
Take a SEAT:

Security-Enhancing Architectural

Transformations

Isaac Amundson 1 Darren Cofer 1 Junaid Babar 1 Eric Mer-

cer 2 Karl Hoech 1 David Hardin 1 Johannes Åman Pohjola 3

Konrad Slind 1

Sept. 14, 2020

1 Collins Aerospace

2 BYU

3 Data61

Overview

1. Architectural Transformations

2. Deep Dive: Message Analysis

3. Assembling a Security Case

1

Architectural Transformations

System Architecture

• General setting: Architectural Design Languages

• An ADL supports complete, highly abstract, views of a

system, including hardware, software, (and possibly humans)

• An architecture model should provide a high-level setting in

which the whole picture of a system can be surveyed

• Thus: a place where existing implementations, new design

features, high-level requirements, implementations, and

verifications can be combined.

• Not just boxes and arrows!

2

CASE

• In the DARPA CASE project we are developing the idea of

Security-Enhancing transformations on such architectural

descriptions.

• The goal is to develop a methodology and case studies where

I the structure of an existing (legacy) system is captured in an

architectural model;

I system security is automatically analyzed and any security

problems are addressed by applying architectural

transformations

• A key aspect is use of formal specification languages and

automatic synthesis of security mechanisms

3

AADL

We have been using Architecture Analysis and Design Language

(AADL) as our architecture modelling language.

• Expressive: allows specification of
I memory and buses

I software (types + behavior)

I hierarchical organization of components

I communication

I scheduling

• Tool support in Eclipse (via OSATE)

• Popular: growing user base, tutorials, books, etc.

4

AADL in CASE

AADL is extensible via annexes. At Collins we have developed two

annexes used on many projects in the Trusted Systems Group:

AGREE SMT-based reasoning over Assume-Guarantee

contracts on components

Resolute Assurance cases as formal entities, using proof search

to explore cases.

In CASE, AGREE is used to formulate behavioral security rqts.

Resolute is used for structural properties, and also for linking

results from disparate proof systems.

5

Architecture Transformations

We have been developing a collection of

architecture-to-architecture maps that can be applied to provably

increase the security of a system.

6

Transformation: Message Filtering

A filter is conceptually very simple: it checks validity of its input

data.

If the data is valid, then it is passed on. Otherwise it is dropped.

7

Transformation: Message Monitoring

A monitor checks to see that a relationship R holds over a

collection of message streams through time. If the specification is

violated, an alert is sent out.

We currently use past-time temporal logic to specify monitors

8

Transformation: Isolation of ‘at risk’ components

An unprotected computational element can be isolated by

transparently lifting it out of its context and mediating access via

seL4.

Correctness of this transformation depends on formal guarantees

provided by seL4.

9

seL4

• seL4 microkernel guarantees partitioning of components and

communication, backed by computer-checked proofs

• seL4 guarantees no infiltration, exfiltration, eavesdropping,

interference, and provides fault containment for untrusted

code

10

Transformation: Attestation

Attestation inserts measurement mechanisms into a system. These

examine various aspects of system behavior, and send summaries

back to an observer system.

11

Example System: uxAS

The example we have been using is uxAS, a framework for

creating autonomous aerial systems from AFRL.

https://github.com/afrl-rq/OpenUxAS

• Open Source

• Previous experience during the AFRL Summer of Innovation

• Good setting in which to exercise our ideas

12

uxAS system architecture

The initial system model we start from :

13

Notes on the model

• UAV is preloaded with a collection of Operating Regions

(Keep-in and Keep-out zones)

• Commands from GS:

OR Set operating region

LST LineSearchTask: Follow the given sequence of

points

ARQT : AutomationRequest: Create a flight plan to

achieve a high-level description, e.g., “surveil the

given OR in a grid pattern”

• Internal messages

ARSP Response to Automation Request

VAC VehicleActionCommand

MC MissionCommand

AV-State AirVehicleState
14

Security Considerations

• Problem: An Operating Region message should designate a

known region

• Solution: Filter OR message to be valid regions

• Problem: Each point in a Line Search Task should be a valid

GPS coordinate

• Solution Filter LST message on GPS coords

• Problem: Each point in an Automation Response should be

in a keep-in zone and not in a keep-out zone

• Solution Monitor ARSP messages wrt Keep-in and Keep-out

zones

• Problem: Every point in an Automation Response should be

a valid GPS coord

• Solution Filter ARSP message

15

Security Considerations

• Problem: An Operating Region message should designate a

known region

• Solution: Filter OR message to be valid regions

• Problem: Each point in a Line Search Task should be a valid

GPS coordinate

• Solution Filter LST message on GPS coords

• Problem: Each point in an Automation Response should be

in a keep-in zone and not in a keep-out zone

• Solution Monitor ARSP messages wrt Keep-in and Keep-out

zones

• Problem: Every point in an Automation Response should be

a valid GPS coord

• Solution Filter ARSP message

15

Security Considerations

• Problem: An Operating Region message should designate a

known region

• Solution: Filter OR message to be valid regions

• Problem: Each point in a Line Search Task should be a valid

GPS coordinate

• Solution Filter LST message on GPS coords

• Problem: Each point in an Automation Response should be

in a keep-in zone and not in a keep-out zone

• Solution Monitor ARSP messages wrt Keep-in and Keep-out

zones

• Problem: Every point in an Automation Response should be

a valid GPS coord

• Solution Filter ARSP message

15

Security Considerations

• Problem: An Operating Region message should designate a

known region

• Solution: Filter OR message to be valid regions

• Problem: Each point in a Line Search Task should be a valid

GPS coordinate

• Solution Filter LST message on GPS coords

• Problem: Each point in an Automation Response should be

in a keep-in zone and not in a keep-out zone

• Solution Monitor ARSP messages wrt Keep-in and Keep-out

zones

• Problem: Every point in an Automation Response should be

a valid GPS coord

• Solution Filter ARSP message

15

Security Considerations

• Problem: An Operating Region message should designate a

known region

• Solution: Filter OR message to be valid regions

• Problem: Each point in a Line Search Task should be a valid

GPS coordinate

• Solution Filter LST message on GPS coords

• Problem: Each point in an Automation Response should be

in a keep-in zone and not in a keep-out zone

• Solution Monitor ARSP messages wrt Keep-in and Keep-out

zones

• Problem: Every point in an Automation Response should be

a valid GPS coord

• Solution Filter ARSP message

15

Security Considerations

• Problem: An Operating Region message should designate a

known region

• Solution: Filter OR message to be valid regions

• Problem: Each point in a Line Search Task should be a valid

GPS coordinate

• Solution Filter LST message on GPS coords

• Problem: Each point in an Automation Response should be

in a keep-in zone and not in a keep-out zone

• Solution Monitor ARSP messages wrt Keep-in and Keep-out

zones

• Problem: Every point in an Automation Response should be

a valid GPS coord

• Solution Filter ARSP message

15

Security Considerations

• Problem: An Operating Region message should designate a

known region

• Solution: Filter OR message to be valid regions

• Problem: Each point in a Line Search Task should be a valid

GPS coordinate

• Solution Filter LST message on GPS coords

• Problem: Each point in an Automation Response should be

in a keep-in zone and not in a keep-out zone

• Solution Monitor ARSP messages wrt Keep-in and Keep-out

zones

• Problem: Every point in an Automation Response should be

a valid GPS coord

• Solution Filter ARSP message

15

Security Considerations

• Problem: An Operating Region message should designate a

known region

• Solution: Filter OR message to be valid regions

• Problem: Each point in a Line Search Task should be a valid

GPS coordinate

• Solution Filter LST message on GPS coords

• Problem: Each point in an Automation Response should be

in a keep-in zone and not in a keep-out zone

• Solution Monitor ARSP messages wrt Keep-in and Keep-out

zones

• Problem: Every point in an Automation Response should be

a valid GPS coord

• Solution Filter ARSP message

15

Security Considerations continued

• Problem: Every Automation Request should have a

corresponding Response

• Solution: Monitor ARQT and ARSP for responses matching

requests

• Problem: uxAS software is open source and Waypoint

Manager could be compromised

• Solution: Isolate Waypoint Manager on a VM

• Problem: Ground station could be compromised; UAV needs

to defend itself against that

• Solution: Attestation Manager on GS, observing activity on

the GS and talking to UAV

16

Security Considerations continued

• Problem: Every Automation Request should have a

corresponding Response

• Solution: Monitor ARQT and ARSP for responses matching

requests

• Problem: uxAS software is open source and Waypoint

Manager could be compromised

• Solution: Isolate Waypoint Manager on a VM

• Problem: Ground station could be compromised; UAV needs

to defend itself against that

• Solution: Attestation Manager on GS, observing activity on

the GS and talking to UAV

16

Security Considerations continued

• Problem: Every Automation Request should have a

corresponding Response

• Solution: Monitor ARQT and ARSP for responses matching

requests

• Problem: uxAS software is open source and Waypoint

Manager could be compromised

• Solution: Isolate Waypoint Manager on a VM

• Problem: Ground station could be compromised; UAV needs

to defend itself against that

• Solution: Attestation Manager on GS, observing activity on

the GS and talking to UAV

16

Security Considerations continued

• Problem: Every Automation Request should have a

corresponding Response

• Solution: Monitor ARQT and ARSP for responses matching

requests

• Problem: uxAS software is open source and Waypoint

Manager could be compromised

• Solution: Isolate Waypoint Manager on a VM

• Problem: Ground station could be compromised; UAV needs

to defend itself against that

• Solution: Attestation Manager on GS, observing activity on

the GS and talking to UAV

16

Security Considerations continued

• Problem: Every Automation Request should have a

corresponding Response

• Solution: Monitor ARQT and ARSP for responses matching

requests

• Problem: uxAS software is open source and Waypoint

Manager could be compromised

• Solution: Isolate Waypoint Manager on a VM

• Problem: Ground station could be compromised; UAV needs

to defend itself against that

• Solution: Attestation Manager on GS, observing activity on

the GS and talking to UAV

16

Security Considerations continued

• Problem: Every Automation Request should have a

corresponding Response

• Solution: Monitor ARQT and ARSP for responses matching

requests

• Problem: uxAS software is open source and Waypoint

Manager could be compromised

• Solution: Isolate Waypoint Manager on a VM

• Problem: Ground station could be compromised; UAV needs

to defend itself against that

• Solution: Attestation Manager on GS, observing activity on

the GS and talking to UAV

16

Transformed uxAS

The transformed model :

17

Implementations and Build

As the transformations are applied, implementations and

configuration information are generated.

• For “simple” transformations code can be generated at

transformation time.

• For the VM and Attestation transforms, configuration

information can be generated, but the details of the

implementation are more involved.

Finally the BUILD can now be invoked.

18

Build

The build is very challenging. The HAMR toolsuite implements

multi-stage translation architecture to address the following goals:

• Semantic consistency from model to execution ensures

model-level analysis applies to deployed code

• Build for multiple target platforms: seL4, Linux

• Same computational model across different platforms

• Same semantics for threading and communication

19

Summary

System designer uses OSATE, using menus to specify and

configure transforms.

The interface makes sanity checks and sets up for the eventual

system build

For a nice video on the interface see

http://loonwerks.com/projects/case.html

20

Deep Dive: Message Filters

Solutions lead to new problems

Once implementations are created for the new system components,

we have to guard against increasing the attack surface of the

system.

Formal specification and proof to the rescue!

21

Ports and Messages

Question: what does a filter operate over?

• An AADL component communicates with other components

via connections

• An endpoint (port) on a connection has a type (booleans,

integers, floats, arrays, unions, ...)

• Properties in AGREE (our specification language) are

therefore written over these types.

• However, in the implementation, messages coming into a port

are byte arrays (essentially untyped)

22

Example : Wellformed GPS coordinates in AGREE

AltitudeType = AGL | MSL

Location3D = {

Latitude : real64,

Longitude : real64,

Altitude : real32,

AltitudeType : AltitudeType}

Good_Location (loc) =

-90.0 <= loc.Latitude <= 90.0 and

-180.0 <= loc.Longitude <= 180.0 and

0.0 <= loc.Altitude <= 15000.0

23

Example : Wellformed GPS strings

Good Location String(s) ⇐⇒
∃s1s2s3s4.

s = s1 • s2 • s3 • s4 ∧
−90.0 ≤ doubleVal(s1) ≤ 90.0 ∧
−180.0 ≤ doubleVal(s2) ≤ 180.0 ∧
0.0 ≤ floatVal(s3) ≤ 15000.0 ∧
0 ≤ natVal(s4) ≤ 1

where

doubleVal : string→ double

floatVal : string→ float

natVal : string→ nat

24

SPLAT

We need to span the gap between high level data and flat strings.

Our approach : SPLAT (Semantic Properties for Language and

Automata Theory)

Try to apply ideas from Formal Language Theory to showing

properties of operations on high-level data.

25

Contiguity Types

The goal is to automatically generate an implementation of the

well-formedness predicate Good_Location from its specification.

There is a problem : the encoding from datastructures to strings is

not specified.

For uxAs, this is a fairly complex encoding.

We specify the message format using contiguity types. With this

representation we can

• automatically generate message filters and parsers

• automatically prove that the filter has the desired property

(Good_Location_String in our example)

26

uxAS LineSearchTask messages

uxAS messages are quite elaborate

Include features such as unions and variable-length arrays

{TaskID : i64,

Label : vString,

EligibleEntities : BoundedArray i64 32,

...

Parameters : BoundedArray keyValuePair_Option 8,

...

DesiredWavelengthBands : BoundedArray WavelengthBand 8,

...

PointList : BoundedArray location3D_Option 1024,

ViewAngleList : BoundedArray wedge_Option 16,

...}

27

Contiguity Types: Syntax

The syntax of contiguity types is very similar to a standard

collection of base types closed under formation of records and

arrays.

base = bool | char | u8 | u16 | u32 | u64 | i16 | i32 | i64 | f32 | f64

τ = base

| Recd (f1 : τ1) . . . (fn : τn)

| Array τ exp

| Union (bexp1 : τ1) . . . (bexpn : τn)

28

Contiguity Types: Semantics

The semantics of contiguity types is in terms of formal languages

(sets of strings):

Lθ(τ) = case τ



base ⇒ {s | len(s) = width(base)}
Recd (f1 : τ1) . . . (fn : τn)⇒ Lθ(τ1) · . . . · Lθ(τn)

Array τ1 exp ⇒ Lθ(τ1)evalExp θ exp

Union (bexp1 : τ1) . . . (bexpn : τn)⇒
Lθ(τi) if evalBexp θ bexpi = true

and no other bexpj is true

∅ otherwise

29

Correctness of parameterized matcher

We can define a function match which takes a contig type and a

string and returns an assignment of slices of the string to elements

of the type.

Theorem (Correctness)

` match contig string = Some(θ)⇒ string ∈ Lθ(contig)

match has the flavor of a parser generator: it takes a specification

of the language to be parsed and returns an implementation

We use match to implement all filters in the transformed uxAS.

30

Joining theorems together

We can join the correctness of the message matcher with the

correctness of the CakeML toolchain to obtain a single-shot

correctness theorem in HOL4:

31

Question: value of end-to-end verification

Q: What is the value of combining verified programs with a verified

compiler to get a property of the compiled program?

A: It removes places to look for bugs. Instead, the assumptions of

the final joined-up theorem reveal the limitations on applicability of

the result.

32

Thread level correctness

But we need to do better: the filter is run inside a loop:

while true

do {

getInput();

if match contig inputBuf {

putOutput (inputBuf);

}

else skip;

}

33

Thread level correctness

Thanks to some great work from Johannes Åman Pohjola at

Data61 we can prove the correctness at the thread level:

• proof rules for infinitary computations with I/O

• space bounds proofs

34

Assembling a Security Case

What is the Claim?

We have to argue that the newly generated implementations have

improved the security of the system.

Current work, so this is somewhat brain-stormy.

35

System-level correctness

Recall the NEAT acronym on necessary properties for a reference

monitor:

Non-bypassable All paths to target go through RM

Evaluable testable, verifiable

Always invoked The RM algorithm is invoked on each and every

input

Tamper proof The RM is not over-writable

Desirable properties for our implementation! We already ‘have’

some of these :

Evaluable (Formal proofs)

Tamper proof (seL4 gives isolation)

36

System-level correctness (continued)

Non-bypassable System-wide property which depends on the

executable rigorously obeying the boundaries in the

model. This property depends on the fact that

HAMR / seL4 enforces architectural boundaries all

the way down.

Always invoked Does the filter sometimes ignore its input and

output a stored well-formed element? It shouldn’t

but how could one tell? (Answer: the thread

property implies this.)

37

Surveyable system-level correctness with Resolute

• For each filter and monitor, the above properties need to be

shown and stored.

• The vast iceberg of the correctness of the security properties

(in Isabelle/HOL) that seL4 implements need to be brought

into the picture.

• For attestation: the toolchain verification story is Coq-based.

• Disparate evidence supporting our security claim.

• Our solution: Represent the security argument in Resolute.

• Goal is surveyability of the full correctness story for the

enhancements generated by the architectural transformations

38

Current and Future Work

• Starting final stage of CASE; CH47 helicopter is our transition

platform

• Currently writing documentation and training materials for

our industrial partners.

• Check it out:

http://loonwerks.com/projects/case.html

39

	Architectural Transformations
	Deep Dive: Message Filters
	Assembling a Security Case

