" is Randomized Program Analysis

Program analysis Fuzzing

From Wikipedia, the free encyclopedia nvalid smart

Contents [hide]

1 Static program analysis

1.1 Control-flow tools JENErS

\ 4

1.2 Data-flow analysis

v

A 4

1.3 Abstract interpretation

v

1.4 Type systems
1.5 Effect systems
1.6 Model checking
2 Dynamic program analysis

v

2.1 Testing

v

2.2 Monitoring reporte

A 4

2.3 Program slicing >
3 See also D55-Fuzzmil e | rorrect

Source: https://simple.wikipedia.org/wiki/File:Pac_Man.svg (public domain)

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 30

L4l Fuzzing is Randomized Program Analysis

Path explosion

State explosion

Fuzzing

o tYPE yntime
optimizations

analysis

Source: https://www.downloadclipart.net/download/87877/pac-man-ghost-png-clipart-svg (Free for personal or commercial use, attribution

not required)
DISTRIBUTION A: Approved for public release; Distribution is unlimited. 31

. A. VOCABULARY INDEX
ADBBEYACE SHCIIE . viisvaisnsmiissmimiimiivisvasies s iravisssssremessn s 26
D PA Voca bu Ia rles Of methOd S AMOrPhoUs Sl N s s R R R i 27
Aspect-Oriented SHEING.cicvisinsisriniramsnnsssssmssssnismssisassessassssssasasssngss 14
Backward' Conditioning SHEDg::..:conanmmnnmmanmsmnanmmmiann 20
& 3 : Barrier SHCIIIE. ..o vt e aee e e e e e e 21
A Vocabulary of Program Slicing-Based Techniques Call-Mark SECI« et 15
Concurrent SHCINE.....cooviitiie i e e et e e e ee e e e eeeaaeaes 30

Conditioned SHEINE.......uswiimmmninas i ssmitaniissiimise 22
JOSEP SILVA Constraint: Sheing v a s e s e 22

Universidad Politécnica de Valencia Chopping...._..: ... 8
D atabase Sl CINg o R T T T B R N R s ns 33

DeComMPOBILION: SHEINE «.s cossssnssnstsss aassarsissnsisssansnssassssassssssssssssissssssrmsiasild

Dependence-Cache SHEINE. ... ninnanmimunsannsmnmmsansann10
This article surveys previous work on program slicing-based techniques. For each technique we DACEILE. 1+ttt et et ettt ot et ettt 20

describe its features, its main applications and a common example of slicing using such a technique. Dyaamit SHER wswmmmmmmmmsnvaiasevmssmsnmisaviswinies i
After discussing each technique separately, all of them are compared in order to clarify and End SHCIE. .o.vieie et et e ee e ene e eae e e e U8
establish the relations between them. This comparison gives rise to a classification of techniques FOTWARA: SHCINE iiivuisiminismisiisissavsisesiaris s st maiss siamsiiamsssamssasosisossivess 7
which can help to guide future research directions in this field. Hybrid:Slicing s eaaannnamannss seannn e innnm e mnns O
Incremental SHEIMES. cuenvssssisirussrnninasuimissmsermissssesmssssasasmsasssusisanassOU
Intertace SHEINE s s e e s s Sy o 19
Interprocedural SHCINE.....c.cooviviit evieiie e L
Intraproedural’ SHEINE s R R T ST S oS 10
General Terms: Languages, Theory Object-Oriented SHCINE. ...c.oovvviiiiis e L
Parametri¢c Program SHEE . ..uvnnnnnimiinesaississinsiiiioes 22
Pre/Post Conditioned: Slicing....ocmsnmmnnnnmsnnenmisassnmnnan2d
Program. SHCIHIE: ... v vesinsrsusssssasnsosssnmsussssasssnnsinesssssisssississs snssnsssss sassnssssansss 2

Proposition=Based SHCINE somcm s s s s s 02
1. INTRODUCTION Quasi-Static SHEING......ccoieiiiiiiiis e e ee e seie e e 14
Program s]icing was Originally introduced in 1984 by Mark Weiser. Since then, Relevant SHeIE. o s nessi s e
many researchers have extended it in many directions and for all programming Semantic SHCINE. ...oooiiiiiiiii e e e e 27

. 2 e . Simultaneous Dynamic Slicing:..... .conammnnnmimsisimnisaminmiiass18
paradigms. The huge amount of program slicing-based techniques has lead to the Simultaneous Static Shicing....cuw: anannannmnansnssmnnnansns18

publication of different surveys [Tip 1995; Binkley and Gallagher 1996; Harman STl A COTIE SHCITIE v vvcsee ssesosnasoniismunssnutssiusssbsashsasnpssisdossistsbissssssusssinnses 17
et al. 1996; Harman and Gallagher 1998; De Lucia 2001; Harman and Hierons 2001; Stakernant SIIEIE s s 34

Binkley and Harman 2004; Xu et al. 2005] trying to clarify the differences between SEALIC SHEIIZ v ettt e e e e e 3

. ; : Stop-List Slieing.:canunnnunnn: annneamnsmannsnsrannnnnne2)
them. Howevgr, each survey presents the techniques from a different perspective. Syntactic SHCINE. ..eeeviiiieiiiiii it e e e ae e e 2T

Union SHEING....ccovuviiiii et e eeee e e e LT

Categories and Subject Descriptors: F.3.1 [Theory of Computation|: Logics and meaning of
programs—specifying and verifying and reasoning about programs; D.3.1 [Software]: Program-
ming Languages—formal definitions and theory

Additional Key Words and Phrases: program slicing, software engineering

http.//personales. upv.es/josilga/papers/Vocabulary.pdf

DISTRIBUTION A: Approved for public release; Distribution is unmrmitea. 32

G Do vocabularies have structures we can search?

42 . Josep Silva

Path - - -9 Pre/Post Conditioned ——p Abstract

Backward Conditioning Conditioned
A SPS@ ¢SIPS
s /] Initial States
/ 1 / 5 A
Dicing Hybrid Constrained Quasi-Static Simultaneous Dynamic SS Q& : :
. ' - Iteration Count
Incremental . A< | ASIS X ’
. : Path Aware
Proposition_ \< /
-~ DPS : Static Slicing (SS)
Amorphous - = - S Static ¢-———————== AH Dynamlc - = == Relevant e e DIPS S oration Count Siking (SIS)
- Dynamic Ilelaborn Colulrrl‘l Slicing (DIS)
A o e Rl p w B
- ! ration Count Path Awar in P:
Stop -List SN ~ Ca“-M ark 'l Choppl ng DS < il DIS glfr::nl:z Ille?ahg:cgunlga/th A:asv:cSls:angl;SILS)
- N > Dependence-Cache . 3
/ A LR pe R .
Barrier Simulténeous b‘ o > / \ < Fig. 32. Superset relationships between the program slicing techniques of Table 11
X ' ecomposition Forward Backward
/ \\
4
End Interface InterProcedural === -%» IntraProcedural
——p Generalization - = = p Superset -+« « p Composed of

http.//personales.upv.es/josilga/papers/Vocabulary.pdf

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 33

@ Hypothesis

Machine learning in program analysis may produce qualitative
improvements by providing means for exploring the space of over-

approximations and soundness tradeoffs, by unifying static and
dynamic analysis with tracing as self-supervision

DARPA Fighting the monsters of space and path explosion

so faster, instruction-level symbolic emulation. Addition-
ally, QSYM loosens the strict soundness requirements of
conventional concolic executors for better performance,
yet takes advantage of a faster fuzzer for validation, pro-
viding unprecedented opportunities for performance op-
timizations, e.g., optimistically solving constraints and
pruning uninteresting basic blocks.

QsyM: A Practical Concolic Execution Engine
Tailored for Hybrid Fuzzing

Insu Yun' Sangho Lee’ Meng Xu' Yeongjin Jang* Taesoo Kim'

¥ Georgia Institute of Technology
* Oregon State University

Abstract

Recently, hybrid fuzzing has been proposed to address
the limitations of fuzzing and concolic execution by com-
bining both approaches. The hybrid approach has shown
its effectiveness in various synthetic benchmarks such as
DARPA Cyber Grand Challenge (CGC) binaries, but it
still suffers from scaling to find bugs in complex, real-
world software. We observed that the performance bottle-
neck of the existing concolic executor is the main limiting
factor for its adoption beyond a small-scale study.

To overcome this problem, we design a fast concolic
execution engine, called QSYM, to support hybrid fuzzing.
The key idea is to tightly integrate the symbolic emulation
with the native execution using dynamic binary transla-
tion, making it possible to implement more fine-grained,
so faster, instruction-level symbolic emulation. Addition-
ally, QSYM loosens the strict soundness requirements of
conventional concolic executors for better performance,
yet takes advantage of a faster fuzzer for validation, pro-
viding unprecedented opportunities for performance op-

Line coverage (%)

libjpeg libpng libtiff* file

Figure 1: Newly found line coverage of popular open-source
software by state-of-the-art concolic executors, Driller and S2E,
and our system, QSYM, until they saturated. We used five test
cases in each project that have the largest code coverage. Test
cases generated by QSYM cover significantly more lines than
both concolic executors. In libtiff, Driller could not generate
any test case due to incomplete modeling for mmapQ).

at discovering inputs that lead to an execution path with
loose branch conditions, such as x > 0. On the contrary,
concolic execution is good at finding inputs that drive the

meoceosfototickt ond assanlos bueonob ccnditicse cosl

https://www.usenix.org/conference/usenixsecurity18/presentation/yun

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

35

@ Redefining the problem to avoid the paradox

Program under analysis "as is" -> programs custom-built for analysis

Sound non-stochastic analyses -> randomized analyses (better-defined
fuzzing)

Static or dynamic analyses -> hybrid with all three/four (static, dynamic,
custom-built randomized)

Behaviors of PUA -> Changes in behaviors based on code & input changes

Path and state explosion heuristic trade-offs -> ML to explore patterns

From program "as is" to programs custom-built for analysis

Symbolic execution with SYMCC:
Don’t interpret, compile!

implementations by orders of magnitude. We present SYMCC, Sebastian Poeplau Aurélien Francillon
. . . EURECOM EURECOM
an LLVM-based C and C++ compiler that builds concolic
execution right into the binary. It can be used by software Abstract
developers as a drop_in replacement for clan g and cla ng+ +, A major impediment to practical symbolic execution is speed,
especially when compared to near-native speed solutions like

fuzz testing. We propose a compilation-based approach to
symbolic execution that performs better than state-of-the-art
implementations by orders of magnitude. We present SYMCC,
an LLVM-based C and C++ compiler that builds concolic
execution right into the binary. It can be used by software
developers as a drop-in replacement for clang and clang++,
and we show how to add support for other languages with
little effort. In comparison with KLEE, SYMCC is faster by
up to three orders of magnitude and an average factor of 12. It
also outperforms QSYM, a system that recently showed great
performance improvements over other implementations, by
up to two orders of magnitude and an average factor of 10.
Using it on real-world software, we found that our approach
consistently achieves higher coverage, and we discovered two
vulnerabilities in the heavily tested OpenJPEG project, which
have been confirmed by the project maintainers and assigned

https.//www.usenix.org/conference/usenixsecurity20/presentation/poeplau CVE identifiers.

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 37

Large spaces to search with Machine Learning

« Analyses form algebraic structures (e.g., w.r.t. to over-approximations or
under-approximations)

« Abstract interpretation is mathematically general, but requires human involvement in
creation of abstractions

« Dynamic analysis should be included in these structures

« Machine learning to navigate between the algebraic structures composed of
analyses
« ML to learn appropriate abstractions and navigate their granularity
« ML should interact with Compilation to enable effective learning

www.darpa.mil

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

