
Factors for Differentiating Human from Automated Attacks

• Background
• Recent cyber-crime costs are at an all-time high and still skyrocketing.

• Many Intrusion Detection Systems and Intrusion Protection Systems utilize behavior-based methodology, which seeks to identify a baseline for normal users that is then used 
to compare against real-time and non-real-time events in an effort to locate malicious activity 

• The rise of automated attacks has created a great deal of noise for security personnel to wade through to identify malicious behavior and even with IDS systems, a human 
actor is still required to go through the logs to note is unusual activity is actually a threat. 

• If a human based attack is significantly different than an automated attack it would be extremely useful for security personnel to have a way to separate the behavior of an 
automated cyberattack tool from that of a human actor, as this would allow them to create separate tools to deal with each. 
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• Preliminary Results
• Protocol creation complete

• Trends and Regular Activity

• The entire network test group (n=63) averaged 4.67 ± 1.88. 

• The combined keystroke test group (n=190) averaged .26 ± .04 
seconds.        

• The keystroke data revealed four unknown Pattern Groups, two of 
which were individual events. 

• While the network group had a total of seven unknown 
Pattern_Groups, two of which were individual event occurrences. 

• In both the keystroke and network test groups there were several 
Pattern_Groups that occurred very quickly within a small duration 
of time. (see Figure 1

• There were also groups that took significantly longer to occur and 
were rarer. (see Figure 2)
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• Research Goals
• Long-term Project Goals

• Evaluate the viability of event time-difference and event pattern-occurrence as 
factors in behavior-based Intrusion Detection Systems for differentiating 
between human and automated program behavior. 

• In the future, determine how these factors can be added into Intrusion 
Detection Systems to help identify attackers swiftly.

• Short-term Goals

• Develop and finalize protocol for capture and analysis of honeypot machine-log 
data administered over by the National Center for Supercomputing Applications

– Honeypots are a type of security architecture set up to gather information 
on malicious activity  

• Identify any trends or regular activity in the data

• Conclusions 
• Some groups complete events within a rapid 

period of time, and repeat the same pattern 
of events over and over with little to no 
deviation. 

• Other groups take a longer period of time to 
complete events and fall outside the standard 
deviation. 

• This initial research has shown that 
Pattern_Occurrence and Time_Difference are 
indeed likely viable factors to separate 
human behavior from automated program 
behavior in an IDS and need further study

• Future Research
• Obtain larger sample size to replicate 

preliminary results and improve statistical 
signifigance

• Establishing a way to add normalized human 
behavior data (as honeypots servers, by 
design, do not have regular users)

• Designing an experiment to control for issues 
like distance-from-server lag, IP bounce, etc.
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• Methods
1. Organized honeypot log files by time/event/datatype

2. Employed Syntactic Pattern Recognition of events in order to establish patterns

3. Pulled CRON (known program) patterns/times/frequency to form control
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